General Review Article

用于生物医学的苯硼酸聚合物

卷 26, 期 37, 2019

页: [6797 - 6816] 页: 20

弟呕挨: 10.2174/0929867325666181008144436

价格: $65

conference banner
摘要

背景:苯硼酸聚合物(PBA聚合物)作为潜在的刺激响应材料受到了广泛的关注,这些材料可用于药物递送仓库,组织工程支架,HIV屏障和生物分子检测/传感平台。 PBA聚合物的独特之处在于它们与二醇的相互作用,这导致可逆的共价键形成。硼酸和二醇之间可逆键合的这种性质对于它们在生物医学领域的应用至关重要。 方法:我们搜索了同行评审的文章,包括来自Scopus,PubMed和Google Scholar的评论,重点是1)PBA的化学,2)PBA聚合物的合成以及3)它们的生物医学应用。 结果:在这篇综述中,我们总结了约179篇论文。本综述中描述的大多数应用都集中在PBA分子与二醇分子相互作用的独特能力以及所得硼酸酯的动力学性质上。硼酸酯对周围pH的强烈敏感性也使这些分子具有刺激响应性。此外,我们还讨论了动态硼酸酯键的重新排列如何使基于PBA的材料具有其他独特功能,例如自修复和剪切稀化。 结论:PBA在聚合物链中的存在可以使其具有多种功能/相对性,而不会改变其内在特性。在这篇综述中,我们讨论了具有多种功能的PBA聚合物的开发及其生物医学应用,特别关注硼酸酯基团的动态性质。

关键词: 苯硼酸,自愈,刺激响应,可逆,水凝胶,聚合物。

[1]
Cambre, J.N.; Sumerlin, B.S. Biomedical applications of boronic acid polymers. Polymer (Guildf.), 2011, 52(21), 4631-4643.
[http://dx.doi.org/10.1016/j.polymer.2011.07.057]
[2]
Frankland, E.; Duppa, B.F. On boric ethide. Proc. Roy. Soc., 1859, 10, 568-570.
[3]
Khotinsky, E.; Melamed, M. Die Wirkung der magnesiumorganishcen Verbindungen auf die Borsaeureester. Ber. Dtsch. Chem. Ges., 1909, 42, 3090-3096.
[http://dx.doi.org/10.1002/cber.19090420327]
[4]
Seaman, W.; Johnson, J.R. Derivatives of phenylboronic acid, their preparation and action upon bacteria. J. Am. Chem. Soc., 1931, 53(2), 711-723.
[http://dx.doi.org/10.1021/ja01353a039]
[5]
Washburn, R.M.; Levens, E.; Albright, C.F.; Billig, F.A.; Cernak, E.S. Preparation, properties, and uses of benzeneboronic acid. Adv. Chem. Ser., 1959, 23, 102-128.
[http://dx.doi.org/10.1021/ba-1959-0023.ch011]
[6]
Miyaura, N.; Suzuki, A. Stereoselective synthesis of arylated (E)-alkenes by the reactinon of alk-1-enylboranes with aryl halides ini the presence of palladium catalyst. J. C. S. Chem. Comm., 1979, 19, 866-867.
[http://dx.doi.org/10.1039/c39790000866]
[7]
Callam, C.S.; Lowary, T.L. Suzuki cross-coupling reactions: Synthesis of unsymmetrical biaryls in the organic laboratory. J. Chem. Educ., 2001, 78(7), 947-948.
[http://dx.doi.org/10.1021/ed078p947]
[8]
Zafar, M.N.; Mohsin, M.A.; Danish, M.; Nazar, M.F.; Murtaza, S. Palladium catalyzed Heck-Mizoroki and Suzuki-Miyaura coupling reactions. Russ. J. Coord. Chem., 2014, 40(11), 781-800.
[http://dx.doi.org/10.1134/S1070328414110104]
[9]
Reid, W.B.; Spillane, J.J.; Krause, S.B.; Watson, D.A. Direct synthesis of alkenyl boronic esters from unfunctionalized alkenes: A boryl-Heck reaction. J. Am. Chem. Soc., 2016, 138(17), 5539-5542.
[http://dx.doi.org/10.1021/jacs.6b02914] [PMID: 27104749]
[10]
Yoo, K.S.; Yoon, C.H.; Mishra, R.K.; Jung, Y.C.; Yi, S.W.; Jung, K.W. Oxidative palladium(II) catalysis: A highly efficient and chemoselective cross-coupling method for carbon-carbon bond formation under base-free and nitrogenous-ligand conditions. J. Am. Chem. Soc., 2006, 128(50), 16384-16393.
[http://dx.doi.org/10.1021/ja063710z] [PMID: 17165795]
[11]
Shaikh, T.M.; Hong, F.E. Palladium(II)-catalyzed Heck reaction of aryl halides and arylboronic acids with olefins under mild conditions. Beilstein J. Org. Chem., 2013, 9, 1578-1588.
[http://dx.doi.org/10.3762/bjoc.9.180] [PMID: 23946858]
[12]
Zheng, C.; Stahl, S.S. Regioselective aerobic oxidative Heck reactions with electronically unbiased alkenes: efficient access to α-alkyl vinylarenes. Chem. Commun. (Camb.), 2015, 51(64), 12771-12774.
[http://dx.doi.org/10.1039/C5CC05312A] [PMID: 26166679]
[13]
Sakai, M.; Ueda, M.; Miyaura, N. Rhodium-catalyzed addition of organoboronic acids to aldehydes. Angew. Chem. Int. Ed. Engl., 1998, 37(23), 3279-3281.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19981217)37:23<3279:AID-ANIE3279>3.0.CO;2-M] [PMID: 29711415]
[14]
Candeias, N.R.; Montalbano, F.; Cal, P.M.S.D.; Gois, P.M.P. Boronic acids and esters in the Petasis-borono Mannich multicomponent reaction. Chem. Rev., 2010, 110(10), 6169-6193.
[http://dx.doi.org/10.1021/cr100108k] [PMID: 20677749]
[15]
Frauenlob, R.; García, C.; Bradshaw, G.A.; Burke, H.M.; Bergin, E. A copper-catalyzed Petasis reaction for the synthesis of tertiary amines and amino esters. J. Org. Chem., 2012, 77(9), 4445-4449.
[http://dx.doi.org/10.1021/jo3003503] [PMID: 22494355]
[16]
Yesilyurt, V.; Webber, M.J.; Appel, E.A.; Godwin, C.; Langer, R.; Anderson, D.G. Injectable self-healing glucose-responsive hydrogels with pH-regulated mechanical properties. Adv. Mater., 2016, 28(1), 86-91.
[http://dx.doi.org/10.1002/adma.201502902] [PMID: 26540021]
[17]
He, L.; Fullenkamp, D.E.; Rivera, J.G.; Messersmith, P.B. pH responsive self-healing hydrogels formed by boronate-catechol complexation. Chem. Commun. (Camb.), 2011, 47(26), 7497-7499.
[http://dx.doi.org/10.1039/c1cc11928a] [PMID: 21629956]
[18]
Shan, M.; Gong, C.; Li, B.; Wu, G. A pH, glucose, and dopamine triple-responsive, self-healable adhesive hydrogel formed by phenylborate–catechol complexation. Polym. Chem., 2017, 8(19), 2997-3005.
[http://dx.doi.org/10.1039/C7PY00519A]
[19]
Guo, R.; Su, Q.; Zhang, J.; Dong, A.; Lin, C.; Zhang, J. Facile access to multisensitive and self-healing hydrogels with reversible and dynamic boronic ester and disulfide linkages. Biomacromolecules, 2017, 18(4), 1356-1364.
[http://dx.doi.org/10.1021/acs.biomac.7b00089] [PMID: 28323415]
[20]
Lacina, K.; Skládal, P.; James, T.D. Boronic acids for sensing and other applications - a mini-review of papers published in 2013. Chem. Cent. J., 2014, 8(1), 60-76.
