Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

The Glycogen Synthase Kinase-3 in the Regulation of Ion Channels and Cellular Carriers

Author(s): Mentor Sopjani*, Lulzim Millaku, Dashnor Nebija, Merita Emini, Arleta Rifati-Nixha and Miribane Dërmaku-Sopjani*

Volume 26, Issue 37, 2019

Page: [6817 - 6829] Pages: 13

DOI: 10.2174/0929867325666181009122452

Price: $65

conference banner
Abstract

Glycogen synthase kinase-3 (GSK-3) is a highly evolutionarily conserved and ubiquitously expressed serine/threonine kinase, an enzyme protein profoundly specific for glycogen synthase (GS). GSK-3 is involved in various cellular functions and physiological processes, including cell proliferation, differentiation, motility, and survival as well as glycogen metabolism, protein synthesis, and apoptosis. There are two isoforms of human GSK-3 (named GSK-3α and GSK-3β) encoded by two distinct genes. Recently, GSK-3β has been reported to function as a powerful regulator of various transport processes across the cell membrane. This kinase, GSK-3β, either directly or indirectly, may stimulate or inhibit many different types of transporter proteins, including ion channel and cellular carriers. More specifically, GSK-3β-sensitive cellular transport regulation involves various calcium, chloride, sodium, and potassium ion channels, as well as a number of Na+-coupled cellular carriers including excitatory amino acid transporters EAAT2, 3 and 4, high-affinity Na+ coupled glucose carriers SGLT1, creatine transporter 1 CreaT1, and the type II sodium/phosphate cotransporter NaPi-IIa. The GSK-3β-dependent cellular transport regulations are a part of the kinase functions in numerous physiological and pathophysiological processes. Clearly, additional studies are required to examine the role of GSK-3β in many other types of cellular transporters as well as further elucidating the underlying mechanisms of GSK-3β-mediated cellular transport regulation.

Keywords: GSK-3, cellular transport, ion channels, membrane carriers, GSK-3β-sensitive cellular transport, EAAT2.

« Previous
[1]
Rylatt, D.B.; Aitken, A.; Bilham, T.; Condon, G.D.; Embi, N.; Cohen, P. Glycogen synthase from rabbit skeletal muscle. Amino acid sequence at the sites phosphorylated by glycogen synthase kinase-3, and extension of the N-terminal sequence containing the site phosphorylated by phosphorylase kinase. Eur. J. Biochem., 1980, 107(2), 529-537.
[http://dx.doi.org/10.1111/j.1432-1033.1980.tb06060.x] [PMID: 6772446]
[2]
Patel, S.; Doble, B.W.; MacAulay, K.; Sinclair, E.M.; Drucker, D.J.; Woodgett, J.R. Tissue-specific role of glycogen synthase kinase 3beta in glucose homeostasis and insulin action. Mol. Cell. Biol., 2008, 28(20), 6314-6328.
[http://dx.doi.org/10.1128/MCB.00763-08] [PMID: 18694957]
[3]
Woodgett, J.R. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J., 1990, 9(8), 2431-2438.
[http://dx.doi.org/10.1002/j.1460-2075.1990.tb07419.x] [PMID: 2164470]
[4]
Lau, K.F.; Miller, C.C.; Anderton, B.H.; Shaw, P.C. Expression analysis of glycogen synthase kinase-3 in human tissues. J. Pept. Res., 1999, 54(1), 85-91.
[http://dx.doi.org/10.1034/j.1399-3011.1999.00083.x] [PMID: 10448973]
[5]
Madison, J.M.; Zhou, F.; Nigam, A.; Hussain, A.; Barker, D.D.; Nehme, R.; van der Ven, K.; Hsu, J.; Wolf, P.; Fleishman, M.; O’Dushlaine, C.; Rose, S.; Chambert, K.; Lau, F.H.; Ahfeldt, T.; Rueckert, E.H.; Sheridan, S.D.; Fass, D.M.; Nemesh, J.; Mullen, T.E.; Daheron, L.; McCarroll, S.; Sklar, P.; Perlis, R.H.; Haggarty, S.J. Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities. Mol. Psychiatry, 2015, 20(6), 703-717.
[http://dx.doi.org/10.1038/mp.2015.7] [PMID: 25733313]
[6]
Shin, S.M.; Cho, I.J.; Kim, S.G. Resveratrol protects mito-chondria against oxidative stress through AMP-activated protein kinase-mediated glycogen synthase kinase-3beta in-hibition downstream of poly(ADP-ribose)polymerase-LKB1 pathway. Mol. Pharmacol., 2009, 76(4), 884-895.
[http://dx.doi.org/10.1124/mol.109.058479] [PMID: 19620254]
[7]
Crofton, E.J.; Nenov, M.N.; Zhang, Y.; Scala, F.; Page, S.A.; McCue, D.L.; Li, D.; Hommel, J.D.; Laezza, F.; Green, T.A. Glycogen synthase kinase 3 beta alters anxiety-, depression-, and addiction-related behaviors and neuronal activity in the nucleus accumbens shell. Neuropharmacology, 2017, 117, 49-60.
[http://dx.doi.org/10.1016/j.neuropharm.2017.01.020] [PMID: 28126496]
[8]
Hsu, W.J.; Wildburger, N.C.; Haidacher, S.J.; Nenov, M.N.; Folorunso, O.; Singh, A.K.; Chesson, B.C.; Franklin, W.F.; Cortez, I.; Sadygov, R.G.; Dineley, K.T.; Rudra, J.S.; Taglialatela, G.; Lichti, C.F.; Denner, L.; Laezza, F. PPARgamma agonists rescue increased phosphorylation of FGF14 at S226 in the Tg2576 mouse model of Alzheimer’s disease. Exp. Neurol., 2017, 295, 1-17.
[http://dx.doi.org/10.1016/j.expneurol.2017.05.005] [PMID: 28522250]
[9]
Wang, W.; Gu, L.; Verkhratsky, A.; Peng, L. Ammonium increases TRPC1 expression via Cav-1/PTEN/AKT/GSK3β pathway. Neurochem. Res., 2017, 42(3), 762-776.
[http://dx.doi.org/10.1007/s11064-016-2004-z] [PMID: 27412116]
[10]
Fezai, M.; Ahmed, M.; Hosseinzadeh, Z.; Lang, F. Up-Regulation of the large-conductance Ca2+-activated K+ channel by glycogen synthase kinase GSK3β. Cell. Physiol. Biochem., 2016, 39(3), 1031-1039.
[http://dx.doi.org/10.1159/000447810] [PMID: 27537208]
[11]
Zhu, L.Q.; Liu, D.; Hu, J.; Cheng, J.; Wang, S.H.; Wang, Q.; Wang, F.; Chen, J.G.; Wang, J.Z. GSK-3 beta inhibits presynaptic vesicle exocytosis by phosphorylating P/Q-type calcium channel and interrupting SNARE complex formation. J. Neurosci., 2010, 30(10), 3624-3633.
[http://dx.doi.org/10.1523/JNEUROSCI.5223-09.2010] [PMID: 20219996]
[12]
Li, Q.; Sarna, S.K. Chronic stress targets posttranscriptional mechanisms to rapidly upregulate α1C-subunit of Cav1.2b calcium channels in colonic smooth muscle cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2011, 300(1), G154-G163.
[http://dx.doi.org/10.1152/ajpgi.00393.2010] [PMID: 21051529]
[13]
James, T.F.; Nenov, M.N.; Wildburger, N.C.; Lichti, C.F.; Luisi, J.; Vergara, F.; Panova-Electronova, N.I.; Nilsson, C.L.; Rudra, J.S.; Green, T.A.; Labate, D.; Laezza, F. The Nav1.2 channel is regulated by GSK3. Biochim. Biophys. Acta, 2015, 1850(4), 832-844.
[http://dx.doi.org/10.1016/j.bbagen.2015.01.011] [PMID: 25615535]
[14]
Jiang, L.; Kosenko, A.; Yu, C.; Huang, L.; Li, X.; Hoshi, N. Activation of m1 muscarinic acetylcholine receptor induces surface transport of KCNQ channels through a CRMP-2-mediated pathway. J. Cell Sci., 2015, 128(22), 4235-4245.
[http://dx.doi.org/10.1242/jcs.175547] [PMID: 26446259]
[15]
Scala, F.; Fusco, S.; Ripoli, C.; Piacentini, R.; Li Puma, D.D.; Spinelli, M.; Laezza, F.; Grassi, C.; D’Ascenzo, M. Intraneuronal Aβ accumulation induces hippocampal neuron hyperexcitability through A-type K(+) current inhibition mediated by activation of caspases and GSK-3. Neurobiol. Aging, 2015, 36(2), 886-900.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.10.034] [PMID: 25541422]
[16]
Schmid, E.; Yan, J.; Nurbaeva, M.K.; Russo, A.; Yang, W.; Faggio, C.; Shumilina, E.; Lang, F. Decreased store operated Ca2+ entry in dendritic cells isolated from mice expressing PKB/SGK-resistant GSK3. PLoS One, 2014, 9(2)e88637
[http://dx.doi.org/10.1371/journal.pone.0088637] [PMID: 24523925]
[17]
Abousaab, A.; Lang, F. Up-regulation of excitatory amino acid transporters EAAT3 and EAAT4 by lithium sensitive glycogen synthase kinase GSK3ß. Cell. Physiol. Biochem., 2016, 40(5), 1252-1260.
[http://dx.doi.org/10.1159/000453179] [PMID: 27978527]
[18]
Ching, J.; Amiridis, S.; Stylli, S.S.; Bjorksten, A.R.; Kountouri, N.; Zheng, T.; Paradiso, L.; Luwor, R.B.; Morokoff, A.P.; O’Brien, T.J.; Kaye, A.H. The peroxisome proliferator activated receptor gamma agonist pioglitazone increases functional expression of the glutamate transporter excitatory amino acid transporter 2 (EAAT2) in human glioblastoma cells. Oncotarget, 2015, 6(25), 21301-21314.
[http://dx.doi.org/10.18632/oncotarget.4019] [PMID: 26046374]
[19]
Rexhepaj, R.; Dërmaku-Sopjani, M.; Gehring, E.M.; Sopjani, M.; Kempe, D.S.; Föller, M.; Lang, F. Stimulation of electrogenic glucose transport by glycogen synthase kinase 3. Cell. Physiol. Biochem., 2010, 26(4-5), 641-646.
[http://dx.doi.org/10.1159/000322331] [PMID: 21063101]
[20]
Fezai, M.; Jemaà, M.; Fakhri, H.; Chen, H.; Elsir, B.; Pelzl, L.; Lang, F. Down-Regulation of the Na+,Cl- Coupled creatine transporter CreaT (SLC6A8) by glycogen synthase kinase GSK3ß. Cell. Physiol. Biochem., 2016, 40(5), 1231-1238.
[http://dx.doi.org/10.1159/000453177] [PMID: 27978525]
[21]
Föller, M.; Kempe, D.S.; Boini, K.M.; Pathare, G.; Siraskar, B.; Capuano, P.; Alesutan, I.; Sopjani, M.; Stange, G.; Mohebbi, N.; Bhandaru, M.; Ackermann, T.F.; Judenhofer, M.S.; Pichler, B.J.; Biber, J.; Wagner, C.A.; Lang, F. PKB/SGK-resistant GSK3 enhances phosphaturia and calciuria. J. Am. Soc. Nephrol., 2011, 22(5), 873-880.
[http://dx.doi.org/10.1681/ASN.2010070757] [PMID: 21493770]
[22]
Jiménez, E.; Núñez, E.; Ibáñez, I.; Draffin, J.E.; Zafra, F.; Giménez, C. Differential regulation of the glutamate transporters GLT-1 and GLAST by GSK3β. Neurochem. Int., 2014, 79, 33-43.
[http://dx.doi.org/10.1016/j.neuint.2014.10.003] [PMID: 25454285]
[23]
Dërmaku-Sopjani, M.; Kolgeci, S.; Abazi, S.; Sopjani, M. Significance of the anti-aging protein Klotho. Mol. Membr. Biol., 2013, 30(8), 369-385.
[http://dx.doi.org/10.3109/09687688.2013.837518] [PMID: 24124751]
[24]
Sopjani, M.; Rinnerthaler, M.; Almilaji, A.; Ahmeti, S.; Dermaku-Sopjani, M. Regulation of cellular transport by klotho protein. Curr. Protein Pept. Sci., 2014, 15(8), 828-835.
[http://dx.doi.org/10.2174/138920371508141128152429] [PMID: 25466545]
[25]
Sopjani, M.; Dërmaku-Sopjani, M. Klotho-dependent cellular transport regulation. Vitam. Horm., 2016, 101, 59-84.
[http://dx.doi.org/10.1016/bs.vh.2016.02.003] [PMID: 27125738]
[26]
Sopjani, M.; Konjufca, V.; Rinnerthaler, M.; Rexhepaj, R.; Dërmaku-Sopjani, M. The relevance of JAK2 in the regulation of cellular transport. Curr. Med. Chem., 2016, 23(6), 578-588.
[http://dx.doi.org/10.2174/0929867323666151207111707] [PMID: 26639094]
[27]
Sopjani, M.; Thaçi, S.; Krasniqi, B.; Selmonaj, M.; Rinnerthaler, M.; Dërmaku-Sopjani, M. Regulation of ion channels, cellular carriers and Na(+)/K(+)/ATPase by janus kinase 3. Curr. Med. Chem., 2017, 24(21), 2251-2260.
[http://dx.doi.org/10.2174/0929867324666170203122625] [PMID: 28164762]
[28]
Dërmaku-Sopjani, M.; Abazi, S.; Faggio, C.; Kolgeci, J.; Sopjani, M. AMPK-sensitive cellular transport. J. Biochem., 2014, 155(3), 147-158.
[http://dx.doi.org/10.1093/jb/mvu002] [PMID: 24440827]
[29]
Sopjani, M.; Rinnerthaler, M.; Kruja, J.; Dermaku-Sopjani, M. Intracellular signaling of the aging suppressor protein Klotho. Curr. Mol. Med., 2015, 15(1), 27-37.
[http://dx.doi.org/10.2174/1566524015666150114111258] [PMID: 25601466]
[30]
Shumilina, E.; Huber, S.M.; Lang, F. Ca2+ signaling in the regulation of dendritic cell functions. Am. J. Physiol. Cell Physiol., 2011, 300(6), C1205-C1214.
[http://dx.doi.org/10.1152/ajpcell.00039.2011] [PMID: 21451105]
[31]
Russo, A.; Schmid, E.; Nurbaeva, M.K.; Yang, W.; Yan, J.; Bhandaru, M.; Faggio, C.; Shumilina, E.; Lang, F. PKB/SGK-dependent GSK3-phosphorylation in the regulation of LPS-induced Ca2+ increase in mouse dendritic cells. Biochem. Biophys. Res. Commun., 2013, 437(3), 336-341.
[http://dx.doi.org/10.1016/j.bbrc.2013.06.075] [PMID: 23817039]
[32]
Ohtani, M.; Nagai, S.; Kondo, S.; Mizuno, S.; Nakamura, K.; Tanabe, M.; Takeuchi, T.; Matsuda, S.; Koyasu, S. Mammalian target of rapamycin and glycogen synthase kinase 3 differentially regulate lipopolysaccharide-induced interleukin-12 production in dendritic cells. Blood, 2008, 112(3), 635-643.
[http://dx.doi.org/10.1182/blood-2008-02-137430] [PMID: 18492954]
[33]
Huang, S.; Turlova, E.; Li, F.; Bao, M.H.; Szeto, V.; Wong, R.; Abussaud, A.; Wang, H.; Zhu, S.; Gao, X.; Mori, Y.; Feng, Z.P.; Sun, H.S. Transient receptor potential melastatin 2 channels (TRPM2) mediate neonatal hypoxic-ischemic brain injury in mice. Exp. Neurol., 2017, 296, 32-40.
[http://dx.doi.org/10.1016/j.expneurol.2017.06.023] [PMID: 28668375]
[34]
Catterall, W.A. Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol., 2011, 3(8)a003947
[http://dx.doi.org/10.1101/cshperspect.a003947] [PMID: 21746798]
[35]
Ko, M.L.; Shi, L.; Grushin, K.; Nigussie, F.; Ko, G.Y. Circadian profiles in the embryonic chick heart: L-type voltage-gated calcium channels and signaling pathways. Chronobiol. Int., 2010, 27(9-10), 1673-1696.
[http://dx.doi.org/10.3109/07420528.2010.514631] [PMID: 20969517]
[36]
Du, S.; Yang, L. ClC-3 chloride channel modulates the proliferation and migration of osteosarcoma cells via AKT/GSK3β signaling pathway. Int. J. Clin. Exp. Pathol., 2015, 8(2), 1622-1630.
[PMID: 25973047]
[37]
Hong, S.; Bi, M.; Wang, L.; Kang, Z.; Ling, L.; Zhao, C. CLC-3 channels in cancer (review). Oncol. Rep., 2015, 33(2), 507-514.
[http://dx.doi.org/10.3892/or.2014.3615] [PMID: 25421907]
[38]
Yanagita, T.; Maruta, T.; Nemoto, T.; Uezono, Y.; Matsuo, K.; Satoh, S.; Yoshikawa, N.; Kanai, T.; Kobayashi, H.; Wada, A. Chronic lithium treatment up-regulates cell surface Na(V)1.7 sodium channels via inhibition of glycogen synthase kinase-3 in adrenal chromaffin cells: enhancement of Na(+) influx, Ca(2+) influx and catecholamine secretion after lithium withdrawal. Neuropharmacology, 2009, 57(3), 311-321.
[http://dx.doi.org/10.1016/j.neuropharm.2009.05.006] [PMID: 19486905]
[39]
Nemoto, T.; Yanagita, T.; Maruta, T.; Sugita, C.; Satoh, S.; Kanai, T.; Wada, A.; Murakami, M. Endothelin-1-induced down-regulation of NaV1.7 expression in adrenal chromaffin cells: attenuation of catecholamine secretion and tau dephosphorylation. FEBS Lett., 2013, 587(7), 898-905.
[http://dx.doi.org/10.1016/j.febslet.2013.02.013] [PMID: 23434582]
[40]
Shavkunov, A.S.; Wildburger, N.C.; Nenov, M.N.; James, T.F.; Buzhdygan, T.P.; Panova-Elektronova, N.I.; Green, T.A.; Veselenak, R.L.; Bourne, N.; Laezza, F. The fibroblast growth factor 14·voltage-gated sodium channel complex is a new target of glycogen synthase kinase 3 (GSK3). J. Biol. Chem., 2013, 288(27), 19370-19385.
[http://dx.doi.org/10.1074/jbc.M112.445924] [PMID: 23640885]
[41]
Hsu, W.C.; Nenov, M.N.; Shavkunov, A.; Panova, N.; Zhan, M.; Laezza, F. Identifying a kinase network regulating FGF14:Nav1.6 complex assembly using split-luciferase complementation. PLoS One, 2015, 10(2) e0117246
[http://dx.doi.org/10.1371/journal.pone.0117246] [PMID: 25659151]
[42]
Scala, F.; Nenov, M.N.; Crofton, E.J.; Singh, A.K.; Folorunso, O.; Zhang, Y.; Chesson, B.C.; Wildburger, N.C.; James, T.F.; Alshammari, M.A.; Alshammari, T.K.; Elfrink, H.; Grassi, C.; Kasper, J.M.; Smith, A.E.; Hommel, J.D.; Lichti, C.F.; Rudra, J.S.; D’Ascenzo, M.; Green, T.A.; Laezza, F. Environmental enrichment and social isolation mediate neuroplasticity of medium spiny neurons through the GSK3 pathway. Cell Rep., 2018, 23(2), 555-567.
[http://dx.doi.org/10.1016/j.celrep.2018.03.062] [PMID: 29642012]
[43]
Boini, K.M.; Bhandaru, M.; Mack, A.; Lang, F. Steroid hormone release as well as renal water and electrolyte excretion of mice expressing PKB/SGK-resistant GSK3. Pflugers Arch., 2008, 456(6), 1207-1216.
[http://dx.doi.org/10.1007/s00424-008-0483-8] [PMID: 18369660]
[44]
Menniti, M.; Iuliano, R.; Föller, M.; Sopjani, M.; Alesutan, I.; Mariggiò, S.; Nofziger, C.; Perri, A.M.; Amato, R.; Blazer-Yost, B.; Corda, D.; Lang, F.; Perrotti, N. 60kDa lysophospholipase, a new Sgk1 molecular partner involved in the regulation of ENaC. Cell. Physiol. Biochem., 2010, 26(4-5), 587-596.
[http://dx.doi.org/10.1159/000322326] [PMID: 21063096]
[45]
Hosseinzadeh, Z.; Luo, D.; Sopjani, M.; Bhavsar, S.K.; Lang, F. Down-regulation of the epithelial Na+ channel ENaC by Janus kinase 2. J. Membr. Biol., 2014, 247(4), 331-338.
[http://dx.doi.org/10.1007/s00232-014-9636-1] [PMID: 24562791]
[46]
Tyan, L.; Sopjani, M.; Dërmaku-Sopjani, M.; Schmid, E.; Yang, W.; Xuan, N.T.; Shumilina, E.; Lang, F. Inhibition of voltage-gated K+ channels in dendritic cells by rapamycin. Am. J. Physiol. Cell Physiol., 2010, 299(6), C1379-C1385.
[http://dx.doi.org/10.1152/ajpcell.00367.2010] [PMID: 20926775]
[47]
Almilaji, A.; Pakladok, T.; Muñoz, C.; Elvira, B.; Sopjani, M.; Lang, F. Upregulation of KCNQ1/KCNE1 K+ channels by Klotho. Channels (Austin), 2014, 8(3), 222-229.
[http://dx.doi.org/10.4161/chan.27662] [PMID: 24457979]
[48]
Hosseinzadeh, Z.; Sopjani, M.; Pakladok, T.; Bhavsar, S.K.; Lang, F. Downregulation of KCNQ4 by Janus kinase 2. J. Membr. Biol., 2013, 246(4), 335-341.
[http://dx.doi.org/10.1007/s00232-013-9537-8] [PMID: 23543186]
[49]
Zhu, X.R.; Wulf, A.; Schwarz, M.; Isbrandt, D.; Pongs, O. Characterization of human Kv4.2 mediating a rapidly-inactivating transient voltage-sensitive K+ current. Receptors Channels, 1999, 6(5), 387-400.
[PMID: 10551270]
[50]
Wilmes, J.; Haddad-Tóvolli, R.; Alesutan, I.; Munoz, C.; Sopjani, M.; Pelzl, L.; Bogatikov, E.; Fedele, G.; Faggio, C.; Seebohm, G.; Föller, M.; Lang, F. Regulation of KCNQ1/KCNE1 by β-catenin. Mol. Membr. Biol., 2012, 29(3-4), 87-94.
[http://dx.doi.org/10.3109/09687688.2012.678017] [PMID: 22583083]
[51]
Aceto, G.; Re, A.; Mattera, A.; Leone, L.; Colussi, C.; Rinaudo, M.; Scala, F.; Gironi, K.; Barbati, S.A.; Fusco, S.; Green, T.; Laezza, F.; D’Ascenzo, M.; Grassi, C. GSK3β modulates timing-dependent long-term depression through direct phosphorylation of Kv4.2 channels. Cereb. Cortex, 2019, 29(5), 1851-1865.
[http://dx.doi.org/10.1093/cercor/bhy042] [PMID: 29790931]
[52]
Kim, M.S.; Shutov, L.P.; Gnanasekaran, A.; Lin, Z.; Rysted, J.E.; Ulrich, J.D.; Usachev, Y.M. Nerve growth factor (NGF) regulates activity of nuclear factor of activated T-cells (NFAT) in neurons via the phosphatidylinositol 3-kinase (PI3K)-Akt-glycogen synthase kinase 3β (GSK3β) pathway. J. Biol. Chem., 2014, 289(45), 31349-31360.
[http://dx.doi.org/10.1074/jbc.M114.587188] [PMID: 25231981]
[53]
Gruson, D.; Ginion, A.; Decroly, N.; Lause, P.; Vanoverschelde, J.L.; Ketelslegers, J.M.; Bertrand, L.; Thissen, J.P. Urocortin-induced cardiomyocytes hypertrophy is associated with regulation of the GSK-3β pathway. Heart Vessels, 2012, 27(2), 202-207.
[http://dx.doi.org/10.1007/s00380-011-0141-5] [PMID: 21505854]
[54]
Lang, F. Mechanisms and significance of cell volume regulation. J. Am. Coll. Nutr., 2007, 26(5)(Suppl.), 613S-623S.
[http://dx.doi.org/10.1080/07315724.2007.10719667] [PMID: 17921474]
[55]
Fedorenko, O.; Tang, C.; Sopjani, M.; Föller, M.; Gehring, E.M.; Strutz-Seebohm, N.; Ureche, O.N.; Ivanova, S.; Semke, A.; Lang, F.; Seebohm, G.; Lang, U.E. PIP5K2A-dependent regulation of excitatory amino acid transporter EAAT3. Psychopharmacology (Berl.), 2009, 206(3), 429-435.
[http://dx.doi.org/10.1007/s00213-009-1621-5] [PMID: 19644675]
[56]
Hosseinzadeh, Z.; Bhavsar, S.K.; Sopjani, M.; Alesutan, I.; Saxena, A.; Dërmaku-Sopjani, M.; Lang, F. Regulation of the glutamate transporters by JAK2. Cell. Physiol. Biochem., 2011, 28(4), 693-702.
[http://dx.doi.org/10.1159/000335763] [PMID: 22178881]
[57]
Sopjani, M.; Alesutan, I.; Dërmaku-Sopjani, M.; Fraser, S.; Kemp, B.E.; Föller, M.; Lang, F. Down-regulation of Na+-coupled glutamate transporter EAAT3 and EAAT4 by AMP-activated protein kinase. J. Neurochem., 2010, 113(6), 1426-1435.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06678.x] [PMID: 20218975]
[58]
Beart, P.M.; O’Shea, R.D. Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br. J. Pharmacol., 2007, 150(1), 5-17.
[http://dx.doi.org/10.1038/sj.bjp.0706949] [PMID: 17088867]
[59]
Gegelashvili, G.; Robinson, M.B.; Trotti, D.; Rauen, T. Regulation of glutamate transporters in health and disease. Prog. Brain Res., 2001, 132, 267-286.
[http://dx.doi.org/10.1016/S0079-6123(01)32082-4] [PMID: 11544995]
[60]
Bianchi, M.G.; Bardelli, D.; Chiu, M.; Bussolati, O. Changes in the expression of the glutamate transporter EAAT3/EAAC1 in health and disease. Cell. Mol. Life Sci., 2014, 71(11), 2001-2015.
[http://dx.doi.org/10.1007/s00018-013-1484-0] [PMID: 24162932]
[61]
Atkins, R.J.; Dimou, J.; Paradiso, L.; Morokoff, A.P.; Kaye, A.H.; Drummond, K.J.; Hovens, C.M. Regulation of glycogen synthase kinase-3 beta (GSK-3β) by the Akt pathway in gliomas. J. Clin. Neurosci., 2012, 19(11), 1558-1563.
[http://dx.doi.org/10.1016/j.jocn.2012.07.002] [PMID: 22999562]
[62]
Leiprecht, N.; Munoz, C.; Alesutan, I.; Siraskar, G.; Sopjani, M.; Föller, M.; Stubenrauch, F.; Iftner, T.; Lang, F. Regulation of Na(+)-coupled glucose carrier SGLT1 by human papillomavirus 18 E6 protein. Biochem. Biophys. Res. Commun., 2011, 404(2), 695-700.
[http://dx.doi.org/10.1016/j.bbrc.2010.12.044] [PMID: 21156162]
[63]
Sopjani, M.; Alesutan, I.; Wilmes, J.; Dërmaku-Sopjani, M.; Lam, R.S.; Koutsouki, E.; Jakupi, M.; Föller, M.; Lang, F. Stimulation of Na+/K+ ATPase activity and Na+ coupled glucose transport by β-catenin. Biochem. Biophys. Res. Commun., 2010, 402(3), 467-470.
[http://dx.doi.org/10.1016/j.bbrc.2010.10.049] [PMID: 20951116]
[64]
Almilaji, A.; Sopjani, M.; Elvira, B.; Borras, J.; Dërmaku-Sopjani, M.; Munoz, C.; Warsi, J.; Lang, U.E.; Lang, F. Upregulation of the creatine transporter Slc6A8 by Klotho. Kidney Blood Press. Res., 2014, 39(6), 516-525.
[http://dx.doi.org/10.1159/000368462] [PMID: 25531216]
[65]
Kato, H.; Miyake, F.; Shimbo, H.; Ohya, M.; Sugawara, H.; Aida, N.; Anzai, R.; Takagi, M.; Okuda, M.; Takano, K.; Wada, T.; Iai, M.; Yamashita, S.; Osaka, H. Urine screening for patients with developmental disabilities detected a patient with creatine transporter deficiency due to a novel missense mutation in SLC6A8. Brain Dev., 2014, 36(7), 630-633.
[http://dx.doi.org/10.1016/j.braindev.2013.08.004] [PMID: 24045174]
[66]
Dërmaku-Sopjani, M.; Sopjani, M.; Saxena, A.; Shojaiefard, M.; Bogatikov, E.; Alesutan, I.; Eichenmüller, M.; Lang, F. Downregulation of NaPi-IIa and NaPi-IIb Na-coupled phosphate transporters by coexpression of Klotho. Cell. Physiol. Biochem., 2011, 28(2), 251-258.
[http://dx.doi.org/10.1159/000331737] [PMID: 21865732]
[67]
Villa-Bellosta, R.; Ravera, S.; Sorribas, V.; Stange, G.; Levi, M.; Murer, H.; Biber, J.; Forster, I.C. The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Am. J. Physiol. Renal Physiol., 2009, 296(4), F691-F699.
[http://dx.doi.org/10.1152/ajprenal.90623.2008] [PMID: 19073637]
[68]
Segawa, H.; Yamanaka, S.; Ohno, Y.; Onitsuka, A.; Shiozawa, K.; Aranami, F.; Furutani, J.; Tomoe, Y.; Ito, M.; Kuwahata, M.; Imura, A.; Nabeshima, Y.; Miyamoto, K. Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice. Am. J. Physiol. Renal Physiol., 2007, 292(2), F769-F779.
[http://dx.doi.org/10.1152/ajprenal.00248.2006] [PMID: 16985213]
[69]
Moe, O.W. PiT-2 coming out of the pits. Am. J. Physiol. Renal Physiol., 2009, 296(4), F689-F690.
[http://dx.doi.org/10.1152/ajprenal.00007.2009] [PMID: 19193727]
[70]
Hatou, S.; Yoshida, S.; Higa, K.; Miyashita, H.; Inagaki, E.; Okano, H.; Tsubota, K.; Shimmura, S. Functional corneal endothelium derived from corneal stroma stem cells of neural crest origin by retinoic acid and Wnt/β-catenin signaling. Stem Cells Dev., 2013, 22(5), 828-839.
[http://dx.doi.org/10.1089/scd.2012.0286] [PMID: 22974347]
[71]
Sopjani, M.; Alesutan, I.; Dërmaku-Sopjani, M.; Gu, S.; Zelenak, C.; Munoz, C.; Velic, A.; Föller, M.; Rosenblatt, K.P.; Kuro-o, M.; Lang, F. Regulation of the Na+/K+ ATPase by Klotho. FEBS Lett., 2011, 585(12), 1759-1764.
[http://dx.doi.org/10.1016/j.febslet.2011.05.021] [PMID: 21605558]
[72]
Alesutan, I.; Munoz, C.; Sopjani, M.; Dërmaku-Sopjani, M.; Michael, D.; Fraser, S.; Kemp, B.E.; Seebohm, G.; Föller, M.; Lang, F. Inhibition of Kir2.1 (KCNJ2) by the AMP-activated protein kinase. Biochem. Biophys. Res. Commun., 2011, 408(4), 505-510.
[http://dx.doi.org/10.1016/j.bbrc.2011.04.015] [PMID: 21501591]
[73]
Alesutan, I.; Sopjani, M.; Munoz, C.; Fraser, S.; Kemp, B.E.; Föller, M.; Lang, F. Inhibition of connexin 26 by the AMP-activated protein kinase. J. Membr. Biol., 2011, 240(3), 151-158.
[http://dx.doi.org/10.1007/s00232-011-9353-y] [PMID: 21400101]
[74]
Murray, J.T.; Campbell, D.G.; Morrice, N.; Auld, G.C.; Shpiro, N.; Marquez, R.; Peggie, M.; Bain, J.; Bloomberg, G.B.; Grahammer, F.; Lang, F.; Wulff, P.; Kuhl, D.; Cohen, P. Exploitation of KESTREL to identify NDRG family members as physiological substrates for SGK1 and GSK3. Biochem. J., 2004, 384(Pt 3), 477-488.
[http://dx.doi.org/10.1042/BJ20041057] [PMID: 15461589]
[75]
Ackermann, T.F.; Kempe, D.S.; Lang, F.; Lang, U.E. Hyperactivity and enhanced curiosity of mice expressing PKB/SGK-resistant glycogen synthase kinase-3 (GSK-3). Cell. Physiol. Biochem., 2010, 25(6), 775-786.
[http://dx.doi.org/10.1159/000315097] [PMID: 20511724]
[76]
Fajol, A.; Chen, H.; Umbach, A.T.; Quarles, L.D.; Lang, F.; Föller, M. Enhanced FGF23 production in mice expressing PI3K-insensitive GSK3 is normalized by β-blocker treatment. FASEB J., 2016, 30(2), 994-1001.
[http://dx.doi.org/10.1096/fj.15-279943] [PMID: 26527066]
[77]
Gu, S.; Honisch, S.; Kounenidakis, M.; Alkahtani, S.; Alarifi, S.; Alevizopoulos, K.; Stournaras, C.; Lang, F. Membrane androgen receptor down-regulates c-src-activity and beta-catenin transcription and triggers GSK-3beta-phosphorylation in colon tumor cells. Cell. Physiol. Biochem., 2014, 34(4), 1402-1412.
[http://dx.doi.org/10.1159/000366346] [PMID: 25301365]
[78]
Rotte, A.; Pasham, V.; Eichenmüller, M.; Yang, W.; Qadri, S.M.; Bhandaru, M.; Lang, F. Regulation of basal gastric acid secretion by the glycogen synthase kinase GSK3. J. Gastroenterol., 2010, 45(10), 1022-1032.
[http://dx.doi.org/10.1007/s00535-010-0260-2] [PMID: 20552232]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy