Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Editorial

Functional Insight into hTRIR

Author(s): Jumin Xie* and Hui Mao*

Volume 24, Issue 12, 2024

Published on: 20 October, 2023

Page: [1445 - 1449] Pages: 5

DOI: 10.2174/0115665240260310231016112946

Open Access Journals Promotions 2
conference banner
Abstract

The uncharacterized C19orf43 was discovered to be associated with hTR maturation. Our previous work indicated that C19orf43 cleaves distinct RNA types but not DNA. We then named it hTR-interacting RNase (hTRIR) (Uniprot: Q9BQ61). hTRIR works in a broad range of temperatures and pH without any divalent cations needed. hTRIR cleaves RNA at all four nucleotide sites but preferentially at purines. In addition, hTRIR digested both ends of methylated small RNA, which suggested that it was a putative ribonuclease. Later, we designed more nucleotides that methylated small RNA to determine whether it was an exo- and/or endoribonuclease. Unlike RNase A, hTRIR could digest both ends of methylated RNA oligos 5R5, which suggested it was potentially an endoribonuclease.

Keywords: Endoribonuclease, hTRIR, methylated RNA, ribonuclease, RNase, RNA digestion.

Next »
[1]
Xie J, Chen Z, Zhang X, Chen H, Guan W. Identification of an RNase that preferentially cleaves A/G nucleotides. Sci Rep 2017; 7(1): 45207.
[http://dx.doi.org/10.1038/srep45207] [PMID: 28322335]
[2]
Palmer T, Bonner PL. The chemical nature of enzyme catalysis. In: Enzymes (Second Edition). 2011; pp. 189-221.
[http://dx.doi.org/10.1533/9780857099921.2.189]
[3]
Burrell MM. RNase A (EC 3.1.27.5). Methods Mol Biol 1993; 16: 263-70.
[http://dx.doi.org/10.1385/0-89603-234-5:263] [PMID: 19082977]
[4]
Morrison H. Enzyme Active Sites and their Reaction Mechanisms. 2021; pp. 193-7.
[5]
Kövér KE, Bruix M, Santoro J, Batta G, Laurents DV, Rico M. The solution structure and dynamics of human pancreatic ribonuclease determined by NMR spectroscopy provide insight into its remarkable biological activities and inhibition. J Mol Biol 2008; 379(5): 953-65.
[http://dx.doi.org/10.1016/j.jmb.2008.04.042] [PMID: 18495155]
[6]
Landré JBP, Hewett PW, Olivot JM, et al. Human endothelial cells selectively express large amounts of pancreatic-type ribonuclease (RNase 1). J Cell Biochem 2002; 86(3): 540-52.
[http://dx.doi.org/10.1002/jcb.10234] [PMID: 12210760]
[7]
Mizuta K, Yasuda T, Ikehara Y, Sato W, Kishi K. New detection method for ribonuclease 2 (RNase 2) using immunoblotting with specific antibody. Z Rechtsmed 1990; 103(5): 315-22.
[http://dx.doi.org/10.1007/BF01263035] [PMID: 2356660]
[8]
Iyer S, Holloway DE, Kumar K, Shapiro R, Ravi Acharya K. Molecular recognition of human eosinophil-derived neurotoxin (RNase 2) by placental ribonuclease inhibitor. J Mol Biol 2005; 347(3): 637-55.
[http://dx.doi.org/10.1016/j.jmb.2005.01.035] [PMID: 15755456]
[9]
Domachowske JB, Bonville CA, Dyer KD, Rosenberg HF. Evolution of antiviral activity in the ribonuclease A gene superfamily: evidence for a specific interaction between eosinophil-derived neurotoxin (EDN/RNase 2) and respiratory syncytial virus. Nucleic Acids Res 1998; 26(23): 5327-32.
[http://dx.doi.org/10.1093/nar/26.23.5327] [PMID: 9826755]
[10]
Domachowske JB, Dyer KD, Bonville CA, Rosenberg HF. Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J Infect Dis 1998; 177(6): 1458-64.