[http://dx.doi.org/10.1186/s13065-014-0060-5] [PMID: 25371705]
[21]
Zhai, J.; Pan, T.; Zhu, J.; Xu, Y.; Chen, J.; Xie, Y.; Qin, Y. Boronic acid functionalized boron dipyrromethene fluorescent probes: preparation, characterization, and saccharides sensing applications. Anal. Chem., 2012, 84(23), 10214-10220.
[http://dx.doi.org/10.1021/ac301456s] [PMID: 23157345]
[22]
Ayyub, O.B.; Sekowski, J.W.; Yang, T.I.; Zhang, X.; Briber, R.M.; Kofinas, P. Color changing block copolymer films for chemical sensing of simple sugars. Biosens. Bioelectron., 2011, 28(1), 349-354.
[http://dx.doi.org/10.1016/j.bios.2011.07.043] [PMID: 21820888]
[23]
Wang, X.; Xia, N.; Liu, L. Boronic Acid-based approach for separation and immobilization of glycoproteins and its application in sensing. Int. J. Mol. Sci., 2013, 14(10), 20890-20912.
[http://dx.doi.org/10.3390/ijms141020890] [PMID: 24141187]
[24]
Ma, R.; Shi, L. Phenylboronic acid-based glucose-responsive polymeric nanoparticles: synthesis and applications in drug delivery. Polym. Chem., 2014, 5(5), 1503-1518.
[http://dx.doi.org/10.1039/C3PY01202F]
[25]
Zhao, D.; Xu, J.Q.; Yi, X.Q.; Zhang, Q.; Cheng, S.X.; Zhuo, R.X.; Li, F. pH-activated targeting drug delivery system based on the selective binding of phenylboronic acid. ACS Appl. Mater. Interfaces, 2016, 8(23), 14845-14854.
[http://dx.doi.org/10.1021/acsami.6b04737] [PMID: 27229625]
[26]
Zhao, L.; Xiao, C.; Wang, L.; Gai, G.; Ding, J. Glucose-sensitive polymer nanoparticles for self-regulated drug delivery. Chem. Commun. (Camb.), 2016, 52(49), 7633-7652.
[http://dx.doi.org/10.1039/C6CC02202B] [PMID: 27194104]
[27]
Levy, T.; Déjugnat, C.; Sukhorukov, G.B. Polymer microcapsules with carbohydrate-sensitive properties. Adv. Funct. Mater., 2008, 18(10), 1586-1594.
[http://dx.doi.org/10.1002/adfm.200701291]
[28]
Kim, K.T.; Cornelissen, J.J.L.M.; Nolte, R.J.M.; van Hest, J.C.M. A polymersome nanoreactor with controllable permeability induced by stimuli-responsive block copolymers. Adv. Mater., 2009, 21(27), 2787-2791.
[http://dx.doi.org/10.1002/adma.200900300]
[29]
Kim, H.; Kang, Y.J.; Jeong, E.S.; Kang, S.; Kim, K.T. Glucose-responsive disassembly of polymersomes of sequence-specific boroxole-containing block copolymers under physiologically relevant conditions. ACS Macro Lett., 2012, 1(10), 1194-1198.
[http://dx.doi.org/10.1021/mz3004192]
[30]
Egawa, Y.; Seki, T.; Takahashi, S.; Anzai, J-i. Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives. ‎. Mater. Sci. Eng. C, 2011, 31(7), 1257-1264.
[http://dx.doi.org/10.1016/j.msec.2011.05.007]
[31]
Ma, Y.; Yang, X. One saccharide sensor based on the complex of the boronic acid and the monosaccharide using electrochemical impedance spectroscopy. J. Electroanal. Chem. (Lausanne Switz.), 2005, 580(2), 348-352.
[http://dx.doi.org/10.1016/j.jelechem.2005.03.027]
[32]
Okasaka, Y.; Kitano, H. Direct spectroscopic observation of binding of sugars to polymers having phenylboronic acids substituted with an ortho-phenylazo group. Colloids Surf. B Biointerfaces, 2010, 79(2), 434-439.
[http://dx.doi.org/10.1016/j.colsurfb.2010.05.015] [PMID: 20627667]
[33]
Egawa, Y.; Gotoh, R.; Niina, S.; Anzai, J. Ortho-azo substituted phenylboronic acids for colorimetric sugar sensors. Bioorg. Med. Chem. Lett., 2007, 17(13), 3789-3792.
[http://dx.doi.org/10.1016/j.bmcl.2007.02.073] [PMID: 17543522]
[34]
Egawa, Y.; Gotoh, R.; Seki, T.; Anzai, J-i. Sugar response of boronic acid-substituted azobenzene dye-modified polymer. Mater. Sci. Eng. C, 2009, 29(1), 115-118.
[http://dx.doi.org/10.1016/j.msec.2008.05.014]
[35]
Winblade, N.D.; Nikolic, I.D.; Hoffman, A.S.; Hubbell, J.A. Blocking adhesion to cell and tissue surfaces by the chemisorption of a poly-L-lysine-graft-(poly(ethylene glycol); phenylboronic acid) copolymer. Biomacromolecules, 2000, 1(4), 523-533.
[http://dx.doi.org/10.1021/bm000040v] [PMID: 11710177]
[36]
Winblade, N.D.; Schmökel, H.; Baumann, M.; Hoffman, A.S.; Hubbell, J.A. Sterically blocking adhesion of cells to biological surfaces with a surface-active copolymer containing poly(ethylene glycol) and phenylboronic acid. J. Biomed. Mater. Res., 2002, 59(4), 618-631.
[http://dx.doi.org/10.1002/jbm.1273] [PMID: 11774323]
[37]
Mahalingam, A.; Jay, J.I.; Langheinrich, K.; Shukair, S.; McRaven, M.D.; Rohan, L.C.; Herold, B.C.; Hope, T.J.; Kiser, P.F. Inhibition of the transport of HIV in vitro using a pH-responsive synthetic mucin-like polymer system. Biomaterials, 2011, 32(33), 8343-8355.
[http://dx.doi.org/10.1016/j.biomaterials.2011.05.001] [PMID: 21875751]
[38]
Grossman, Z.; Meier-Schellersheim, M.; Paul, W.E.; Picker, L.J. Pathogenesis of HIV infection: what the virus spares is as important as what it destroys. Nat. Med., 2006, 12(3), 289-295.
[http://dx.doi.org/10.1038/nm1380] [PMID: 16520776]
[39]
Lorand, J.P.; Edwards, J.O. Polyol complexes and structure of the benzeneboronate ion. J. Org. Chem., 1959, 23, 769-774.
[http://dx.doi.org/10.1021/jo01088a011]
[40]
Springsteen, G.; Wang, B. A detailed examination of boronic acid-diol complexation. Tetrahedron, 2002, 58, 5291-5300.
[http://dx.doi.org/10.1016/S0040-4020(02)00489-1]
[41]
Sarhan, A.; Ali, M.M.; Abdelaal, M.Y. Racemic resolution of mandelic acid on polymers with chiral cavities. 3. Co-operative binding over phenylboronic acid groups and N-bases. React. Polym., 1989, 11, 57-70.
[http://dx.doi.org/10.1016/0923-1137(89)90083-3]
[42]
Uguzdogan, E.; Denkbas, E.B.; Tuncel, A. RNA-sensitive N-isopropylacrylamide/vinylphenylboronic acid random copolymer. Macromol. Biosci., 2002, 2, 214-222.
[http://dx.doi.org/10.1002/1616-5195(200206)2:5<214:AID-MABI214>3.0.CO;2-D]
[43]
Elmas, B.; Senel, S.; Tuncel, A. A new thermosensitive fluorescent probe for diol sensing: poly(N-isopropylacrylamide-co-vinylphenylboronic acid)-alizarin red S complex. React. Funct. Polym., 2007, 67(2), 87-96.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2006.09.006]
[44]
Konno, T.; Ishihara, K. Temporal and spatially controllable cell encapsulation using a water-soluble phospholipid polymer with phenylboronic acid moiety. Biomaterials, 2007, 28(10), 1770-1777.
