Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Mini-Review Article

Polypyrimidine Tract Binding Protein: A Universal Player in Cancer Development

Author(s): Elizabeth Gonzalez, Terrie G. Flatt, Midhat Farooqi, Lisa Johnson and Atif A. Ahmed*

Volume 24, Issue 12, 2024

Published on: 24 October, 2023

Page: [1450 - 1460] Pages: 11

DOI: 10.2174/0115665240251370231017053236

Price: $65

conference banner
Abstract

Objectives: Polypyrimidine tract binding protein is a 57-Kda protein located in the perinucleolar compartment where it binds RNA and regulates several biological functions through the regulation of RNA splicing. Numerous research articles have been published that address the cellular network and functions of PTB and its isoforms in various disease states.

Methodology: Through an extensive PubMed search, we attempt to summarize the relevant research into this biomolecule.

Results: Besides its roles in embryonic development, neuronal cell growth, RNA metabolism, apoptosis, and hematopoiesis, PTB can affect cancer growth via several metabolic, proliferative, and structural mechanisms. PTB overexpression has been documented in several cancers where it plays a role as a novel prognostic factor.

Conclusion: The diverse carcinogenic effect opens an argument into its potential role in inhibitory targeted therapy.

Keywords: Polypyrimidine tract binding protein, PNC, RNA splicing, cancer, apoptosis, hematopoiesis.