[http://dx.doi.org/10.1086/515322] [PMID: 9607820]
[11]
Domachowske JB, Dyer KD, Adams AG, Leto TL, Rosenberg HF. Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity. Nucleic Acids Res 1998; 26(14): 3358-63.
[http://dx.doi.org/10.1093/nar/26.14.3358] [PMID: 9649619]
[12]
Maeda T, Mahara K, Kitazoe M, et al. RNase 3 (ECP) is an extraordinarily stable protein among human pancreatic-type RNases. J Biochem 2002; 132(5): 737-42.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a003281] [PMID: 12417023]
[13]
Sandín D, Valle J, Chaves-Arquero B, et al. Rationally modified antimicrobial peptides from the N-terminal domain of human RNase 3 show exceptional serum stability. J Med Chem 2021; 64(15): 11472-82.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00795] [PMID: 34342438]
[14]
Abengózar MÁ, Fernández-Reyes M, Salazar VA, et al. Essential role of enzymatic activity in the leishmanicidal mechanism of the eosinophil cationic protein (RNase 3). ACS Infect Dis 2022; 8(7): 1207-17.
[http://dx.doi.org/10.1021/acsinfecdis.1c00537] [PMID: 35731709]
[15]
Liang S, Acharya KR. Structural basis of substrate specificity in porcine RNase 4. FEBS J 2016; 283(5): 912-28.
[http://dx.doi.org/10.1111/febs.13646] [PMID: 26748441]
[16]
Rosenberg HF, Dyer KD. Human ribonuclease 4 (RNase 4): Coding sequence, chromosomal localization and identification of two distinct transcripts in human somatic tissues. Nucleic Acids Res 1995; 23(21): 4290-5.
[http://dx.doi.org/10.1093/nar/23.21.4290] [PMID: 7501448]
[17]
Dyer KD, Rosenberg HF. The mouse RNase 4 and RNase 5/ang 1 locus utilizes dual promoters for tissue-specific expression. Nucleic Acids Res 2005; 33(3): 1077-86.
[http://dx.doi.org/10.1093/nar/gki250] [PMID: 15722482]
[18]
Abtin A, Eckhart L, Mildner M, et al. Degradation by stratum corneum proteases prevents endogenous RNase inhibitor from blocking antimicrobial activities of RNase 5 and RNase 7. J Invest Dermatol 2009; 129(9): 2193-201.
[http://dx.doi.org/10.1038/jid.2009.35] [PMID: 19262607]
[19]
Prats-Ejarque G, Arranz-Trullén J, Blanco JA, et al. The first crystal structure of human RNase 6 reveals a novel substrate-binding and cleavage site arrangement. Biochem J 2016; 473(11): 1523-36.
[http://dx.doi.org/10.1042/BCJ20160245] [PMID: 27013146]
[20]
Narayanan C, Bernard DN, Létourneau M, et al. Insights into structural and dynamical changes experienced by human RNase 6 upon ligand binding. Biochemistry 2020; 59(6): 755-65.
[http://dx.doi.org/10.1021/acs.biochem.9b00888] [PMID: 31909602]
[21]
Zhang J, Dyer KD, Rosenberg HF. Human RNase 7: a new cationic ribonuclease of the RNase A superfamily. Nucleic Acids Res 2003; 31(2): 602-7.
[http://dx.doi.org/10.1093/nar/gkg157] [PMID: 12527768]
[22]
Harder J, Schröder JM. RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem 2002; 277(48): 46779-84.
[http://dx.doi.org/10.1074/jbc.M207587200] [PMID: 12244054]
[23]
Rudolph B, Podschun R, Sahly H, Schubert S, Schröder JM, Harder J. Identification of RNase 8 as a novel human antimicrobial protein. Antimicrob Agents Chemother 2006; 50(9): 3194-6.
[http://dx.doi.org/10.1128/AAC.00246-06] [PMID: 16940129]
[24]
Zhang J, Dyer KD, Rosenberg HF. RNase 8, a novel RNase A superfamily ribonuclease expressed uniquely in placenta. Nucleic Acids Res 2002; 30(5): 1169-75.
[http://dx.doi.org/10.1093/nar/30.5.1169] [PMID: 11861908]
[25]
Devor EJ, Moffat-Wilson KA, Galbraith JJ. LOC 390443 (RNase 9) on chromosome 14q11.2 is related to the RNase A superfamily and contains a unique amino-terminal preproteinlike sequence. Hum Biol 2004; 76(6): 921-35.
[http://dx.doi.org/10.1353/hub.2005.0016] [PMID: 15974301]
[26]
Cheng GZ, Li JY, Li F, Wang HY, Shi GX. Human ribonuclease 9, a member of ribonuclease A superfamily, specifically expressed in epididymis, is a novel sperm-binding protein. Asian J Androl 2009; 11(2): 240-51.
[http://dx.doi.org/10.1038/aja.2008.30] [PMID: 19137000]
[27]
Krutskikh A, Poliandri A, Cabrera-Sharp V, Dacheux JL, Poutanen M, Huhtaniemi I. Epididymal protein Rnase10 is required for post‐testicular sperm maturation and male fertility. FASEB J 2012; 26(10): 4198-209.
[http://dx.doi.org/10.1096/fj.12-205211] [PMID: 22750516]
[28]
Krutskikh A, De Gendt K, Sharp V, Verhoeven G, Poutanen M, Huhtaniemi I. Targeted inactivation of the androgen receptor gene in murine proximal epididymis causes epithelial hypotrophy and obstructive azoospermia. Endocrinology 2011; 152(2): 689-96.
[http://dx.doi.org/10.1210/en.2010-0768] [PMID: 21084446]
[29]
Huang Y, Li X, Sun X, et al. Anatomical transcriptome atlas of the male mouse reproductive system during aging. Front Cell Dev Biol 2022; 9: 782824.
[http://dx.doi.org/10.3389/fcell.2021.782824] [PMID: 35211476]
[30]
Yoshida H. The ribonuclease T1 family. Methods Enzymol 2001; 341: 28-41.
[http://dx.doi.org/10.1016/S0076-6879(01)41143-8] [PMID: 11582784]
[31]
Nilsen TW. RNA structure determination using nuclease digestion. Cold Spring Harb Protoc 2013; 2013(4): pdb.prot072330.
[http://dx.doi.org/10.1101/pdb.prot072330] [PMID: 23547152]
[32]
Lee H, Cho H, Kim J, et al. RNase H is an exo- and endoribonuclease with asymmetric directionality, depending on the binding mode to the structural variants of RNA:DNA hybrids. Nucleic Acids Res 2022; 50(4): 1801-14.
[http://dx.doi.org/10.1093/nar/gkab1064] [PMID: 34788459]
[33]
Song J, Markley JL. Three-dimensional structure determined for a subunit of human tRNA splicing endonuclease (Sen15) reveals a novel dimeric fold. J Mol Biol 2007; 366(1): 155-64.
[http://dx.doi.org/10.1016/j.jmb.2006.11.024] [PMID: 17166513]
[34]
Paushkin SV, Patel M, Furia BS, Peltz SW, Trotta CR. Identification of a human endonuclease complex reveals a link between tRNA splicing and pre-mRNA 3′ end formation. Cell 2004; 117(3): 311-21.
[http://dx.doi.org/10.1016/S0092-8674(04)00342-3] [PMID: 15109492]
[35]
Son A, Park JE, Kim VN. PARN and TOE1 constitute a 3′ end maturation module for nuclear non-coding RNAs. Cell Rep 2018; 23(3): 888-98.
[http://dx.doi.org/10.1016/j.celrep.2018.03.089] [PMID: 29669292]
[36]
Deng T, Huang Y, Weng K, et al. TOE1 acts as a 3′ exonuclease for telomerase RNA and regulates telomere maintenance. Nucleic Acids Res 2019; 47(1): 391-405.
[http://dx.doi.org/10.1093/nar/gky1019] [PMID: 30371886]
[37]
Lardelli RM, Schaffer AE, Eggens VRC, et al. Biallelic mutations in the 3′ exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing. Nat Genet 2017; 49(3): 457-64.
[http://dx.doi.org/10.1038/ng.3762] [PMID: 28092684]

© 2024 Bentham Science Publishers | Privacy Policy