[http://dx.doi.org/10.1016/j.biomaterials.2006.12.017] [PMID: 17215037]
[45]
Choi, J.; Konno, T.; Matsuno, R.; Takai, M.; Ishihara, K. Surface immobilization of biocompatible phospholipid polymer multilayered hydrogel on titanium alloy. Colloids Surf. B Biointerfaces, 2008, 67(2), 216-223.
[http://dx.doi.org/10.1016/j.colsurfb.2008.08.025] [PMID: 18930384]
[46]
Kitano, S.; Koyama, Y.; Kataoka, K.; Okano, T.; Sakurai, Y. A novel drug delivery system utilizing a glucose responsive polymer complex between poly (vinyl alcohol) and poly (N-vinyl-2-pyrrolidone) with a phenylboronic acid moiety. J. Control. Release, 1992, 19, 162-170.
[http://dx.doi.org/10.1016/0168-3659(92)90073-Z]
[47]
Miyazaki, H.; Kikuchi, A.; Koyama, Y.; Okano, T.; Sakurai, Y.; Kataoka, K. Boronate-containing polymer as novel mitogen for lymphocytes. Biochem. Biophys. Res. Commun., 1993, 195(2), 829-836.
[http://dx.doi.org/10.1006/bbrc.1993.2120] [PMID: 8373418]
[48]
Kataoka, K.; Miyazaki, H.; Okano, T.; Sakurai, Y. Sensitive glucose-induced change of the lower critical solution temperature of poly[N, N-dimethylacrylamide-co-3-(acrylamido)phenylboronic acid] in physiological saline. Macromolecules, 1994, 27, 1061-1062.
[http://dx.doi.org/10.1021/ma00082a028]
[49]
Aoki, T.; Nagao, Y.; Terada, E.; Sanui, K.; Ogata, N.; Yamada, N.; Sakurai, Y.; Kataoka, K.; Okano, T. Endothelial cell differentiation into capillary structures by copolymer surfaces with phenylboronic acid groups. J. Biomater. Sci. Polym. Ed., 1995, 7(7), 539-550.
[http://dx.doi.org/10.1163/156856295X00463] [PMID: 8924421]
[50]
Aoki, T.; Nagao, Y.; Sanui, K.; Ogata, N.; Kikuchi, A.; Sakurai, Y.; Kataoka, K.; Okano, T. Effect of phenylboronic acid groups in copolymers on endothelial cell differentiation into capillary structures. J. Biomater. Sci. Polym. Ed., 1997, 9(1), 1-14.
[http://dx.doi.org/10.1163/156856297X00227] [PMID: 9505199]
[51]
Hisamitsu, I.; Kataoka, K.; Okano, T.; Sakurai, Y. Glucose-responsive gel from phenylborate polymer and poly(vinyl alcohol): prompt response at physiological pH through the interaction of borate with amino group in the gel. Pharm. Res., 1997, 14(3), 289-293.
[http://dx.doi.org/10.1023/A:1012033718302] [PMID: 9098868]
[52]
Shiino, D.; Kataoka, K.; Koyama, Y.; Yokoyama, M.; Okano, T.; Sakurai, Y. A self-regulated insulin delivery system using boronic acid gel. J. Intell. Mater. Syst. Struct., 1994, 5, 311-314.
[http://dx.doi.org/10.1177/1045389X9400500303]
[53]
Shiino, D.; Murata, Y.; Kataoka, K.; Koyama, Y.; Yokoyama, M.; Okano, T.; Sakurai, Y. Preparation and characterization of a glucose-responsive insulin-releasing polymer device. Biomaterials, 1994, 15(2), 121-128.
[http://dx.doi.org/10.1016/0142-9612(94)90261-5] [PMID: 8011858]
[54]
Shiino, D.; Murata, Y.; Kubo, A.; Kim, Y.J.; Kataoka, K.; Koyama, Y.; Kikuchi, A.; Yokoyama, M.; Sakurai, Y.; Okano, T. Amine containing phenylboronic acid gel for glucose-responsive insulin release under physiological pH. J. Control. Release, 1995, 37, 269-276.
[http://dx.doi.org/10.1016/0168-3659(95)00084-4]
[55]
Kikuchi, A.; Suzuki, K.; Okabayashi, O.; Hoshino, H.; Kataoka, K.; Sakurai, Y.; Okano, T. Glucose-sensing electrode coated with polymer complex gel containing phenylboronic Acid. Anal. Chem., 1996, 68(5), 823-828.
[http://dx.doi.org/10.1021/ac950748d] [PMID: 21619178]
[56]
Zhang, Y.; Guan, Y.; Zhou, S. Synthesis and volume phase transitions of glucose-sensitive microgels. Biomacromolecules, 2006, 7(11), 3196-3201.
[http://dx.doi.org/10.1021/bm060557s] [PMID: 17096551]
[57]
Zhang, Y.; Guan, Y.; Zhou, S. Permeability control of glucose-sensitive nanoshells. Biomacromolecules, 2007, 8(12), 3842-3847.
[http://dx.doi.org/10.1021/bm700802p] [PMID: 18020392]
[58]
Xing, S.; Guan, Y.; Zhang, Y. Kinetics of glucose-induced swelling of p(NIPAM-AAPBA) microgels. Macromolecules, 2011, 44(11), 4479-4486.
[http://dx.doi.org/10.1021/ma200586w]
[59]
Shmanai, V.; Gontarev, S.; Frey, S.K.; Schweigert, F.J. Modification of aluminum chips for LDI mass spectrometry of proteins. J. Mass Spectrom., 2007, 42(11), 1504-1513.
[http://dx.doi.org/10.1002/jms.1259] [PMID: 17657825]
[60]
Kimura, T.; Arimori, S.; Takeuchi, M.; Nagasaki, T.; Shinkai, S. Sugar-induced conformational changes in boronic acid-appended poly(L- and D-lysine)s and sugar-controlled orientation of a cyanine dye on the polymers. J. Chem. Soc., Perkin Trans., 1995, 2, 1889-1894.
[http://dx.doi.org/10.1039/P29950001889]
[61]
Piest, M.; Engbersen, J.F. Role of boronic acid moieties in poly(amido amine)s for gene delivery. J. Control. Release, 2011, 155(2), 331-340.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.011] [PMID: 21782864]
[62]
Li, S.; Hu, K.; Cao, W.; Sun, Y.; Sheng, W.; Li, F.; Wu, Y.; Liang, X.J. pH-responsive biocompatible fluorescent polymer nanoparticles based on phenylboronic acid for intracellular imaging and drug delivery. Nanoscale, 2014, 6(22), 13701-13709.
[http://dx.doi.org/10.1039/C4NR04054F] [PMID: 25278283]
[63]
Mokhtari, H.; Pelton, R.; Jin, L. Polyvinylamine-G-galactose is a route to bioactivated silica surfaces. J. Colloid Interface Sci., 2014, 413, 86-91.
[http://dx.doi.org/10.1016/j.jcis.2013.09.038] [PMID: 24183434]
[64]
Zhao, Z.; Yao, X.; Zhang, Z.; Chen, L.; He, C.; Chen, X. Boronic acid shell-crosslinked dextran-b-PLA micelles for acid-responsive drug delivery. Macromol. Biosci., 2014, 14(11), 1609-1618.
[http://dx.doi.org/10.1002/mabi.201400251] [PMID: 25142134]
[65]
Smoum, R.; Rubinstein, A.; Srebnik, M. Chitosan-pentaglycine-phenylboronic acid conjugate: a potential colon-specific platform for calcitonin. Bioconjug. Chem., 2006, 17(4), 1000-1007.
[http://dx.doi.org/10.1021/bc050357y] [PMID: 16848408]
[66]
Hujaya, S.D.; Engbersen, J.F.; Paulusse, J.M. Multilayered thin films from boronic acid-functional poly(amido amine)s. Pharm. Res., 2015, 32(9), 3066-3086.
[http://dx.doi.org/10.1007/s11095-015-1688-0] [PMID: 25851410]
[67]
Wang, M.; Cheng, Y. Temperature-responsive gene silencing by a smart polymer. Bioconjug. Chem., 2016, 27(3), 495-499.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00666] [PMID: 26783999]
[68]
Hajizadeh, S.; Ivanov, A.E.; Jahanshahi, M.; Sanati, M.H.; Zhuravleva, N.V.; Mikhalovska, L.I.; Galaev, I.Y. Glucose sensors with increased sensitivity based on composite gels containing immobilized boronic acid. React. Funct. Polym., 2008, 68(12), 1625-1635.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2008.09.006]
[69]
Shariki, S.; Cox, O.T.L.; Tickell, D.A.; Pereira Morais, M.P.; van den Elsen, J.M.H.; James, T.D.; Dale, S.E.C.; Bending, S.; Marken, F. Coil-by-coil assembly of poly[acrylamide-co-3-(methacryl-amido)-phenylboronic acid] with polydiallyldimethyl-ammonium to give alizarin red S responsive films. J. Mater. Chem., 2012, 22(36), 18999-19006.
[http://dx.doi.org/10.1039/c2jm31089a]
[70]
Roy, D.; Sumerlin, B.S. Glucose-sensitivity of boronic acid block copolymers at physiological pH. ACS Macro Lett., 2012, 1(5), 529-532.
[http://dx.doi.org/10.1021/mz300047c]
[71]
Kuzimenkova, M.V.; Ivanov, A.E.; Galaev, I.Y. Boronate-containing copolymers: polyelectrolyte properties and sugar-specific interaction with agarose gel. Macromol. Biosci., 2006, 6(2), 170-178.
[http://dx.doi.org/10.1002/mabi.200500185] [PMID: 16456876]
[72]
Deng, C.C.; Brooks, W.L.A.; Abboud, K.A.; Sumerlin, B.S. Boronic acid-based hydrogels undergo self-healing at neutral and acidic pH. ACS Macro Lett., 2015, 4(2), 220-224.
[http://dx.doi.org/10.1021/acsmacrolett.5b00018]
[73]
Kitano, H.; Morokoshi, S.; Ohhori, K.; Gemmei-Ide, M.; Yokoyama, Y.; Ohno, K. Accumulation of phenyl boronic acid-carrying telomers on a gold surface. J. Colloid Interface Sci., 2004, 273(1), 106-114.
[http://dx.doi.org/10.1016/j.jcis.2004.01.027] [PMID: 15051439]
[74]
Ivanov, A.E.; Larsson, H.; Galaev, I.Y.; Mattiasson, B. Synthesis of boronate-containing copolymers of N,N-dimethylacrylamide, their interaction with poly(vinyl alcohol) and rheological behaviour of the gels. Polymer (Guildf.), 2004, 45(8), 2495-2505.
[http://dx.doi.org/10.1016/j.polymer.2004.02.022]
[75]
Jay, J.I.; Langheinrich, K.; Hanson, M.C.; Mahalingam, A.; Kiser, P.F. Unequal stoichiometry between crosslinking moieties affects the properties of transient networks formed by dynamic covalent crosslinks. Soft Matter, 2011, 7(12), 5826-5835.
[http://dx.doi.org/10.1039/c1sm05209h]
[76]
Roberts, M.C.; Mahalingam, A.; Hanson, M.C.; Kiser, P.F. Chemorheology of phenylboronate-salicylhydroxamate crosslinked hydrogel networks with a sulfonated polymer backbone. Macromolecules, 2008, 41(22), 8832-8840.
[http://dx.doi.org/10.1021/ma8012674] [PMID: 23132956]
[77]
Guo, Q.; Zhang, T.; An, J.; Wu, Z.; Zhao, Y.; Dai, X.; Zhang, X.; Li, C. Block versus random amphiphilic glycopolymer nanopaticles as glucose-responsive vehicles. Biomacromolecules, 2015, 16(10), 3345-3356.
[http://dx.doi.org/10.1021/acs.biomac.5b01020] [PMID: 26397308]
[78]
Jin, X.; Zhang, X.; Wu, Z.; Teng, D.; Zhang, X.; Wang, Y.; Wang, Z.; Li, C. Amphiphilic random glycopolymer based on phenylboronic acid: synthesis, characterization, and potential as glucose-sensitive matrix. Biomacromolecules, 2009, 10(6), 1337-1345.
[http://dx.doi.org/10.1021/bm8010006] [PMID: 19397257]
[79]
Cakal, C.; Ferrance, J.P.; Landers, J.P.; Caglar, P. Microchip extraction of catecholamines using a boronic acid functional affinity monolith. Anal. Chim. Acta, 2011, 690(1), 94-100.
[http://dx.doi.org/10.1016/j.aca.2011.02.009] [PMID: 21414441]
[80]
Savelyeva, X.; Chondon, D.; Marić, M. Vinyl phenylboronic acid controlling co-monomer for nitroxide mediated synthesis of thermoresponsive poly(2-Nmorpholinoethyl methacrylate). J. Polym. Sci. A, 2016, 54(11), 1560-1572.
[http://dx.doi.org/10.1002/pola.28010]
[81]
Chai, Z.; Ma, L.; Wang, Y.; Ren, X. Phenylboronic acid as a glucose-responsive trigger to tune the insulin release of glycopolymer nanoparticles. J. Biomater. Sci. Polym. Ed., 2016, 27(7), 599-610.
[http://dx.doi.org/10.1080/09205063.2016.1140503] [PMID: 26765145]
[82]
Li, W.; Liu, M.; Chen, H.; Xu, J.; Gao, Y.; Li, H. Phenylboronate-diol crosslinked polymer/SWCNT hybrid gels with reversible sol-gel transition. Polym. Adv. Technol., 2014, 25(2), 233-239.
[http://dx.doi.org/10.1002/pat.3228]
[83]
Wu, Q.; Cheng, H.; Chang, A.; Xu, W.; Lu, F.; Wu, W. Glucose-mediated catalysis of Au nanoparticles in microgels. Chem. Commun. (Camb.), 2015, 51(89), 16068-16071.
[http://dx.doi.org/10.1039/C5CC06386H] [PMID: 26389826]
[84]
Gao, B.; Konno, T.; Ishihara, K. Cytocompatible and spontaneously forming phospholipid polymer hydrogels. Eur. Polym. J., 2015, 72, 577-589.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.03.030]
[85]
Saito, A.; Konno, T.; Ikake, H.; Kurita, K.; Ishihara, K. Control of cell function on a phospholipid polymer having phenylboronic acid moiety. Biomed. Mater., 2010, 5(5), 54101.
[http://dx.doi.org/10.1088/1748-6041/5/5/054101] [PMID: 20876952]
[86]
Choi, J.; Konno, T.; Takai, M.; Ishihara, K. Regulation of cell proliferation by multi-layered phospholipid polymer hydrogel coatings through controlled release of paclitaxel. Biomaterials, 2012, 33(3), 954-961.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.006] [PMID: 22036102]
[87]
Gao, B.; Konno, T.; Ishihara, K. Fabrication of a live cell-containing multilayered polymer hydrogel membrane with micrometer-scale thickness to evaluate pharmaceutical activity. J. Biomater. Sci. Polym. Ed., 2015, 26(18), 1372-1385.
[http://dx.doi.org/10.1080/09205063.2015.1095025] [PMID: 26374190]
[88]
Gao, B.; Konno, T.; Ishihara, K. A simple procedure for the preparation of precise spatial multicellular phospholipid polymer hydrogels. Colloids Surf. B Biointerfaces, 2013, 108, 345-351.
[http://dx.doi.org/10.1016/j.colsurfb.2013.02.022] [PMID: 23587764]
[89]
Choi, J.; Konno, T.; Takai, M.; Ishihara, K. Controlled drug release from multilayered phospholipid polymer hydrogel on titanium alloy surface. Biomaterials, 2009, 30(28), 5201-5208.
[http://dx.doi.org/10.1016/j.biomaterials.2009.06.003] [PMID: 19560818]
[90]
Wang, X.; Wei, B.; Cheng, X.; Wang, J.; Tang, R. 3-Carboxyphenylboronic acid-modified carboxymethyl chitosan nanoparticles for improved tumor targeting and inhibitory. Eur. J. Pharm. Biopharm., 2017, 113, 168-177.
[http://dx.doi.org/10.1016/j.ejpb.2016.12.034] [PMID: 28089786]
[91]
Kim, J.; Lee, Y.M.; Kim, H.; Park, D.; Kim, J.; Kim, W.J. Phenylboronic acid-sugar grafted polymer architecture as a dual stimuli-responsive gene carrier for targeted anti-angiogenic tumor therapy. Biomaterials, 2016, 75, 102-111.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.022] [PMID: 26491998]
[92]
Qian, C.; Chen, Y.; Zhu, S.; Yu, J.; Zhang, L.; Feng, P.; Tang, X.; Hu, Q.; Sun, W.; Lu, Y.; Xiao, X.; Shen, Q.D.; Gu, Z. ATP-responsive and near-infrared-emissive nanocarriers for anticancer drug delivery and real-time imaging. Theranostics, 2016, 6(7), 1053-1064.
[http://dx.doi.org/10.7150/thno.14843] [PMID: 27217838]
[93]
Qian, C.G.; Zhu, S.; Feng, P.J.; Chen, Y.L.; Yu, J.C.; Tang, X.; Liu, Y.; Shen, Q.D. Conjugated polymer nanoparticles for fluorescence imaging and sensing of neurotransmitter dopamine in living cells and the brains of zebrafish larvae. ACS Appl. Mater. Interfaces, 2015, 7(33), 18581-18589.
[http://dx.doi.org/10.1021/acsami.5b04987] [PMID: 26238670]
[94]
Notley, S.M.; Chen, W.; Pelton, R. Extraordinary adhesion of phenylboronic acid derivatives of polyvinylamine to wet cellulose: a colloidal probe microscopy investigation. Langmuir, 2009, 25(12), 6898-6904.
[http://dx.doi.org/10.1021/la900256s] [PMID: 19341294]
[95]
Liu, D.; Liu, H.; Hu, N. pH-, sugar-, and temperature-sensitive electrochemical switch amplified by enzymatic reaction and controlled by logic gates based on semi-interpenetrating polymer networks. J. Phys. Chem. B, 2012, 116(5), 1700-1708.
[http://dx.doi.org/10.1021/jp209788g] [PMID: 22239642]
[96]
Meng, H.; Xiao, P.; Gu, J.; Wen, X.; Xu, J.; Zhao, C.; Zhang, J.; Chen, T. Self-healable macro-/microscopic shape memory hydrogels based on supramolecular interactions. Chem. Commun. (Camb.), 2014, 50(82), 12277-12280.
[http://dx.doi.org/10.1039/C4CC04760E] [PMID: 25126654]
[97]
Meng, H.; Zheng, J.; Wen, X.; Cai, Z.; Zhang, J.; Chen, T. pH- and sugar-induced shape memory hydrogel based on reversible phenylboronic acid-diol ester bonds. Macromol. Rapid Commun., 2015, 36(6), 533-537.
[http://dx.doi.org/10.1002/marc.201400648] [PMID: 25630431]
[98]
Pettignano, A.; Grijalvo, S.; Häring, M.; Eritja, R.; Tanchoux, N.; Quignard, F.; Díaz Díaz, D. Boronic acid-modified alginate enables direct formation of injectable, self-healing and multistimuli-responsive hydrogels. Chem. Commun. (Camb.), 2017, 53(23), 3350-3353.
[http://dx.doi.org/10.1039/C7CC00765E] [PMID: 28261723]
[99]
Tarus, D.; Hachet, E.; Messager, L.; Catargi, B.; Ravaine, V.; Auzély-Velty, R. Readily prepared dynamic hydrogels by combining phenyl boronic acid- and maltose-modified anionic polysaccharides at neutral pH. Macromol. Rapid Commun., 2014, 35(24), 2089-2095.
[http://dx.doi.org/10.1002/marc.201400477] [PMID: 25382759]
[100]
Sharker, S.M.; Kim, S.M.; Kim, S.H.; In, I.; Lee, H.; Park, S.Y. Target delivery of β-cyclodextrin/paclitaxel complexed fluorescent carbon nanoparticles: externally NIR light and internally pH sensitive-mediated release of paclitaxel with bio-imaging. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(28), 5833-5841.
[http://dx.doi.org/10.1039/C5TB00779H]
[101]
Lee, J-Y.; Chung, S-J.; Cho, H-J.; Kim, D-D. Phenylboronic acid-decorated chondroitin sulfate A-based theranostic nanoparticles for enhanced tumor targeting and penetration. Adv. Funct. Mater., 2015, 25(24), 3705-3717.
[http://dx.doi.org/10.1002/adfm.201500680]
[102]
Lee, D.; Choe, K.; Jeong, Y.; Yoo, J.; Lee, S.M.; Park, J-H.; Kim, P.; Kim, Y-C. Establishment of a controlled insulin delivery system using a glucose-responsive double-layered nanogel. RSC Advances, 2015, 5(19), 14482-14491.
[http://dx.doi.org/10.1039/C4RA16656F]
[103]
Chen, Y.; Zhang, Z-H.; Han, X.; Yin, J.; Wu, Z-Q. Oxidation and acid milieu-disintegratable nanovectors with rapid cell-penetrating helical polymer chains for programmed drug release and synergistic chemo-photothermal therapy. Macromolecules, 2016, 49(20), 7718-7727.
[http://dx.doi.org/10.1021/acs.macromol.6b02063]
[104]
Fortin, N.; Klok, H.A. Glucose monitoring using a polymer brush modified polypropylene hollow fiber-based hydraulic flow sensor. ACS Appl. Mater. Interfaces, 2015, 7(8), 4631-4640.
[http://dx.doi.org/10.1021/am507927w] [PMID: 25675859]
[105]
Xu, J.; Yang, D.; Li, W.; Gao, Y.; Chen, H.; Li, H. Phenylboronate-diol crosslinked polymer gels with reversible sol-gel transition. Polymer (Guildf.), 2011, 52(19), 4268-4276.
[http://dx.doi.org/10.1016/j.polymer.2011.07.015]
[106]
Wu, W.; Shen, J.; Li, Y.; Zhu, H.; Banerjee, P.; Zhou, S. Specific glucose-to-SPR signal transduction at physiological pH by molecularly imprinted responsive hybrid microgels. Biomaterials, 2012, 33(29), 7115-7125.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.031] [PMID: 22800540]
[107]
Uchimura, E.; Otsuka, H.; Okano, T.; Sakurai, Y.; Kataoka, K. Totally synthetic polymer with lectin-like function: induction of killer cells by the copolymer of 3-acrylamidophenylboronic acid with N,N-dimethylacrylamide. Biotechnol. Bioeng., 2001, 72(3), 307-314.
[http://dx.doi.org/10.1002/1097-0290(20010205)72:3<307:AID-BIT7>3.0.CO;2-E] [PMID: 11135200]
[108]
Sallacan, N.; Zayats, M.; Bourenko, T.; Kharitonov, A.B.; Willner, I. Imprinting of nucleotide and monosaccharide recognition sites in acrylamidephenylboronic acid-acrylamide copolymer membranes associated with electronic transducers. Anal. Chem., 2002, 74(3), 702-712.
[http://dx.doi.org/10.1021/ac0109873] [PMID: 11838699]
[109]
Matsumoto, A.; Ikeda, S.; Harada, A.; Kataoka, K. Glucose-responsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions. Biomacromolecules, 2003, 4(5), 1410-1416.
[http://dx.doi.org/10.1021/bm034139o] [PMID: 12959613]
[110]
Matsumoto, A.; Yoshida, R.; Kataoka, K. Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH. Biomacromolecules, 2004, 5(3), 1038-1045.
[http://dx.doi.org/10.1021/bm0345413] [PMID: 15132698]
[111]
Shiomori, K.; Ivanov, A.E.; Galaev, I.Y.; Kawano, Y.; Mattiasson, B. Thermoresponsive properties of sugar sensitive copolymer of N-isopropylacrylamide and 3-(acrylamido)phenylboronic acid‎. Macromol. Chem. Phys., 2004, 205(1), 27-34.
[http://dx.doi.org/10.1002/macp.200300019]
[112]
Niwa, M.; Sawada, T.; Higashi, N. Surface monolayers of polymeric amphiphiles carrying a copolymer segment composed of phenylboronic acid and amine. Interaction with saccharides at the air-water interface. Langmuir, 1998, 14, 3916-3920.
[http://dx.doi.org/10.1021/la971261y]
[113]
Jay, J.I.; Shukair, S.; Langheinrich, K.; Hanson, M.C.; Cianci, G.C.; Johnson, T.J.; Clark, M.R.; Hope, T.J.; Kiser, P.F. Modulation of viscoelasticity and HIV transport as a function of pH in a reversibly crosslinked hydrogel. Adv. Funct. Mater., 2009, 19(18), 2969-2977.
[http://dx.doi.org/10.1002/adfm.200900757] [PMID: 23101003]
[114]
Ivanov, A.E.; Shiomori, K.; Kawano, Y.; Galaev, I.Y.; Mattiasson, B. Effects of polyols, saccharides, and glycoproteins on thermoprecipitation of phenylboronate-containing copolymers. Biomacromolecules, 2006, 7(4), 1017-1024.
[http://dx.doi.org/10.1021/bm050208i] [PMID: 16602716]
[115]
Wang, Y.; Zhang, X.; Mu, J.; Li, C. Synthesis and pH/sugar/salt-sensitivity study of boronate crosslinked glycopolymer nanoparticles. New J. Chem., 2013, 37(3), 796-803.
[http://dx.doi.org/10.1039/c2nj40998d]
[116]
Wang, B.; Chen, L.; Sun, Y.; Zhu, Y.; Sun, Z.; An, T.; Li, Y.; Lin, Y.; Fan, D.; Wang, Q. Development of phenylboronic acid-functionalized nanoparticles for emodin delivery. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(18), 3840-3847.
[http://dx.doi.org/10.1039/C5TB00065C] [PMID: 25960874]
[117]
Dean, K.E.; Horgan, A.M.; Marshall, A.J.; Kabilan, S.; Pritchard, J. Selective holographic detection of glucose using tertiary amines. Chem. Commun. (Camb.), 2006, (33), 3507-3509.
[http://dx.doi.org/10.1039/b605778k] [PMID: 16921427]
[118]
Zhang, X.; Wang, J.; He, X.; Chen, L.; Zhang, Y. Tailor-made boronic acid functionalized magnetic nanoparticles with a tunable polymer shell-assisted for the selective enrichment of glycoproteins/glycopeptides. ACS Appl. Mater. Interfaces, 2015, 7(44), 24576-24584.
[http://dx.doi.org/10.1021/acsami.5b06445] [PMID: 26479332]
[119]
Prosperi-Porta, G.; Kedzior, S.; Muirhead, B.; Sheardown, H. Phenylboronic-acid-based polymeric micelles for mucoadhesive anterior segment ocular drug delivery. Biomacromolecules, 2016, 17(4), 1449-1457.
[http://dx.doi.org/10.1021/acs.biomac.6b00054] [PMID: 26963738]
[120]
Pablos, J.L.; Vallejos, S.; Ibeas, S.; Muñoz, A.; Serna, F.; García, F.C.; García, J.M. Acrylic polymers with pendant phenylboronic acid moieties as “turn-off” and “turn-on” fluorescence solid sensors for detection of dopamine, glucose, and fructose in water. ACS Macro Lett., 2015, 4(9), 979-983.
[http://dx.doi.org/10.1021/acsmacrolett.5b00465]
[121]
Qin, Y.; Sukul, V.; Pagakos, D.; Cui, C. Ja1kle, F., Preparation of organoboron block copolymers via ATRP of silicon and boron-functionalized monomers. Macromolecules, 2005, 38, 8987-8990.
[http://dx.doi.org/10.1021/ma051615p]
[122]
Jin, Q.; Lv, L-P.; Liu, G-Y.; Xu, J-P.; Ji, J. Phenylboronic acid as a sugar- and pH-responsive trigger to tune the multiple micellization of thermo-responsive block copolymer. Polymer (Guildf.), 2010, 51(14), 3068-3074.
[http://dx.doi.org/10.1016/j.polymer.2010.04.061]
[123]
Liu, Y.; Zhang, Y.; Zhao, Y.; Yu, J. Phenylboronic acid polymer brush-enabled oriented and high density antibody immobilization for sensitive microarray immunoassay. Colloids Surf. B Biointerfaces, 2014, 121, 21-26.
[http://dx.doi.org/10.1016/j.colsurfb.2014.05.031] [PMID: 24929524]
[124]
Chantasirichot, S.; Inoue, Y.; Ishihara, K. Reactive ABA-type triblock phospholipid copolymer by ATRP and its chemical functionalizations. Macromol. Symp., 2015, 354(1), 104-110.
[http://dx.doi.org/10.1002/masy.201400078]
[125]
Kumar, M.N.V.R. A review of chitin and chitosan applications. React. Funct. Polym., 2000, 46, 1-27.
[http://dx.doi.org/10.1016/S1381-5148(00)00038-9]
[126]
Kumar, M.N.V.R.; Muzzarelli, R.A.A.; Muzzarelli, C.; Sashiwa, H.; Domb, A.J. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev., 2004, 104(12), 6017-6084.
[http://dx.doi.org/10.1021/cr030441b] [PMID: 15584695]
[127]
Berger, J.; Reist, M.; Mayer, J.M.; Felt, O.; Peppas, N.A.; Gurny, R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur. J. Pharm. Biopharm., 2004, 57(1), 19-34.
[http://dx.doi.org/10.1016/S0939-6411(03)00161-9] [PMID: 14729078]
[128]
Zhao, L.; Zhang, Y.; Shao, J.; Liang, H.; Na, H.; Zhu, J. Folate-conjugated dually responsive micelles for targeted anticancer drug delivery. RSC Advances, 2016, 6(42), 35658-35667.
[http://dx.doi.org/10.1039/C6RA01885H]
[129]
Chantasirichot, S.; Inoue, Y.; Ishihara, K. Amphiphilic triblock phospholipid copolymers bearing phenylboronic acid groups for spontaneous formation of hydrogels with tunable mechanical properties. Macromolecules, 2014, 47(9), 3128-3135.
[http://dx.doi.org/10.1021/ma5006099]
[130]
Kim, J.; Lee, J.; Lee, Y.M.; Pramanick, S.; Im, S.; Kim, W.J. Andrographolide-loaded polymerized phenylboronic acid nanoconstruct for stimuli-responsive chemotherapy. J. Control. Release, 2017, 259, 203-211.
[http://dx.doi.org/10.1016/j.jconrel.2016.10.029] [PMID: 27984106]
[131]
Lee, S.Y.; Lee, H. In, I.; Park, S.Y. pH/redox/photo responsive polymeric micelle via boronate ester and disulfide bonds with spiropyran-based photochromic polymer for cell imaging and anticancer drug delivery. Eur. Polym. J., 2014, 57, 1-10.
[http://dx.doi.org/10.1016/j.eurpolymj.2014.04.020]
[132]
Kar, M.; Vernon Shih, Y.R.; Velez, D.O.; Cabrales, P.; Varghese, S. Poly(ethylene glycol) hydrogels with cell cleavable groups for autonomous cell delivery. Biomaterials, 2016, 77, 186-197.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.018] [PMID: 26606444]
[133]
Zhang, D.; Yu, G.; Long, Z.; Yang, G.; Wang, B. Controllable layer-by-layer assembly of PVA and phenylboronic acid-derivatized chitosan. Carbohydr. Polym., 2016, 140, 228-232.
[http://dx.doi.org/10.1016/j.carbpol.2015.12.032] [PMID: 26876848]
[134]
Du, P.; Mu, B.; Wang, Y.; Liu, P. Glucose and temperature dual-responsive monodispersed hollow nanospheres via facile one-pot two-step process. Mater. Lett., 2012, 75, 77-79.
[http://dx.doi.org/10.1016/j.matlet.2012.01.142]
[135]
Zhang, M.; Song, C-C.; Ji, R.; Qiao, Z-Y.; Yang, C.; Qiu, F-Y.; Liang, D-H.; Du, F-S.; Li, Z-C. Oxidation and temperature dual responsive polymers based on phenylboronic acid and N-isopropylacrylamide motifs. Polym. Chem., 2016, 7(7), 1494-1504.
[http://dx.doi.org/10.1039/C5PY01999K]
[136]
Schild, H.G. Poly(N-isopylacrylamide): experiment, theory and application. Prog. Polym. Sci., 1992, 17, 163-249.
[http://dx.doi.org/10.1016/0079-6700(92)90023-R]
[137]
Akiyama, Y.; Kikuchi, A.; Yamato, M.; Okano, T. Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir, 2004, 20(13), 5506-5511.
[http://dx.doi.org/10.1021/la036139f] [PMID: 15986693]
[138]
Matsumoto, A.; Ishii, T.; Nishida, J.; Matsumoto, H.; Kataoka, K.; Miyahara, Y. A synthetic approach toward a self-regulated insulin delivery system. Angew. Chem. Int. Ed. Engl., 2012, 51(9), 2124-2128.
[http://dx.doi.org/10.1002/anie.201106252] [PMID: 22162189]
[139]
Worsley, G.J.; Tourniaire, G.A.; Medlock, K.E.; Sartain, F.K.; Harmer, H.E.; Thatcher, M.; Horgan, A.M.; Pritchard, J. Continuous blood glucose monitoring with a thin-film optical sensor. Clin. Chem., 2007, 53(10), 1820-1826.
[http://dx.doi.org/10.1373/clinchem.2007.091629] [PMID: 17717127]
[140]
Wu, X.; Li, Z.; Chen, X.X.; Fossey, J.S.; James, T.D.; Jiang, Y.B. Selective sensing of saccharides using simple boronic acids and their aggregates. Chem. Soc. Rev., 2013, 42(20), 8032-8048.
[http://dx.doi.org/10.1039/c3cs60148j] [PMID: 23860576]
[141]
Shoji, E.; Freund, M.S. Potentiometric sensors based on the inductive effect on the pK(a) of poly(aniline): a nonenzymatic glucose sensor. J. Am. Chem. Soc., 2001, 123(14), 3383-3384.
[http://dx.doi.org/10.1021/ja005906j] [PMID: 11457081]
[142]
Ali, S.R.; Ma, Y.; Parajuli, R.R.; Balogun, Y.; Lai, W.Y-C.; He, H. A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Anal. Chem., 2007, 79(6), 2583-2587.
[http://dx.doi.org/10.1021/ac062068o] [PMID: 17286387]
[143]
Zenkl, G.; Mayr, T.; Klimant, I. Sugar-responsive fluorescent nanospheres. Macromol. Biosci., 2008, 8(2), 146-152.
[http://dx.doi.org/10.1002/mabi.200700174] [PMID: 17955512]
[144]
Li, Y.; Zhou, S. A simple method to fabricate fluorescent glucose sensor based on dye-complexed microgels. Sens. Actuators B Chem., 2013, 177, 792-799.
[http://dx.doi.org/10.1016/j.snb.2012.11.108]
[145]
Aytaç, S.; Kuralay, F.; Boyacı, İ.H.; Unaleroglu, C. A novel polypyrrole–phenylboronic acid based electrochemical saccharide sensor. Sens. Actuators B Chem., 2011, 160(1), 405-411.
[http://dx.doi.org/10.1016/j.snb.2011.07.069]
[146]
Zhang, C.; Losego, M.D.; Braun, P.V. Hydrogel-based glucose sensors: effects of phenylboronic acid chemical structure on response. Chem. Mater., 2013, 25(15), 3239-3250.
[http://dx.doi.org/10.1021/cm401738p]
[147]
Cheng, C.; Zhang, X.; Wang, Y.; Sun, L.; Li, C. Phenylboronic acid-containing block copolymers: synthesis, self-assembly, and application for intracellular delivery of proteins. New J. Chem., 2012, 36(6), 1413-1421.
[http://dx.doi.org/10.1039/c2nj20997g]
[148]
Ali, S.R.; Parajuli, R.R.; Ma, Y.; Balogun, Y.; He, H. Interference of ascorbic acid in the sensitive detection of dopamine by a nonoxidative sensing approach. J. Phys. Chem. B, 2007, 111(42), 12275-12281.
[http://dx.doi.org/10.1021/jp073705x] [PMID: 17914792]
[149]
Song, S.Y.; Yoon, H.C. Boronic acid-modified thin film interface for specific binding of glycated hemoglobin (HbA1c) and electrochemical biosensing. Sens. Actuators B Chem., 2009, 140(1), 233-239.
[http://dx.doi.org/10.1016/j.snb.2009.04.057]
[150]
Zhong, M.; Teng, Y.; Pang, S.; Yan, L.; Kan, X. Pyrrole-phenylboronic acid: a novel monomer for dopamine recognition and detection based on imprinted electrochemical sensor. Biosens. Bioelectron., 2015, 64, 212-218.
[http://dx.doi.org/10.1016/j.bios.2014.08.083] [PMID: 25218775]
[151]
Dervisevic, M.; Senel, M.; Sagir, T.; Isik, S. Highly sensitive detection of cancer cells with an electrochemical cytosensor based on boronic acid functional polythiophene. Biosens. Bioelectron., 2017, 90, 6-12.
[http://dx.doi.org/10.1016/j.bios.2016.10.100] [PMID: 27866080]
[152]
Chou, D.H-C.; Webber, M.J.; Tang, B.C.; Lin, A.B.; Thapa, L.S.; Deng, D.; Truong, J.V.; Cortinas, A.B.; Langer, R.; Anderson, D.G. Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates. Proc. Natl. Acad. Sci., 2015, 112(8), 2401-2406.
[http://dx.doi.org/10.1073/pnas.1424684112] [PMID: 25675515]
[153]
Jiang, G.; Jiang, T.; Chen, H.; Li, L.; Liu, Y.; Zhou, H.; Feng, Y.; Zhou, J. Preparation of multi-responsive micelles for controlled release of insulin. Colloid Polym. Sci., 2014, 293(1), 209-215.
[http://dx.doi.org/10.1007/s00396-014-3394-6]
[154]
De Geest, B.G.; Jonas, A.M.; Demeester, J.; De Smedt, S.C. Glucose-responsive polyelectrolyte capsules. Langmuir, 2006, 22(11), 5070-5074.
[http://dx.doi.org/10.1021/la053368o] [PMID: 16700596]
[155]
Zhao, L.; Ding, J.; Xiao, C.; He, P.; Tang, Z.; Pang, X.; Zhuang, X.; Chen, X. Glucose-sensitive polypeptide micelles for self-regulated insulin release at physiological pH. J. Mater. Chem., 2012, 22(24), 12319-12328.
[http://dx.doi.org/10.1039/c2jm31040f]
[156]
Zheng, C.; Guo, Q.; Wu, Z.; Sun, L.; Zhang, Z.; Li, C.; Zhang, X. Amphiphilic glycopolymer nanoparticles as vehicles for nasal delivery of peptides and proteins. Eur. J. Pharm. Sci., 2013, 49(4), 474-482.
[http://dx.doi.org/10.1016/j.ejps.2013.04.027] [PMID: 23648782]
[157]
Li, Y.; Xiao, W.; Xiao, K.; Berti, L.; Luo, J.; Tseng, H.P.; Fung, G.; Lam, K.S. Well-defined, reversible boronate crosslinked nanocarriers for targeted drug delivery in response to acidic pH values and cis-diols. Angew. Chem. Int. Ed. Engl., 2012, 51(12), 2864-2869.
[http://dx.doi.org/10.1002/anie.201107144] [PMID: 22253091]
[158]
Xiao, W.; Suby, N.; Xiao, K.; Lin, T.Y.; Al Awwad, N.; Lam, K.S.; Li, Y. Extremely long tumor retention, multi-responsive boronate crosslinked micelles with superior therapeutic efficacy for ovarian cancer. J. Control. Release, 2017, 264, 169-179.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.028] [PMID: 28847739]
[159]
Jeong, J.Y.; Hong, E.H.; Lee, S.Y.; Lee, J.Y.; Song, J.H.; Ko, S.H.; Shim, J.S.; Choe, S.; Kim, D.D.; Ko, H.J.; Cho, H.J. Boronic acid-tethered amphiphilic hyaluronic acid derivative-based nanoassemblies for tumor targeting and penetration. Acta Biomater., 2017, 53, 414-426.
[http://dx.doi.org/10.1016/j.actbio.2017.02.030] [PMID: 28216300]
[160]
Li, L.; Bai, Z.; Levkin, P.A. Boronate-dextran: an acid-responsive biodegradable polymer for drug delivery. Biomaterials, 2013, 34(33), 8504-8510.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.053] [PMID: 23932249]
[161]
Varki, A. Sialic acids in human health and disease. Trends Mol. Med., 2008, 14(8), 351-360.
[http://dx.doi.org/10.1016/j.molmed.2008.06.002] [PMID: 18606570]
[162]
Schultz, M.J.; Swindall, A.F.; Bellis, S.L. Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastasis Rev., 2012, 31(3-4), 501-518.
[http://dx.doi.org/10.1007/s10555-012-9359-7] [PMID: 22699311]
[163]
Sanjoh, M.; Miyahara, Y.; Kataoka, K.; Matsumoto, A. Phenylboronic acids-based diagnostic and therapeutic applications. Anal. Sci., 2014, 30(1), 111-117.
[http://dx.doi.org/10.2116/analsci.30.111] [PMID: 24420252]
[164]
Büll, C.; Stoel, M.A.; den Brok, M.H.; Adema, G.J. Sialic acids sweeten a tumor’s life. Cancer Res., 2014, 74(12), 3199-3204.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0728] [PMID: 24830719]
[165]
Fuster, M.M.; Esko, J.D. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer, 2005, 5(7), 526-542.
[http://dx.doi.org/10.1038/nrc1649] [PMID: 16069816]
[166]
Deshayes, S.; Cabral, H.; Ishii, T.; Miura, Y.; Kobayashi, S.; Yamashita, T.; Matsumoto, A.; Miyahara, Y.; Nishiyama, N.; Kataoka, K. Phenylboronic acid-installed polymeric micelles for targeting sialylated epitopes in solid tumors. J. Am. Chem. Soc., 2013, 135(41), 15501-15507.
[http://dx.doi.org/10.1021/ja406406h] [PMID: 24028269]
[167]
Wang, J.; Zhang, Z.; Wang, X.; Wu, W.; Jiang, X. Size- and pathotropism-driven targeting and washout-resistant effects of boronic acid-rich protein nanoparticles for liver cancer regression. J. Control. Release, 2013, 168(1), 1-9.
[http://dx.doi.org/10.1016/j.jconrel.2013.02.019] [PMID: 23459020]
[168]
Ji, M.; Li, P.; Sheng, N.; Liu, L.; Pan, H.; Wang, C.; Cai, L.; Ma, Y. Sialic acid-targeted nanovectors with phenylboronic acid-grafted polyethylenimine robustly enhance siRNA-based cancer therapy. ACS Appl. Mater. Interfaces, 2016, 8(15), 9565-9576.
[http://dx.doi.org/10.1021/acsami.5b11866] [PMID: 27007621]
[169]
Wang, Y.; Zhang, X.; Han, Y.; Cheng, C.; Li, C. pH- and glucose-sensitive glycopolymer nanoparticles based on phenylboronic acid for triggered release of insulin. Carbohydr. Polym., 2012, 89(1), 124-131.
[http://dx.doi.org/10.1016/j.carbpol.2012.02.060] [PMID: 24750613]
[170]
Yang, B.; Lv, Y.; Zhu, J.Y.; Han, Y.T.; Jia, H.Z.; Chen, W.H.; Feng, J.; Zhang, X.Z.; Zhuo, R.X. A pH-responsive drug nanovehicle constructed by reversible attachment of cholesterol to PEGylated poly(l-lysine) via catechol-boronic acid ester formation. Acta Biomater., 2014, 10(8), 3686-3695.
[http://dx.doi.org/10.1016/j.actbio.2014.05.018] [PMID: 24879311]
[171]
Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 2009, 324(5930), 1029-1033.
[http://dx.doi.org/10.1126/science.1160809] [PMID: 19460998]
[172]
Boussif, O.; Lezoualc’h, F.; Zanta, M.A.; Mergny, M.D.; Scherman, D.; Demeneix, B.; Behr, J-P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA, 1995, 92(16), 7297-7301.
[http://dx.doi.org/10.1073/pnas.92.16.7297] [PMID: 7638184]
[173]
Akinc, A.; Thomas, M.; Klibanov, A.M.; Langer, R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene Med., 2005, 7(5), 657-663.
[http://dx.doi.org/10.1002/jgm.696] [PMID: 15543529]
[174]
Liu, X.; Xiang, J.; Zhu, D.; Jiang, L.; Zhou, Z.; Tang, J.; Liu, X.; Huang, Y.; Shen, Y. Fusogenic reactive oxygen species triggered charge-reversal vector for effective gene delivery. Adv. Mater., 2016, 28(9), 1743-1752.
[http://dx.doi.org/10.1002/adma.201504288] [PMID: 26663349]
[175]
Mahalingam, A.; Geonnotti, A.R.; Balzarini, J.; Kiser, P.F. Activity and safety of synthetic lectins based on benzoboroxole-functionalized polymers for inhibition of HIV entry. Mol. Pharm., 2011, 8(6), 2465-2475.
[http://dx.doi.org/10.1021/mp2002957] [PMID: 21879735]
[176]
Gilles, P.; Wenck, K.; Stratmann, I.; Kirsch, M.; Smolin, D.A.; Schaller, T.; de Groot, H.; Kraft, A.; Schrader, T. High-affinity copolymers inhibit digestive enzymes by surface recognition. Biomacromolecules, 2017, 18(6), 1772-1784.
[http://dx.doi.org/10.1021/acs.biomac.7b00162] [PMID: 28420229]
[177]
Brooks, W.L.; Sumerlin, B.S. Synthesis and applications of boronic acid-containing polymers: from materials to medicine. Chem. Rev., 2016, 116(3), 1375-1397.
[http://dx.doi.org/10.1021/acs.chemrev.5b00300] [PMID: 26367140]
[178]
Matthews, D.A.; Alden, R.A.; Birktoft, J.J.; Freer, S.T.; Kraut, J. X-ray crystallographic study of boronic acid adducts with subtilisin BPN’ (Novo). A model for the catalytic transition state. J. Biol. Chem., 1975, 250(18), 7120-7126.
[PMID: 1165237]
[179]
Amaral, A.J.; Pasparakis, G. Rapid formation of cell aggregates and spheroids induced by a “smart” boronic acid copolymer. ACS Appl. Mater. Interfaces, 2016, 8(35), 22930-22941.
[http://dx.doi.org/10.1021/acsami.6b07911] [PMID: 27571512]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy