Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Isoliquiritigenin (ISL) and its Formulations: Potential Antitumor Agents

Author(s): Ting-Ting Zhao, Yu-Qing Xu, Hui-Min Hu, Hai-Bin Gong* and Hai-Liang Zhu*

Volume 26, Issue 37, 2019

Page: [6786 - 6796] Pages: 11

DOI: 10.2174/0929867325666181112091700

Price: $65

conference banner
Abstract

Isoliquiritigenin (2’,4’,4-trihydroxychalcone, ISL) is one of the most important chalcone compounds which is mainly derived from licorice root and many other plants. It exhibits a remarkable range of potent biological and pharmacological activities such as antioxidative, antitumor, antiaging, anti-inflammatory, anti-diabetic activities, etc. Numerous research teams have demonstrated that ISL posseses the ability to carry out antigrowth and proliferation in various cancer cells in vitro and in vivo. Meanwhile, the underlying mechanisms of ISL that inhibit cancer cell proliferation have not been well explored. However, the poor bioavailability and low water-soluble limit its clinical application. This review aims at providing a comprehensive overview of the pharmacology antitumor activity of ISL and its mechanisms in different malignancy especially in breast cancer cell line and summarize developments of formulation utilized to overcome the barrier between its delivery characteristics and application in clinics over the past 20 years.

Keywords: Isoliquiritigenin, antitumor, breast cancer, mechanisms, signaling pathway, formulation.

[1]
Peng, F.; Du, Q.; Peng, C.; Wang, N.; Tang, H.; Xie, X.; Shen, J.; Chen, J.A. Review: The pharmacology of isoliquiritigenin. Phytother. Res., 2015, 29(7), 969-977.
[http://dx.doi.org/10.1002/ptr.5348] [PMID: 25907962]
[2]
Kwon, H.M.; Choi, Y.J.; Choi, J.S.; Kang, S.W.; Bae, J.Y.; Kang, I.J.; Jun, J.G.; Lee, S.S.; Lim, S.S.; Kang, Y.H. Blockade of cytokine-induced endothelial cell adhesion molecule expression by licorice isoliquiritigenin through NF-kappaB signal disruption. Exp. Biol. Med. (Maywood), 2007, 232(2), 235-245.
[PMID: 17259331]
[3]
Chen, Y.P.; Zhang, Z.Y.; Li, Y.P.; Li, D.; Huang, S.L.; Gu, L.Q.; Xu, J.; Huang, Z.S. Syntheses and evaluation of novel isoliquiritigenin derivatives as potential dual inhibitors for amyloid-beta aggregation and 5-lipoxygenase. Eur. J. Med. Chem., 2013, 66, 22-31.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.015] [PMID: 23786711]
[4]
Gaur, R.; Thakur, J.P.; Yadav, D.K.; Kapkoti, D.S.; Verma, R.K.; Gupta, N.; Khan, F.; Saikia, D. Bhakuni, R.S.; Erratum to: Synthesis, antitubercular activity, and molecular modeling studies of analogues of isoliquiritigenin and liquiritigenin, bioactive components from Glycyrrhiza glabra. Med. Chem. Res., 2015, 24, 3772-3774.
[http://dx.doi.org/10.1007/s00044-015-1420-y]
[5]
Iwata, S.; Nagata, N.; Omae, A.; Yamaguchi, S.; Okada, Y.; Shibata, S.; Okuyama, T. Inhibitory effect of chalcone derivatives on recombinant human aldose reductase. Biol. Pharm. Bull., 1999, 22(3), 323-325.
[http://dx.doi.org/10.1248/bpb.22.323] [PMID: 10220294]
[6]
Aponte, J.C.; Verástegui, M.; Málaga, E.; Zimic, M.; Quiliano, M.; Vaisberg, A.J.; Gilman, R.H.; Hammond, G.B. Synthesis, cytotoxicity, and anti-Trypanosoma cruzi activity of new chalcones. J. Med. Chem., 2008, 51(19), 6230-6234.
[http://dx.doi.org/10.1021/jm800812k] [PMID: 18798609]
[7]
Gaur, R.; Yadav, K.S.; Verma, R.K.; Yadav, N.P.; Bhakuni, R.S. In vivo anti-diabetic activity of derivatives of isoliquiritigenin and liquiritigenin. Phytomedicine, 2014, 21(4), 415-422.