[1]
Kopp K, Huang S. Perinucleolar compartment and transformation. J Cell Biochem 2005; 95(2): 217-25.
[http://dx.doi.org/10.1002/jcb.20403] [PMID: 15770648]
[2]
Pollock C, Huang S. The perinucleolar compartment. J Cell Biochem 2009; 107(2): 189-93.
[http://dx.doi.org/10.1002/jcb.22107] [PMID: 19288520]
[3]
Wen Y, Wang C, Huang S. The perinucleolar compartment associates with malignancy. Front Biol 2013; 8(4): 369-76.
[http://dx.doi.org/10.1007/s11515-013-1265-z] [PMID: 24348523]
[4]
Sawicka K, Bushell M, Spriggs KA, Willis AE. Polypyrimidine-tract-binding protein: A multifunctional RNA-binding protein. Biochem Soc Trans 2008; 36(4): 641-7.
[http://dx.doi.org/10.1042/BST0360641] [PMID: 18631133]
[5]
Auweter SD, Allain FHT. Structure-function relationships of the polypyrimidine tract binding protein. Cell Mol Life Sci 2008; 65(4): 516-27.
[http://dx.doi.org/10.1007/s00018-007-7378-2] [PMID: 17975705]
[6]
Romanelli M, Diani E, Lievens P. New insights into functional roles of the polypyrimidine tract-binding protein. Int J Mol Sci 2013; 14(11): 22906-32.
[http://dx.doi.org/10.3390/ijms141122906] [PMID: 24264039]
[7]
Wang C, Norton JT, Ghosh S, et al. Polypyrimidine tract-binding protein (PTB) differentially affects malignancy in a cell line-dependent manner. J Biol Chem 2008; 283(29): 20277-87.
[http://dx.doi.org/10.1074/jbc.M803682200] [PMID: 18499661]
[8]
Pina JM, Reynaga JM, Truong AAM, Keppetipola NM. Post-translational modifications in polypyrimidine tract binding proteins PTBP1 and PTBP2. Biochemistry 2018; 57(26): 3873-82.
[http://dx.doi.org/10.1021/acs.biochem.8b00256] [PMID: 29851470]
[9]
Dai S, Wang C, Zhang C, et al. PTB: Not just a polypyrimidine tract‐binding protein. J Cell Physiol 2022; 237(5): 2357-73.
[http://dx.doi.org/10.1002/jcp.30716] [PMID: 35288937]
[10]
Spellman R, Rideau A, Matlin A, et al. Regulation of alternative splicing by PTB and associated factors. Biochem Soc Trans 2005; 33(3): 457-60.
[http://dx.doi.org/10.1042/BST0330457] [PMID: 15916540]
[11]
Arake de Tacca LM, Pulos-Holmes MC, Floor SN, Cate JHD. PTBP1 mRNA isoforms and regulation of their translation. RNA 2019; 25(10): 1324-36.
[http://dx.doi.org/10.1261/rna.070193.118] [PMID: 31263002]
[12]
Méreau A, Anquetil V, Lerivray H, et al. A posttranscriptional mechanism that controls Ptbp1 abundance in the Xenopus epidermis. Mol Cell Biol 2015; 35(4): 758-68.
[http://dx.doi.org/10.1128/MCB.01040-14] [PMID: 25512611]
[13]
Coelho MB, Attig J, Bellora N, et al. Nuclear matrix protein Matrin3 regulates alternative splicing and forms overlapping regulatory networks with PTB. EMBO J 2015; 34(5): 653-68.
[http://dx.doi.org/10.15252/embj.201489852] [PMID: 25599992]
[14]
Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T. Regulation of alternative splicing by histone modifications. Science 2010; 327(5968): 996-1000.
[http://dx.doi.org/10.1126/science.1184208] [PMID: 20133523]
[15]
Schorr AL, Mangone M. miRNA-based regulation of alternative RNA splicing in metazoans. Int J Mol Sci 2021; 22(21): 11618.
[http://dx.doi.org/10.3390/ijms222111618] [PMID: 34769047]
[16]
Ge Z, Quek BL, Beemon KL, Hogg JR. Polypyrimidine tract binding protein 1 protects mRNAs from recognition by the nonsense-mediated mRNA decay pathway. eLife 2016; 5: e11155.
[http://dx.doi.org/10.7554/eLife.11155] [PMID: 26744779]
[17]
Fritz SE, Ranganathan S, Wang CD, Hogg JR. The RNA-binding protein PTBP1 promotes ATPase-dependent dissociation of the RNA helicase UPF1 to protect transcripts from nonsense-mediated mRNA decay. J Biol Chem 2020; 295(33): 11613-25.
[http://dx.doi.org/10.1074/jbc.RA120.013824] [PMID: 32571872]
[18]
Shibayama M, Ohno S, Osaka T, et al. Polypyrimidine tract-binding protein is essential for early mouse development and embryonic stem cell proliferation. FEBS J 2009; 276(22): 6658-68.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07380.x] [PMID: 19843185]
[19]
Suckale J, Wendling O, Masjkur J, et al. PTBP1 is required for embryonic development before gastrulation. PLoS One 2011; 6(2): e16992.
[http://dx.doi.org/10.1371/journal.pone.0016992] [PMID: 21423341]
[20]
Senoo M, Takijiri T, Yoshida N, Ozawa M, Ikawa M. PTBP1 contributes to spermatogenesis through regulation of proliferation in spermatogonia. J Reprod Dev 2019; 65(1): 37-46.
[http://dx.doi.org/10.1262/jrd.2018-109] [PMID: 30416150]
[21]
Deng Y, Xu X, Meng F, et al. PRP8-induced CircMaml2 facilitates the healing of the intestinal mucosa via recruiting PTBP1 and regulating sec62. Cells 2022; 11(21): 3460.
[http://dx.doi.org/10.3390/cells11213460] [PMID: 36359856]
[22]
Cui J, Placzek WJ. PTBP1 enhances miR-101-guided AGO2 targeting to MCL1 and promotes miR-101-induced apoptosis. Cell Death Dis 2018; 9(5): 552.
[http://dx.doi.org/10.1038/s41419-018-0551-8] [PMID: 29748555]
[23]
Juan WC, Roca X, Ong ST. Identification of cis-acting elements and splicing factors involved in the regulation of BIM Pre-mRNA splicing. PLoS One 2014; 9(4): e95210.
[http://dx.doi.org/10.1371/journal.pone.0095210] [PMID: 24743263]
[24]
La Porta J, Matus-Nicodemos R, Valentín-Acevedo A, Covey LR. The RNA-binding protein, polypyrimidine tract-binding protein 1 (PTBP1) is a key regulator of CD4 T cell activation. PLoS One 2016; 11(8): e0158708.
[http://dx.doi.org/10.1371/journal.pone.0158708] [PMID: 27513449]
[25]
Domingues RG, Lago-Baldaia I, Pereira-Castro I, et al. CD5 expression is regulated during human T-cell activation by alternative polyadenylation, PTBP1, and miR-204. Eur J Immunol 2016; 46(6): 1490-503.
[http://dx.doi.org/10.1002/eji.201545663] [PMID: 27005442]
[26]
Tang SJ, Luo S, Ho JXJ, Ly PT, Goh E, Roca X. Characterization of the regulation of CD46 RNA alternative splicing. J Biol Chem 2016; 291(27): 14311-23.
[http://dx.doi.org/10.1074/jbc.M115.710350] [PMID: 27226545]
[27]
Sasanuma H, Ozawa M, Yoshida N. RNA-binding protein Ptbp1 is essential for BCR-mediated antibody production. Int Immunol 2019; 31(3): 157-66.
[http://dx.doi.org/10.1093/intimm/dxy077] [PMID: 30476084]
[28]
Geng G, Xu C, Peng N, et al. PTBP1 is necessary for dendritic cells to regulate T‐cell homeostasis and antitumour immunity. Immunology 2021; 163(1): 74-85.
[http://dx.doi.org/10.1111/imm.13304] [PMID: 33421118]
[29]
Zhu W, Zhou B, Rong L, et al. Roles of PTBP1 in alternative splicing, glycolysis, and oncogensis. J Zhejiang Univ Sci B 2020; 21(2): 122-36.
[http://dx.doi.org/10.1631/jzus.B1900422] [PMID: 32115910]
[30]
Wang X, Li Y, Fan Y, Yu X, Mao X, Jin F. PTBP1 promotes the growth of breast cancer cells through the PTEN/Akt pathway and autophagy. J Cell Physiol 2018; 233(11): 8930-9.
[http://dx.doi.org/10.1002/jcp.26823] [PMID: 29856478]
[31]
He X, Yuan C, Yang J. Regulation and functional significance of CDC42 alternative splicing in ovarian cancer. Oncotarget 2015; 6(30): 29651-63.
[http://dx.doi.org/10.18632/oncotarget.4865] [PMID: 26336992]
[32]
Fu X, Xie F, Gong F, et al. Suppression of PTBP1 signaling is responsible for mesenchymal stem cell induced invasion of low malignancy cancer cells. Biochim Biophys Acta Mol Cell Res 2018; 1865(11): 1552-65.
[http://dx.doi.org/10.1016/j.bbamcr.2018.08.002] [PMID: 30327198]
[33]
Hollander D, Donyo M, Atias N, et al. A network-based analysis of colon cancer splicing changes reveals a tumorigenesis-favoring regulatory pathway emanating from ELK1. Genome Res 2016; 26(4): 541-53.
[http://dx.doi.org/10.1101/gr.193169.115] [PMID: 26860615]
[34]
Taniguchi K, Uchiyama K, Akao Y. PTBP1 ‐targeting microRNAs regulate cancer‐specific energy metabolism through the modulation of PKM1/M2 splicing. Cancer Sci 2021; 112(1): 41-50.
[http://dx.doi.org/10.1111/cas.14694] [PMID: 33070451]
[35]
Kuranaga Y, Sugito N, Shinohara H, et al. SRSF3, a splicer of the PKM gene, regulates cell growth and maintenance of cancer-specific energy metabolism in colon cancer cells. Int J Mol Sci 2018; 19(10): 3012.
[http://dx.doi.org/10.3390/ijms19103012] [PMID: 30279379]
[36]
Cui J, Placzek WJ. PTBP1 modulation of MCL1 expression regulates cellular apoptosis induced by antitubulin chemotherapeutics. Cell Death Differ 2016; 23(10): 1681-90.
[http://dx.doi.org/10.1038/cdd.2016.60] [PMID: 27367564]
[37]
Li X, Han F, Liu W, Shi X. PTBP1 promotes tumorigenesis by regulating apoptosis and cell cycle in colon cancer. Bull Cancer 2018; 105(12): 1193-201.
[http://dx.doi.org/10.1016/j.bulcan.2018.08.013] [PMID: 30309622]
[38]
Jo YK, Roh SA, Lee H, et al. Polypyrimidine tract-binding protein 1-mediated down-regulation of ATG10 facilitates metastasis of colorectal cancer cells. Cancer Lett 2017; 385: 21-7.
[http://dx.doi.org/10.1016/j.canlet.2016.11.002] [PMID: 27836735]
[39]
Li S, Shen L, Huang L, et al. PTBP1 enhances exon11a skipping in Mena pre-mRNA to promote migration and invasion in lung carcinoma cells. Biochim Biophys Acta Gene Regul Mech 2019; 1862(8): 858-69.
[http://dx.doi.org/10.1016/j.bbagrm.2019.04.006] [PMID: 31075540]
[40]
Cho CY, Chung SY, Lin S, et al. PTBP1-mediated regulation of AXL mRNA stability plays a role in lung tumorigenesis. Sci Rep 2019; 9(1): 16922.
[http://dx.doi.org/10.1038/s41598-019-53097-2] [PMID: 31729427]
[41]
Minami K, Taniguchi K, Sugito N, et al. MiR-145 negatively regulates Warburg effect by silencing KLF4 and PTBP1 in bladder cancer cells. Oncotarget 2017; 8(20): 33064-77.
[http://dx.doi.org/10.18632/oncotarget.16524] [PMID: 28380435]
[42]
Sugiyama T, Taniguchi K, Matsuhashi N, et al. MiR‐133b inhibits growth of human gastric cancer cells by silencing pyruvate kinase muscle‐splicer polypyrimidine tract‐binding protein 1. Cancer Sci 2016; 107(12): 1767-75.
[http://dx.doi.org/10.1111/cas.13091] [PMID: 27696637]
[43]
Ferrarese R, Harsh GR IV, Yadav AK, et al. Lineage-specific splicing of a brain-enriched alternative exon promotes glioblastoma progression. J Clin Invest 2014; 124(7): 2861-76.
[http://dx.doi.org/10.1172/JCI68836] [PMID: 24865424]
[44]
Taniguchi K, Sugito N, Kumazaki M, et al. MicroRNA-124 inhibits cancer cell growth through PTB1/PKM1/PKM2 feedback cascade in colorectal cancer. Cancer Lett 2015; 363(1): 17-27.
[http://dx.doi.org/10.1016/j.canlet.2015.03.026] [PMID: 25818238]
[45]
Zhang X, Zhou Y, Chen S, Li W, Chen W, Gu W. LncRNA MACC1-AS1 sponges multiple miRNAs and RNA-binding protein PTBP1. Oncogenesis 2019; 8(12): 73.
[http://dx.doi.org/10.1038/s41389-019-0182-7] [PMID: 31822653]
[46]
Huan L, Guo T, Wu Y, et al. Hypoxia induced LUCAT1/PTBP1 axis modulates cancer cell viability and chemotherapy response. Mol Cancer 2020; 19(1): 11.
[http://dx.doi.org/10.1186/s12943-019-1122-z] [PMID: 31964396]
[47]
Sheng J, He X, Yu W, et al. p53-targeted lncRNA ST7-AS1 acts as a tumour suppressor by interacting with PTBP1 to suppress the Wnt/β-catenin signalling pathway in glioma. Cancer Lett 2021; 503: 54-68.
[http://dx.doi.org/10.1016/j.canlet.2020.12.039] [PMID: 33476649]
[48]
Chen J, Wu Y, Luo X, et al. Circular RNA circRHOBTB3 represses metastasis by regulating the HuR-mediated mRNA stability of PTBP1 in colorectal cancer. Theranostics 2021; 11(15): 7507-26.
[http://dx.doi.org/10.7150/thno.59546] [PMID: 34158864]
[49]
Wang S, Zhang Y, Cai Q, et al. Circular RNA FOXP1 promotes tumor progression and Warburg effect in gallbladder cancer by regulating PKLR expression. Mol Cancer 2019; 18(1): 145.
[http://dx.doi.org/10.1186/s12943-019-1078-z] [PMID: 31623628]
[50]
Sun YM, Wang WT, Zeng ZC, et al. circMYBL2, a circRNA from MYBL2, regulates FLT3 translation by recruiting PTBP1 to promote FLT3-ITD AML progression. Blood 2019; 134(18): 1533-46.
[http://dx.doi.org/10.1182/blood.2019000802] [PMID: 31387917]
[51]
Cen Y, Zhu T, Zhang Y, et al. hsa_circ_0005358 suppresses cervical cancer metastasis by interacting with PTBP1 protein to destabilize CDCP1 mRNA. Mol Ther Nucleic Acids 2022; 27: 227-40.
[http://dx.doi.org/10.1016/j.omtn.2021.11.020] [PMID: 34976440]
[52]
Wang C, Politz JC, Pederson T, Huang S. RNA polymerase III transcripts and the PTB protein are essential for the integrity of the perinucleolar compartment. Mol Biol Cell 2003; 14(6): 2425-35.
[http://dx.doi.org/10.1091/mbc.e02-12-0818] [PMID: 12808040]
[53]
Slusarczyk A, Kamath R, Wang C, et al. Structure and function of the perinucleolar compartment in cancer cells. Cold Spring Harb Symp Quant Biol 2010; 75(0): 599-605.
[http://dx.doi.org/10.1101/sqb.2010.75.026] [PMID: 21289045]
[54]
Hall MP, Huang S, Black DL. Differentiation-induced colocalization of the KH-type splicing regulatory protein with polypyrimidine tract binding protein and the c-src pre-mRNA. Mol Biol Cell 2004; 15(2): 774-86.
[http://dx.doi.org/10.1091/mbc.e03-09-0692] [PMID: 14657238]
[55]
Liu W, Chou CF, Liu S, et al. KSRP modulates melanoma growth and efficacy of vemurafenib. Biochim Biophys Acta Gene Regul Mech 2019; 1862(8): 759-70.
[http://dx.doi.org/10.1016/j.bbagrm.2019.06.005] [PMID: 31269460]
[56]
Hüttelmaier S, Illenberger S, Grosheva I, Rüdiger M, Singer RH, Jockusch BM. Raver1, a dual compartment protein, is a ligand for PTB/hnRNPI and microfilament attachment proteins. J Cell Biol 2001; 155(5): 775-86.
[http://dx.doi.org/10.1083/jcb.200105044] [PMID: 11724819]
[57]
Spellman R, Llorian M, Smith CWJ. Crossregulation and functional redundancy between the splicing regulator PTB and its paralogs nPTB and ROD1. Mol Cell 2007; 27(3): 420-34.
[http://dx.doi.org/10.1016/j.molcel.2007.06.016] [PMID: 17679092]
[58]
Slusarczyk A, Huang S. The perinucleolar compartment (PNC): Detection by immunohistochemistry. Methods Mol Biol 2008; 463: 161-7.
[http://dx.doi.org/10.1007/978-1-59745-406-3_11] [PMID: 18951167]
[59]
Bai H, Chen B. Abnormal PTBP1 expression sustains the disease progression of multiple myeloma. Dis Markers 2020; 2020: 1-10.
[http://dx.doi.org/10.1155/2020/4013658] [PMID: 32655719]
[60]
Cheng C, Ding Q, Zhang Z, et al. PTBP1 modulates osteosarcoma chemoresistance to cisplatin by regulating the expression of the copper transporter SLC31A1. J Cell Mol Med 2020; 24(9): 5274-89.
[http://dx.doi.org/10.1111/jcmm.15183] [PMID: 32207235]
[61]
Kang H, Heo S, Shin JJ, et al. A miR‐194/PTBP1/CCND3 axis regulates tumor growth in human hepatocellular carcinoma. J Pathol 2019; 249(3): 395-408.
[http://dx.doi.org/10.1002/path.5325] [PMID: 31301177]
[62]
Chen C, Shang A, Gao Y, et al. PTBPs: An immunomodulatory-related prognostic biomarker in pan-cancer. Front Mol Biosci 2022; 9: 968458.
[http://dx.doi.org/10.3389/fmolb.2022.968458] [PMID: 36203873]
[63]
Nandagopalan SR, Agatheeswaran S, Vadlamudi Y, et al. PTBP2 exon 10 inclusion is associated with the progression of CML and it is BCR-ABL1 dependent. Int J Biochem Cell Biol 2019; 109: 69-75.
[http://dx.doi.org/10.1016/j.biocel.2019.01.018] [PMID: 30726713]
[64]
Agatheeswaran S, Singh S, Biswas S, Biswas G, Chandra Pattnayak N, Chakraborty S. BCR-ABL mediated repression of miR-223 results in the activation of MEF2C and PTBP2 in chronic myeloid leukemia. Leukemia 2013; 27(7): 1578-80.
[http://dx.doi.org/10.1038/leu.2012.339] [PMID: 23174904]
[65]
Xie C, Long F, Li L, et al. PTBP3 modulates P53 expression and promotes colorectal cancer cell proliferation by maintaining UBE4A mRNA stability. Cell Death Dis 2022; 13(2): 128.
[http://dx.doi.org/10.1038/s41419-022-04564-8] [PMID: 35136024]
[66]
Hou P, Chen F, Yong H, et al. PTBP3 contributes to colorectal cancer growth and metastasis via translational activation of HIF-1α. J Exp Clin Cancer Res 2019; 38(1): 301.
[http://dx.doi.org/10.1186/s13046-019-1312-y] [PMID: 31291975]
[67]
Ma J, Weng L, Jia Y, et al. PTBP3 promotes malignancy and hypoxia‐induced chemoresistance in pancreatic cancer cells by ATG12 up‐regulation. J Cell Mol Med 2020; 24(5): 2917-30.
[http://dx.doi.org/10.1111/jcmm.14896] [PMID: 31989778]
[68]
Liang X, Chen W, Shi H, et al. PTBP3 contributes to the metastasis of gastric cancer by mediating CAV1 alternative splicing. Cell Death Dis 2018; 9(5): 569.
[http://dx.doi.org/10.1038/s41419-018-0608-8] [PMID: 29752441]
[69]
Chen B, Chen W, Mu X, et al. PTBP3 induced inhibition of differentiation of gastric cancer cells through alternative splicing of Id1. Front Oncol 2020; 10: 1477.
[http://dx.doi.org/10.3389/fonc.2020.01477] [PMID: 32974175]
[70]
Dong C, Wu K, Gu S, Wang W, Xie S, Zhou Y. PTBP3 mediates TGF-β-induced EMT and metastasis of lung adenocarcinoma. Cell Cycle 2022; 21(13): 1406-21.
[http://dx.doi.org/10.1080/15384101.2022.2052530] [PMID: 35323096]
[71]
Chen Y, Ji Y, Liu S, Liu Y, Feng W, Jin L. PTBP3 regulates proliferation of lung squamous cell carcinoma cells via CDC25A‐mediated cell cycle progression. Cancer Cell Int 2022; 22(1): 19.
[http://dx.doi.org/10.1186/s12935-022-02448-7] [PMID: 35016691]
[72]
Hou P, Li L, Chen F, et al. PTBP3-mediated regulation of ZEB1 mRNA stability promotes epithelial–mesenchymal transition in breast cancer. Cancer Res 2018; 78(2): 387-98.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0883] [PMID: 29187406]
[73]
Zhou Y, Zou H, Wu E, et al. Overexpression of ROD1 inhibits invasion of breast cancer cells by suppressing the translocation of β catenin into the nucleus. Oncol Lett 2018; 16(2): 2645-53.
[http://dx.doi.org/10.3892/ol.2018.8917] [PMID: 30013660]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy