Abstract
Ca 2+ ions are involved in the regulation of many diverse functions in animal and plant cells, e.g. muscle contraction, secretion of neurotransmitters, hormones and enzymes, fertilization of oocytes, and lymphocyte activation and proliferation. The intracellular Ca 2+ concentration can be increased by different molecular mechanisms, such as Ca 2+ influx from the extracellular space or Ca 2+ release from intracellular Ca 2+ stores. Release from intracellular Ca 2+ stores is accomplished by the small molecular compounds D-myo-inositol 1,4,5-trisphosphate (InsP 3 ), cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP). This review concentrates on (i) receptor-mediated formation of cADPR by ADP-ribosyl cyclases, (ii) intracellular and extracellular effects of cADPR in a variety of cell types, and (iii) cADPR in the nucleus. Though our understanding of the role of NAADP is still unclear in many aspects, important recent findings are reviewed, e.g. Ca 2+ release activity and binding studies in mammalian cell types.
Keywords: Cyclic ADP-ribose, Nicotinic Acid, Adenine Dinucleotide Phosphate, Novel Regulators, Nuclear Localization, Guanosine triphosphate, Ryanodine receptor(s), Tumor necrosis factor, D-myo-inositol 1,4,5-trisphosphate
Current Molecular Medicine
Title: Cyclic ADP-ribose (cADPR) and Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP): Novel Regulators of Ca 2+-Signaling and Cell Function
Volume: 2 Issue: 3
Author(s): Andreas H. Guse
Affiliation:
Keywords: Cyclic ADP-ribose, Nicotinic Acid, Adenine Dinucleotide Phosphate, Novel Regulators, Nuclear Localization, Guanosine triphosphate, Ryanodine receptor(s), Tumor necrosis factor, D-myo-inositol 1,4,5-trisphosphate
Abstract: Ca 2+ ions are involved in the regulation of many diverse functions in animal and plant cells, e.g. muscle contraction, secretion of neurotransmitters, hormones and enzymes, fertilization of oocytes, and lymphocyte activation and proliferation. The intracellular Ca 2+ concentration can be increased by different molecular mechanisms, such as Ca 2+ influx from the extracellular space or Ca 2+ release from intracellular Ca 2+ stores. Release from intracellular Ca 2+ stores is accomplished by the small molecular compounds D-myo-inositol 1,4,5-trisphosphate (InsP 3 ), cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP). This review concentrates on (i) receptor-mediated formation of cADPR by ADP-ribosyl cyclases, (ii) intracellular and extracellular effects of cADPR in a variety of cell types, and (iii) cADPR in the nucleus. Though our understanding of the role of NAADP is still unclear in many aspects, important recent findings are reviewed, e.g. Ca 2+ release activity and binding studies in mammalian cell types.
Export Options
About this article
Cite this article as:
Guse H. Andreas, Cyclic ADP-ribose (cADPR) and Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP): Novel Regulators of Ca 2+-Signaling and Cell Function, Current Molecular Medicine 2002; 2 (3) . https://dx.doi.org/10.2174/1566524024605707
DOI https://dx.doi.org/10.2174/1566524024605707 |
Print ISSN 1566-5240 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5666 |
Call for Papers in Thematic Issues
Molecular and Cellular Mechanisms in Vertigo / Vestibular Disorders
Vertigo and vestibular diseases are common among middle-aged and older adults, significantly increasing the risk of falls and leading to injuries and disabilities. Despite their prevalence, therapeutic advancements are hindered by a limited understanding of the underlying molecular and cellular mechanisms. This Special Issue is dedicated to bridging this gap ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Thalidomide: A Banned Drug Resurged into Future Anticancer Drug
Current Drug Therapy Effect of Drugs in Cells and Tissues by NMR Spectroscopy
Current Topics in Medicinal Chemistry Is there Any Correlation Between Binding and Functional Effects at the Translocator Protein (TSPO) (18 kDa)?
Current Molecular Medicine Small Interfering RNA for Effective Cancer Therapies
Mini-Reviews in Medicinal Chemistry Dendrimers in Therapy for Breast and Colorectal Cancer
Current Medicinal Chemistry Patents and the Development on Polymer based Nanomaterial (PAMAM Dendrimer) for Biomedical Applications
Recent Patents on Biomedical Engineering (Discontinued) Leukocyte P2 Receptors: A Novel Target for Anti-inflammatory and Antitumor Therapy
Current Drug Targets - Cardiovascular & Hematological Disorders Targeted α-Particle Therapy: A Clinical Overview
Current Radiopharmaceuticals Resveratrol: A New Potential Therapeutic Agent for Melanoma?
Current Medicinal Chemistry p53: A Guide to Apoptosis
Current Cancer Drug Targets Anesthesia Issues in Central Nervous System Disorders
Current Aging Science Identification of a Good-Prognosis IDH-Mutant-Like Population of Patients with Diffuse Gliomas
Current Molecular Medicine Dysregulation of LncRNAs in Placenta and Pathogenesis of Preeclampsia
Current Drug Targets Membrane Targeted Chemotherapy with Hybrid Liposomes for Tumor Cells Leading to Apoptosis
Current Pharmaceutical Design Cellular and Biochemical Alterations Caused by Artificial Depletion of Glutathione
Current Enzyme Inhibition Brain Tumor Causes, Symptoms, Diagnosis and Radiotherapy Treatment
Current Medical Imaging Eicosanoids Derived From Arachidonic Acid and Their Family Prostaglandins and Cyclooxygenase in Psychiatric Disorders
Current Neuropharmacology Pharmacotherapeutic Potential of Garlic in Age-Related Neurological Disorders
CNS & Neurological Disorders - Drug Targets Tanshinone IIA Protects Hippocampal Neuronal Cells from Reactive Oxygen Species Through Changes in Autophagy and Activation of Phosphatidylinositol 3-Kinase, Protein Kinas B, and Mechanistic Target of Rapamycin Pathways
Current Neurovascular Research Editorial (Thematic Issue: Engineered Magnetic Core@Shell Structures)
Current Pharmaceutical Design