[http://dx.doi.org/10.1016/j.phymed.2013.10.015] [PMID: 24262065]
[8]
Feldman, M.; Santos, J.; Grenier, D. Comparative evaluation of two structurally related flavonoids, isoliquiritigenin and liquiritigenin, for their oral infection therapeutic potential. J. Nat. Prod., 2011, 74(9), 1862-1867.
[http://dx.doi.org/10.1021/np200174h] [PMID: 21866899]
[9]
Wang, Z.; Wang, N.; Han, S.; Wang, D.; Mo, S.; Yu, L.; Huang, H.; Tsui, K.; Shen, J.; Chen, J. Dietary compound isoliquiritigenin inhibits breast cancer neoangiogenesis via VEGF/VEGFR-2 signaling pathway. PLoS One, 2013, 8(7)e68566
[http://dx.doi.org/10.1371/journal.pone.0068566] [PMID: 23861918]
[10]
Lau, G.T.; Ye, L.; Leung, L.K. The licorice flavonoid isoliquiritigenin suppresses phorbol ester-induced cyclooxygenase-2 expression in the non-tumorigenic MCF-10A breast cell line. Planta Med., 2010, 76(8), 780-785.
[http://dx.doi.org/10.1055/s-0029-1240699] [PMID: 20033868]
[11]
Lorusso, V.; Marech, I. Novel plant-derived target drugs: a step forward from licorice? Expert Opin. Ther. Targets, 2013, 17(4), 333-335.
[http://dx.doi.org/10.1517/14728222.2013.773312] [PMID: 23425066]
[12]
Jang, D.S.; Park, E.J.; Hawthorne, M.E.; Vigo, J.S.; Graham, J.G.; Cabieses, F.; Santarsiero, B.D.; Mesecar, A.D.; Fong, H.H.; Mehta, R.G.; Pezzuto, J.M.; Kinghorn, A.D. Potential cancer chemopreventive constituents of the seeds of Dipteryx odorata (tonka bean). J. Nat. Prod., 2003, 66(5), 583-587.
[http://dx.doi.org/10.1021/np020522n] [PMID: 12762787]
[13]
Li, Y.; Zhao, H.; Wang, Y.; Zheng, H.; Yu, W.; Chai, H.; Zhang, J.; Falck, J.R.; Guo, A.M.; Yue, J.; Peng, R.; Yang, J. Isoliquiritigenin induces growth inhibition and apoptosis through downregulating arachidonic acid metabolic network and the deactivation of PI3K/Akt in human breast cancer. Toxicol. Appl. Pharmacol., 2013, 272(1), 37-48.
[http://dx.doi.org/10.1016/j.taap.2013.05.031] [PMID: 23747687]
[14]
Lee, S.H.; Kim, J.Y.; Seo, G.S.; Kim, Y.C.; Sohn, D.H. Isoliquiritigenin, from Dalbergia odorifera, up-regulates anti-inflammatory heme oxygenase-1 expression in RAW264.7 macrophages. Inflamm. Res., 2009, 58(5), 257-262.
[http://dx.doi.org/10.1007/s00011-008-8183-6] [PMID: 19169644]
[15]
Maggiolini, M.; Statti, G.; Vivacqua, A.; Gabriele, S.; Rago, V.; Loizzo, M.; Menichini, F.; Amdò, S. Estrogenic and antiproliferative activities of isoliquiritigenin in MCF7 breast cancer cells. J. Steroid Biochem. Mol. Biol., 2002, 82(4-5), 315-322.
[http://dx.doi.org/10.1016/S0960-0760(02)00230-3] [PMID: 12589938]
[16]
Kim, D.C.; Ramachandran, S.; Baek, S.H.; Kwon, S.H.; Kwon, K.Y.; Cha, S.D.; Bae, I.; Cho, C.H. Induction of growth inhibition and apoptosis in human uterine leiomyoma cells by isoliquiritigenin. Reprod. Sci., 2008, 15(6), 552-558.
[http://dx.doi.org/10.1177/1933719107312681] [PMID: 18487228]
[17]
Lin, L.C.; Wu, C.H.; Shieh, T.M.; Chen, H.Y.; Huang, T.C.; Hsia, S.M. The licorice dietary component isoliquiritigenin chemosensitizes human uterine sarcoma cells to doxorubicin and inhibits cell growth by inducing apoptosis and autophagy via inhibition of m-TOR signaling. J. Funct. Foods, 2017, 33, 332-344.
[http://dx.doi.org/10.1016/j.jff.2017.03.061]
[18]
Wu, C.H.; Chen, H.Y.; Wang, C.W.; Shieh, T.M.; Huang, T.C.; Lin, L.C.; Wang, K.L.; Hsia, S.M. Isoliquiritigenin induces apoptosis and autophagy and inhibits endometrial cancer growth in mice. Oncotarget, 2016, 7(45), 73432-73447.
[http://dx.doi.org/10.18632/oncotarget.12369] [PMID: 27708238]
[19]
YUAN, Xuan.; ZHANG, WANG.; Zhen, Liang.; Liang, ZHENG.; Sheng, WANG. Involvement of the mitochondrion-dependent and the endoplasmic reticulum stress-signaling pathways in isoliquiritigenin-induced apoptosis of HeLa cell. Biomed. Environ. Sci., 2013, 26, 268-276.
[http://dx.doi.org/10.3967/0895-3988.2013.04.005] [PMID: 23534467]
[20]
Hirchaud, F.; Hermetet, F.; Ablise, M.; Fauconnet, S.; Vuitton, D.A.; Prétet, J.L.; Mougin, C. Isoliquiritigenin induces caspase-dependent apoptosis via downregulation of HPV16 E6 expression in cervical cancer Ca Ski cells. Planta Med., 2013, 79(17), 1628-1635.
[http://dx.doi.org/10.1055/s-0033-1350956] [PMID: 24214831]
[21]
Mahalingam, S.; Gao, L.; Eisner, J.; Helferich, W.; Flaws, J.A. Effects of isoliquiritigenin on ovarian antral follicle growth and steroidogenesis. Reprod. Toxicol., 2016, 66, 107-114.
[http://dx.doi.org/10.1016/j.reprotox.2016.10.004] [PMID: 27773742]
[22]
Chen, H.Y.; Huang, T.C.; Shieh, T.M.; Wu, C.H.; Lin, L.C.; Hsia, S.M. Isoliquiritigenin induces autophagy and inhibits ovarian cancer cell growth. Int. J. Mol. Sci., 2017, 18, 2025.
[http://dx.doi.org/10.3390/ijms18102025]
[23]
Jung, J.I.; Lim, S.S.; Choi, H.J.; Cho, H.J.; Shin, H.K.; Kim, E.J.; Chung, W.Y.; Park, K.K.; Park, J.H. Isoliquiritigenin induces apoptosis by depolarizing mitochondrial membranes in prostate cancer cells. J. Nutr. Biochem., 2006, 17(10), 689-696.
[http://dx.doi.org/10.1016/j.jnutbio.2005.11.006] [PMID: 16517140]
[24]
Kanazawa, M.; Satomi, Y.; Mizutani, Y.; Ukimura, O.; Kawauchi, A.; Sakai, T.; Baba, M.; Okuyama, T.; Nishino, H.; Miki, T. Isoliquiritigenin inhibits the growth of prostate cancer. Eur. Urol., 2003, 43(5), 580-586.
[http://dx.doi.org/10.1016/S0302-2838(03)00090-3] [PMID: 12706007]
[25]
Yim, D.; Singh, R.P.; Agarwal, C.; Lee, S.; Chi, H. Agarwal, R.; A novel anticancer agent, decursin, induces G1 arrest and apoptosis in human prostate carcinoma cells. Urol. Oncol-Semin Ori., 2005, 23, 379-380.
[26]
Lee, Y.M.; Lim, D.Y.; Choi, H.J.; Jung, J.I.; Chung, W.Y.; Park, J.H.Y. Induction of cell cycle arrest in prostate cancer cells by the dietary compound isoliquiritigenin. J. Med. Food, 2009, 12(1), 8-14.
[http://dx.doi.org/10.1089/jmf.2008.0039] [PMID: 19298190]
[27]
Zhang, B.; Lai, Y.; Li, Y.; Shu, N.; Wang, Z.; Wang, Y.; Li, Y.; Chen, Z. Antineoplastic activity of isoliquiritigenin, a chalcone compound, in androgen-independent human prostate cancer cells linked to G2/M cell cycle arrest and cell apoptosis. Eur. J. Pharmacol., 2018, 821, 57-67.
[http://dx.doi.org/10.1016/j.ejphar.2017.12.053] [PMID: 29277717]
[28]
Hu, F.W.; Yu, C.C.; Hsieh, P.L.; Liao, Y.W.; Lu, M.Y.; Chu, P.M. Targeting oral cancer stemness and chemoresistance by isoliquiritigenin-mediated GRP78 regulation. Oncotarget, 2017, 8(55), 93912-93923.
[http://dx.doi.org/10.18632/oncotarget.21338] [PMID: 29212198]
[29]
Hou, C.; Li, W.; Li, Z.; Gao, J.; Chen, Z.; Zhao, X.; Yang, Y.; Zhang, X.; Song, Y. Synthetic isoliquiritigenin inhibits human tongue squamous carcinoma cells through its antioxidant mechanism. Oxid. Med. Cell. Longev., 2017, 20171379430
[http://dx.doi.org/10.1155/2017/1379430] [PMID: 28203317]
[30]
Takahashi, T.; Takasuka, N.; Iigo, M.; Baba, M.; Nishino, H.; Tsuda, H.; Okuyama, T. Isoliquiritigenin, a flavonoid from licorice, reduces prostaglandin E2 and nitric oxide, causes apoptosis, and suppresses aberrant Crypt foci development. Cancer Sci., 2004, 95(5), 448-453.
[http://dx.doi.org/10.1111/j.1349-7006.2004.tb03230.x] [PMID: 15132774]
[31]
Yoshida, T.; Horinaka, M.; Takara, M.; Tsuchihashi, M.; Mukai, N.; Wakada, M.; Sakai, T. Combination of isoliquiritigenin and tumor necrosis factor-related apoptosis-inducing ligand induces apoptosis in colon cancer HT29 cells. Environ. Health Prev. Med., 2008, 13(5), 281-287.
[http://dx.doi.org/10.1007/s12199-008-0041-1] [PMID: 19568915]
[32]
Huang, Y.L.; Wei, F.; Zhao, K.; Zhang, Y.; Wang, D.; Li, X.H. Isoliquiritigenin inhibits colorectal cancer cells HCT-116 growth by suppressing the PI3K/AKT pathway. Open Life Sci., 2017, 12, 300-307.
[http://dx.doi.org/10.1515/biol-2017-0035]
[33]
Wang, Y.; Zheng, Q.; Pharmacy, S.O. University, S.; Study on isoliquiritigenin induced apoptosis of mouse melanoma B16F0 Cells. J; Shihezi Univ., 2016, p. 02.
[34]
Chen, X.; Yang, M.; Hao, W.; Han, J.; Ma, J.; Wang, C.; Sun, S.; Zheng, Q. Differentiation-inducing and anti-proliferative activities of isoliquiritigenin and all-trans-retinoic acid on B16F0 melanoma cells: Mechanisms profiling by RNA-seq. Gene, 2016, 592(1), 86-98.
[http://dx.doi.org/10.1016/j.gene.2016.07.052] [PMID: 27461947]
[35]
Wang, Y.; Ma, J.; Yan, X.; Chen, X.; Si, L.; Liu, Y.; Han, J.; Hao, W.; Zheng, Q. Isoliquiritigenin inhibits proliferation and induces apoptosis via alleviating hypoxia and reducing glycolysis in melanoma B16F10 cells; Recent Pat. Anticancer Drug Discov, 2016, p. 11.
[36]
Ma, J.; Fu, N.Y.; Pang, D.B.; Wu, W.Y.; Xu, A.L. Apoptosis induced by isoliquiritigenin in human gastric cancer MGC-803 cells. Planta Med., 2001, 67(8), 754-757.
[http://dx.doi.org/10.1055/s-2001-18361] [PMID: 11731922]
[37]
Hsu, Y.L.; Kuo, P.L.; Chiang, L.C.; Lin, C.C. Isoliquiritigenin inhibits the proliferation and induces the apoptosis of human non-small cell lung cancer A549 cells. Clin. Exp. Pharmacol. Physiol., 2004, 31, 414-418.
[http://dx.doi.org/10.1111/j.1440-1681.2004.04016.x] [PMID: 15236626]
[38]
Kayagaki, N.; Kawasaki, A.; Ebata, T.; Ohmoto, H.; Ikeda, S.; Inoue, S.; Yoshino, K.; Okumura, K.; Yagita, H. Metalloproteinase-mediated release of human Fas ligand. J. Exp. Med., 1995, 182(6), 1777-1783.
[http://dx.doi.org/10.1084/jem.182.6.1777] [PMID: 7500022]
[39]
Cuendet, M.; Oteham, C.P.; Moon, R.C.; Pezzuto, J.M. Quinone reductase induction as a biomarker for cancer chemoprevention. J. Nat. Prod., 2006, 69(3), 460-463.
[http://dx.doi.org/10.1021/np050362q] [PMID: 16562858]
[40]
Hsu, Y.L.; Kuo, P.L.; Lin, L.T.; Lin, C.C. Isoliquiritigenin inhibits cell proliferation and induces apoptosis in human hepatoma cells. Planta Med., 2005, 71(2), 130-134.
[http://dx.doi.org/10.1055/s-2005-837779] [PMID: 15729620]
[41]
Li, Z.X.; Li, J.; Li, Y.; You, K.; Xu, H.; Wang, J. Novel insights into the apoptosis mechanism of DNA topoisomerase I inhibitor isoliquiritigenin on HCC tumor cell. Biochem. Biophys. Res. Commun., 2015, 464(2), 548-553.
[http://dx.doi.org/10.1016/j.bbrc.2015.07.003] [PMID: 26159926]
[42]
Chen, G.; Hu, X.; Zhang, W.; Xu, N.; Wang, F.Q.; Jia, J.; Zhang, W.F.; Sun, Z.J.; Zhao, Y.F. Mammalian target of rapamycin regulates isoliquiritigenin-induced autophagic and apoptotic cell death in adenoid cystic carcinoma cells. Apoptosis, 2012, 17(1), 90-101.
[http://dx.doi.org/10.1007/s10495-011-0658-1] [PMID: 21956714]
[43]
Zhou, G.S.; Song, L.J.; Yang, B. Isoliquiritigenin inhibits proliferation and induces apoptosis of U87 human glioma cells in vitro. Mol. Med. Rep., 2013, 7(2), 531-536.
[http://dx.doi.org/10.3892/mmr.2012.1218] [PMID: 23229626]
[44]
Chen, H.; Zhang, B.; Yuan, X.; Yao, Y.; Zhao, H.; Sun, X.; Zheng, Q. Isoliquiritigenin-induced effects on Nrf2 mediated antioxidant defence in the HL-60 cell monocytic differentiation. Cell Biol. Int., 2013, 37(11), 1215-1224.
[http://dx.doi.org/10.1002/cbin.10156] [PMID: 23881796]
[45]
Chen, X.; Wu, Y.; Jiang, Y.; Zhou, Y.; Wang, Y.; Yao, Y.; Yi, C.; Gou, L.; Yang, J. Isoliquiritigenin inhibits the growth of multiple myeloma via blocking IL-6 signaling. J. Mol. Med. (Berl.), 2012, 90(11), 1311-1319.
[http://dx.doi.org/10.1007/s00109-012-0910-3] [PMID: 22648519]
[46]
Wang, Z.; Liu, J.; Zhang, Y.; Li, D. Isoliquiritigen Down-Regulating the Expression of the Matrix Metalloproteinases-2 in Human Fibrosarcoma HT1080 Cell, 2008, 215-219.
[47]
Si, L.; Yang, X.; Yan, X.; Wang, Y.; Zheng, Q. Isoliquiritigenin induces apoptosis of human bladder cancer T24 cells via a cyclin-dependent kinase-independent mechanism. Oncol. Lett., 2017, 14(1), 241-249.
[http://dx.doi.org/10.3892/ol.2017.6159] [PMID: 28693160]
[48]
Hengartner, M.O. Hengartner MOThe biochemistry of apoptosis. Nature 407: 770-776. Nature, 2000, 407, 770-776.
[http://dx.doi.org/10.1038/35037710] [PMID: 11048727]
[49]
Flores, E.R. Commentary on “Apoptosis, p53, and Tumor Cell Sensitivity to Anticancer Agents”. Cancer Res., 2016, 76(23), 6763-6764.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2997] [PMID: 27909063]
[50]
Wang, N.; Wang, Z.; Peng, C.; You, J.; Shen, J.; Han, S.; Chen, J. Dietary compound isoliquiritigenin targets GRP78 to chemosensitize breast cancer stem cells via β-catenin/ABCG2 signaling. Carcinogenesis, 2014, 35(11), 2544-2554.
[http://dx.doi.org/10.1093/carcin/bgu187] [PMID: 25194164]
[51]
Tang, H.; Peng, F.; Huang, X.; Xie, X.; Chen, B.; Shen, J.; Gao, F.; You, J.; Xie, X.; Chen, J. Neoisoliquiritigenin inhibits tumor progression by targeting GRP78-β-catenin signaling in breast cancer. Curr. Cancer Drug Targets, 2018, 18(4), 390-399.
[http://dx.doi.org/10.2174/1568009617666170914155355] [PMID: 28914191]
[52]
Lee, S.K.; Park, K.K.; Kim, K.R.; Kim, H.J.; Chung, W.Y. Isoliquiritigenin inhibits metastatic breast cancer cell-induced receptor activator of nuclear factor kappa-B ligand/osteoprotegerin ratio in human osteoblastic cells. J. Cancer Prev., 2015, 20(4), 281-286.
[http://dx.doi.org/10.15430/JCP.2015.20.4.281] [PMID: 26734591]
[53]
Hsia, S.M.; Shieh, T.M. Shih, Y.H.; Abstract 1991: Effects of isoliquiritigenin (ISL) on VEGF secretion in human breast cancer cell line MDA-MB-231. Cancer Res., 2014, 72, 1991-1991.
[54]
Subramaniam, D.; Ramalingam, S.; Houchen, C.W.; Anant, S. Cancer stem cells: a novel paradigm for cancer prevention and treatment. Mini Rev. Med. Chem., 2010, 10(5), 359-371.
[http://dx.doi.org/10.2174/138955710791330954] [PMID: 20370703]
[55]
Wang, N.; Wang, Z.; Wang, Y.; Xie, X.; Shen, J.; Peng, C.; You, J.; Peng, F.; Tang, H.; Guan, X.; Chen, J. Dietary compound isoliquiritigenin prevents mammary carcinogenesis by inhibiting breast cancer stem cells through WIF1 demethylation. Oncotarget, 2015, 6(12), 9854-9876.
[http://dx.doi.org/10.18632/oncotarget.3396] [PMID: 25918249]
[56]
Peng, F.; Tang, H.; Liu, P.; Shen, J.; Guan, X.; Xie, X.; Gao, J.; Xiong, L.; Jia, L.; Chen, J.; Peng, C. Isoliquiritigenin modulates miR-374a/PTEN/Akt axis to suppress breast cancer tumorigenesis and metastasis. Sci. Rep., 2017, 7(1), 9022.
[http://dx.doi.org/10.1038/s41598-017-08422-y] [PMID: 28827662]
[57]
Zimmers, T.A.; Fishel, M.L.; Bonetto, A. STAT3 in the systemic inflammation of cancer cachexia. Semin. Cell Dev. Biol., 2016, 54, 28-41.
[http://dx.doi.org/10.1016/j.semcdb.2016.02.009] [PMID: 26860754]
[58]
Ning, S.; Ma, X.; Zhu, D.; Shen, Z.; Liu, J.; Liu, Y.; Chen, J. Li, Z. Isoliquiritigenin attenuates MiR-21 expression via induction of PIAS3 in breast cancer cells. RSC Advances, 2017, 7, 18085-18092.
[http://dx.doi.org/10.1039/C6RA25511F]
[59]
Byrne, J.D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev., 2008, 60(15), 1615-1626.
[http://dx.doi.org/10.1016/j.addr.2008.08.005] [PMID: 18840489]
[60]
Liu, Y.; Lu, W. Recent advances in brain tumor-targeted nano-drug delivery systems. Expert Opin. Drug Deliv., 2012, 9(6), 671-686.
[http://dx.doi.org/10.1517/17425247.2012.682726] [PMID: 22607535]
[61]
Choi, C.H.J.; Alabi, C.A.; Webster, P.; Davis, M.E. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc. Natl. Acad. Sci. USA, 2010, 107(3), 1235-1240.
[http://dx.doi.org/10.1073/pnas.0914140107] [PMID: 20080552]
[62]
Ashley, C.E.; Carnes, E.C.; Phillips, G.K.; Padilla, D.; Durfee, P.N.; Brown, P.A.; Hanna, T.N.; Liu, J.; Phillips, B.; Carter, M.B. Targeted delivery of multicomponent cargos to cancer via protocell-like nanoporous particle-supported lipid bilayers. Nat. Mater., 2011, 10, 389-397.
[http://dx.doi.org/10.1038/nmat2992] [PMID: 21499315]
[63]
Florence, A.T. “Targeting” nanoparticles: the constraints of physical laws and physical barriers. J. Control. Release, 2012, 164(2), 115-124.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.022] [PMID: 22484196]
[64]
Agarwal, S.; Sane, R.; Oberoi, R.; Ohlfest, J.R.; Elmquist, W.F. Delivery of molecularly targeted therapy to malignant glioma, a disease of the whole brain. Expert Rev. Mol. Med., 2011, 13 e17
[http://dx.doi.org/10.1017/S1462399411001888] [PMID: 21676290]
[65]
Fei, G.; Zhang, J.; Fu, C.; Xie, X.; Fu, P.; You, J.; Tang, H.; Wang, Z.; Peng, L. Chen, J. iRGD-modified lipid-polymer hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect and tumor-targeting ability. INT. J. Nanomed., 2017, 12, 4147-4162.
[http://dx.doi.org/10.2147/IJN.S134148]
[66]
Zhang, X.; Qiao, H.; Zhang, T.; Shi, Y.; Ni, J. Enhancement of gastrointestinal absorption of isoliquiritigenin by nanostructured lipid carrier. Adv. Powder Technol., 2014, 25, 1060-1068.
[http://dx.doi.org/10.1016/j.apt.2014.02.012]
[67]
Zhang, X.Y.; Qiao, H.; Ni, J.M.; Shi, Y.B.; Qiang, Y. Preparation of isoliquiritigenin-loaded nanostructured lipid carrier and the in vivo evaluation in tumor-bearing mice. Eur. J. Pharm. Sci., 2013, 49(3), 411-422.
[http://dx.doi.org/10.1016/j.ejps.2013.04.020] [PMID: 23624327]
[68]
Noh, G.Y.; Ji, Y.S.; Park, S.N. Ceramide-based nanostructured lipid carriers for transdermal delivery of isoliquiritigenin: Development, physicochemical characterization, and in vitro skin permeation studies. Korean J. Chem. Eng., 2016, 1-7.
[69]
De Bartolo, L.; Morelli, S.; Gallo, M.C.; Campana, C.; Statti, G.; Rende, M.; Salerno, S.; Drioli, E. Effect of isoliquiritigenin on viability and differentiated functions of human hepatocytes maintained on PEEK-WC-polyurethane membranes. Biomaterials, 2005, 26(33), 6625-6634.
[http://dx.doi.org/10.1016/j.biomaterials.2005.04.021] [PMID: 15927248]
[70]
Yuan, Y.; Xing, J.G.; Wang, X.C.; Huang, C.S.; Xiao-Li, M.A.; Wen, Z.P. Enhanced absorption of isoliquiritigenin microemulsion in small intestine of rats. Chung Kuo Yao Hsueh Tsa Chih, 2013, 48, 128-131.
[71]
Boyapelly, K.; Bonin, M.A.; Traboulsi, H.; Cloutier, A.; Phaneuf, S.C.; Fortin, D.; Cantin, A.M.; Richter, M.V.; Marsault, E. Synthesis and Characterization of a Phosphate Prodrug of Isoliquiritigenin. J. Nat. Prod., 2017, 80(4), 879-886.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00600] [PMID: 28252963]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy