Review Article

Advances in Protein-Ligand Binding Affinity Prediction via Deep Learning: A Comprehensive Study of Datasets, Data Preprocessing Techniques, and Model Architectures

Author(s): Gelany Aly Abdelkader and Jeong-Dong Kim*

Volume 25, Issue 15, 2024

Published on: 24 September, 2024

Page: [1041 - 1065] Pages: 25

DOI: 10.2174/0113894501330963240905083020

open access plus

Open Access Journals Promotions 2
conference banner
Abstract

Background: Drug discovery is a complex and expensive procedure involving several timely and costly phases through which new potential pharmaceutical compounds must pass to get approved. One of these critical steps is the identification and optimization of lead compounds, which has been made more accessible by the introduction of computational methods, including deep learning (DL) techniques. Diverse DL model architectures have been put forward to learn the vast landscape of interaction between proteins and ligands and predict their affinity, helping in the identification of lead compounds.

Objective: This survey fills a gap in previous research by comprehensively analyzing the most commonly used datasets and discussing their quality and limitations. It also offers a comprehensive classification of the most recent DL methods in the context of protein-ligand binding affinity prediction (BAP), providing a fresh perspective on this evolving field.

Methods: We thoroughly examine commonly used datasets for BAP and their inherent characteristics. Our exploration extends to various preprocessing steps and DL techniques, including graph neural networks, convolutional neural networks, and transformers, which are found in the literature. We conducted extensive literature research to ensure that the most recent deep learning approaches for BAP were included by the time of writing this manuscript.

Results: The systematic approach used for the present study highlighted inherent challenges to BAP via DL, such as data quality, model interpretability, and explainability, and proposed considerations for future research directions. We present valuable insights to accelerate the development of more effective and reliable DL models for BAP within the research community.

Conclusion: The present study can considerably enhance future research on predicting affinity between protein and ligand molecules, hence further improving the overall drug development process.

Keywords: Deep learning, protein-ligand binding affinity, compound-protein interaction, drug discovery, drug repurposing, DNA sequences.

[1]
Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 2004; 3(8): 673-83.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[2]
Mylonas SK, Axenopoulos A, Daras P. DeepSurf: a surface-based deep learning approach for the prediction of ligand binding sites on proteins. Bioinformatics 2021; 37(12): 1681-90.
[http://dx.doi.org/10.1093/bioinformatics/btab009] [PMID: 33471069]
[3]
Wass MN, Kelley LA, Sternberg MJE. 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res 2010; 38(2): W469-73.
[http://dx.doi.org/10.1093/nar/gkq406]
[4]
McNutt AT, Francoeur P, Aggarwal R, et al. GNINA 1.0: molecular docking with deep learning. J Cheminform 2021; 13(1): 43.
[http://dx.doi.org/10.1186/s13321-021-00522-2] [PMID: 34108002]
[5]
Chen L, Tan X, Wang D, et al. TransformerCPI: improving compound–protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments. Bioinformatics 2020; 36(16): 4406-14.
[http://dx.doi.org/10.1093/bioinformatics/btaa524] [PMID: 32428219]
[6]
Lee I, Keum J, Nam H. DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences. PLOS Comput Biol 2019; 15(6): e1007129.
[http://dx.doi.org/10.1371/journal.pcbi.1007129] [PMID: 31199797]
[7]
Zhang Y, Hu Y, Han N, Yang A, Liu X, Cai H. A survey of drug- target interaction and affinity prediction methods via graph neural networks. Comput Biol Med 2023; 163: 107136.
[http://dx.doi.org/10.1016/j.compbiomed.2023.107136] [PMID: 37329615]
[8]
Bagherian M, Sabeti E, Wang K, Sartor MA, Nikolovska-Coleska Z, Najarian K. Machine learning approaches and databases for prediction of drug–target interaction: a survey paper. Brief Bioinform 2021; 22(1): 247-69.
[http://dx.doi.org/10.1093/bib/bbz157] [PMID: 31950972]
[9]
Wang DD, Zhu M, Yan H. Computationally predicting binding affinity in protein–ligand complexes: free energy-based simulations and machine learning-based scoring functions. Brief Bioinform 2021; 22(3): bbaa107.
[http://dx.doi.org/10.1093/bib/bbaa107] [PMID: 32591817]
[10]
Wang Y, Jiao Q, Wang J, Cai X, Zhao W, Cui X. Prediction of protein-ligand binding affinity with deep learning. Comput Struct Biotechnol J 2023; 21: 5796-806.
[http://dx.doi.org/10.1016/j.csbj.2023.11.009]
[11]
Meli R, Morris GM, Biggin PC. Scoring Functions for Protein-Ligand Binding Affinity Prediction Using Structure-based Deep Learning: A Review. Front Bioinform 2022; 2: 885983.
[http://dx.doi.org/10.3389/fbinf.2022.885983] [PMID: 36187180]
[12]
Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol 2011; 162(6): 1239-49.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01127.x] [PMID: 21091654]
[13]
Mullard A. New drugs cost US$2.6 billion to develop. Nat Rev Drug Discov 2014; 13(12): 877-7.
[http://dx.doi.org/10.1038/nrd4507] [PMID: 25435204]
[14]
DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: New estimates of R&D costs. J Health Econ 2016; 47: 20-33.
[http://dx.doi.org/10.1016/j.jhealeco.2016.01.012] [PMID: 26928437]
[15]
Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 2019; 18(1): 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[16]
Dudley JT, Deshpande T, Butte AJ. Exploiting drug-disease relationships for computational drug repositioning. Brief Bioinform 2011; 12(4): 303-11.
[http://dx.doi.org/10.1093/bib/bbr013] [PMID: 21690101]
[17]
Acharya C, Coop A, Polli JE, Mackerell AD Jr. Recent advances in ligand-based drug design: relevance and utility of the conformationally sampled pharmacophore approach. Curr Computeraided Drug Des 2011; 7(1): 10-22.
[http://dx.doi.org/10.2174/157340911793743547] [PMID: 20807187]
[18]
Goodsell DS, Olson AJ. Automated docking of substrates to proteins by simulated annealing. Proteins 1990; 8(3): 195-202.
[http://dx.doi.org/10.1002/prot.340080302] [PMID: 2281083]
[19]
Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking 1 1Edited by F. E. Cohen J Mol Biol 1997; 267(3): 727-48.
[http://dx.doi.org/10.1006/jmbi.1996.0897]
[20]
Chen B, Butte AJ. Leveraging big data to transform target selection and drug discovery. Clin Pharmacol Ther 2016; 99(3): 285-97.
[http://dx.doi.org/10.1002/cpt.318] [PMID: 26659699]
[21]
Huang H, Shukla H, Wu C, Saxena S. Challenges and solutions in proteomics. Curr Genomics 2007; 8(1): 21-8.
[http://dx.doi.org/10.2174/138920207780076910] [PMID: 18645629]
[22]
Lim S, Lu Y, Cho CY, et al. A review on compound-protein interaction prediction methods: Data, format, representation and model. Comput Struct Biotechnol J 2021; 19: 1541-56.
[http://dx.doi.org/10.1016/j.csbj.2021.03.004] [PMID: 33841755]
[23]
Bateman A, Martin M-J, Orchard S, et al. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 2021; 49(D1): D480-9.
[http://dx.doi.org/10.1093/nar/gkaa1100] [PMID: 33237286]
[24]
Berman HM, Westbrook J, Feng Z, et al. The Protein Data Bank. Nucleic Acids Res 2000; 28(1): 235-42.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[25]
Wishart DS, Knox C, Guo AC, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 2006; 34: D668-72.
[http://dx.doi.org/10.1093/nar/gkj067]
[26]
Gaulton A, Hersey A, Nowotka M, et al. The ChEMBL database in 2017. Nucleic Acids Res 2017; 45(D1): D945-54.
[http://dx.doi.org/10.1093/nar/gkw1074] [PMID: 27899562]
[27]
Wang R, Fang X, Lu Y, Wang S. The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. J Med Chem 2004; 47(12): 2977-80.
[http://dx.doi.org/10.1021/jm030580l] [PMID: 15163179]
[28]
Davis MI, Hunt JP, Herrgard S, et al. Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol 2011; 29(11): 1046-51.
[http://dx.doi.org/10.1038/nbt.1990] [PMID: 22037378]
[29]
Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 2007; 35(1): D198-201.
[http://dx.doi.org/10.1093/nar/gkl999]
[30]
Tang J, Szwajda A, Shakyawar S, et al. Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis. J Chem Inf Model 2014; 54(3): 735-43.
[http://dx.doi.org/10.1021/ci400709d] [PMID: 24521231]
[31]
Li Y, Han L, Liu Z, Wang R. Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results. J Chem Inf Model 2014; 54(6): 1717-36.
[http://dx.doi.org/10.1021/ci500081m] [PMID: 24708446]
[32]
Su M, Yang Q, Du Y, et al. Comparative Assessment of Scoring Functions: The CASF-2016 Update. J Chem Inf Model 2019; 59(2): 895-913.
[http://dx.doi.org/10.1021/acs.jcim.8b00545] [PMID: 30481020]
[33]
Liu H, Su M, Lin HX, Wang R, Li Y. Public Data Set of Protein–Ligand Dissociation Kinetic Constants for Quantitative Structure–Kinetics Relationship Studies. ACS Omega 2022; 7(22): 18985-96.
[http://dx.doi.org/10.1021/acsomega.2c02156] [PMID: 35694511]
[34]
Liu Z, Li Y, Han L, et al. PDB-wide collection of binding data: current status of the PDBbind database. Bioinformatics 2015; 31(3): 405-12.
[http://dx.doi.org/10.1093/bioinformatics/btu626] [PMID: 25301850]
[35]
Metz JT, Johnson EF, Soni NB, Merta PJ, Kifle L, Hajduk PJ. Navigating the kinome. Nat Chem Biol 2011; 7(4): 200-2.
[http://dx.doi.org/10.1038/nchembio.530] [PMID: 21336281]
[36]
Anastassiadis T, Deacon SW, Devarajan K, Ma H, Peterson JR. Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat Biotechnol 2011; 29(11): 1039-45.
[http://dx.doi.org/10.1038/nbt.2017] [PMID: 22037377]
[37]
Wei B, Zhang Y, Gong X. DeepLPI: a novel deep learning-based model for protein–ligand interaction prediction for drug repurposing. Sci Rep 2022; 12(1): 18200.
[http://dx.doi.org/10.1038/s41598-022-23014-1] [PMID: 36307509]
[38]
Kundu I, Paul G, Banerjee R. A machine learning approach towards the prediction of protein–ligand binding affinity based on fundamental molecular properties. RSC Advances 2018; 8(22): 12127-37.
[http://dx.doi.org/10.1039/C8RA00003D] [PMID: 35539386]
[39]
Öztürk H, Özgür A, Ozkirimli E. DeepDTA: deep drug– target binding affinity prediction. Bioinformatics 2018; 34(17): i821-9.
[http://dx.doi.org/10.1093/bioinformatics/bty593] [PMID: 30423097]
[40]
Mukherjee S, Ghosh M, Basuchowdhuri P. Deep Graph Convolutional Network and LSTM based approach for predicting drug-target binding affinity 2022.
[http://dx.doi.org/10.1137/1.9781611977172.82]
[41]
Abbasi K, Razzaghi P, Poso A, Amanlou M, Ghasemi JB, Masoudi-Nejad A. DeepCDA: deep cross-domain compound–protein affinity prediction through LSTM and convolutional neural networks. Bioinformatics 2020; 36(17): 4633-42.
[http://dx.doi.org/10.1093/bioinformatics/btaa544] [PMID: 32462178]
[42]
Wang J, Wen N, Wang C, Zhao L, Cheng L. ELECTRA-DTA: a new compound-protein binding affinity prediction model based on the contextualized sequence encoding. J Cheminform 2022; 14(1): 14.
[http://dx.doi.org/10.1186/s13321-022-00591-x] [PMID: 35292100]
[43]
Yang Z, Zhong W, Zhao L, Chen CYC. ML-DTI: Mutual Learning Mechanism for Interpretable Drug–Target Interaction Prediction. J Phys Chem Lett 2021; 12(17): 4247-61.
[http://dx.doi.org/10.1021/acs.jpclett.1c00867] [PMID: 33904745]
[44]
Hu F, Jiang J, Wang D, Zhu M, Yin P. Multi-PLI: interpretable multi-task deep learning model for unifying protein–ligand interaction datasets. J Cheminform 2021; 13(1): 30.
[http://dx.doi.org/10.1186/s13321-021-00510-6] [PMID: 33858485]
[45]
Nguyen T, Le H, Quinn TP, Nguyen T, Le TD, Venkatesh S. GraphDTA: predicting drug–target binding affinity with graph neural networks. Bioinformatics 2021; 37(8): 1140-7.
[http://dx.doi.org/10.1093/bioinformatics/btaa921] [PMID: 33119053]
[46]
Öztürk H, Ozkirimli E, Özgür A. WideDTA: prediction of drug-target binding affinity 2019.
[http://dx.doi.org/10.48550/ARXIV.1902.04166]
[47]
Aly Abdelkader G, Ngnamsie Njimbouom S, Oh TJ, Kim JD. ResBiGAAT: Residual Bi-GRU with attention for protein-ligand binding affinity prediction. Comput Biol Chem 2023; 107: 107969.
[http://dx.doi.org/10.1016/j.compbiolchem.2023.107969] [PMID: 37866117]
[48]
Zhu Z, Yao Z, Zheng X, et al. Drug–target affinity prediction method based on multi-scale information interaction and graph optimization. Comput Biol Med 2023; 167: 107621.
[http://dx.doi.org/10.1016/j.compbiomed.2023.107621] [PMID: 37907030]
[49]
Fang K, Zhang Y, Du S, He J. ColdDTA: Utilizing data augmentation and attention-based feature fusion for drug-target binding affinity prediction. Comput Biol Med 2023; 164: 107372.
[http://dx.doi.org/10.1016/j.compbiomed.2023.107372] [PMID: 37597410]
[50]
Chen Y, Zhu Y, Zhang Z, Wang J, Wang C. Prediction of drug protein interactions based on variable scale characteristic pyramid convolution network. Methods 2023; 211: 42-7.
[http://dx.doi.org/10.1016/j.ymeth.2023.02.007] [PMID: 36804213]
[51]
Jin Z, Wu T, Chen T, et al. CAPLA: improved prediction of protein–ligand binding affinity by a deep learning approach based on a cross-attention mechanism. Bioinformatics 2023; 39(2): btad049.
[http://dx.doi.org/10.1093/bioinformatics/btad049] [PMID: 36688724]
[52]
Zhang L, Ouyang C, Liu Y, Liao Y, Gao Z. Multimodal contrastive representation learning for drug-target binding affinity prediction. Methods 2023; 220: 126-33.
[http://dx.doi.org/10.1016/j.ymeth.2023.11.005] [PMID: 37952703]
[53]
Mokaya M, Imrie F, Van Hoorn WP, Kalisz A, Bradley AR, Deane CM. “Testing the Limits of SMILES-based De Novo Molecular Generation with Curriculum and Deep Reinforcement Learning,” Bioinformatics 2022.
[http://dx.doi.org/10.1101/2022.07.15.500218]
[54]
Wang L, You ZH, Chen X, Yan X, Liu G, Zhang W. RFDT: A Rotation Forest-based Predictor for Predicting Drug-Target Interactions Using Drug Structure and Protein Sequence Information. Curr Protein Pept Sci 2018; 19(5): 445-54.
[http://dx.doi.org/10.2174/1389203718666161114111656] [PMID: 27842479]
[55]
Fernández-de Gortari E, García-Jacas CR, Martinez-Mayorga K, Medina-Franco JL. Database fingerprint (DFP): an approach to represent molecular databases. J Cheminform 2017; 9(1): 9.
[http://dx.doi.org/10.1186/s13321-017-0195-1] [PMID: 28224019]
[56]
Wang K, Zhou R, Tang J, Li M. GraphscoreDTA: optimized graph neural network for protein–ligand binding affinity prediction. Bioinformatics 2023; 39(6): btad340.
[http://dx.doi.org/10.1093/bioinformatics/btad340] [PMID: 37225408]
[57]
Jiang M, Li Z, Zhang S, et al. Drug–target affinity prediction using graph neural network and contact maps. RSC Advances 2020; 10(35): 20701-12.
[http://dx.doi.org/10.1039/D0RA02297G] [PMID: 35517730]
[58]
Stepniewska-Dziubinska MM, Zielenkiewicz P, Siedlecki P. Development and evaluation of a deep learning model for protein–ligand binding affinity prediction. Bioinformatics 2018; 34(21): 3666-74.
[http://dx.doi.org/10.1093/bioinformatics/bty374] [PMID: 29757353]
[59]
Kabsch W, Sander C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983; 22(12): 2577-637.
[http://dx.doi.org/10.1002/bip.360221211] [PMID: 6667333]
[60]
Lim J, Ryu S, Park K, Choe YJ, Ham J, Kim WY. Predicting Drug–Target Interaction Using a Novel Graph Neural Network with 3D Structure-Embedded Graph Representation. J Chem Inf Model 2019; 59(9): 3981-8.
[http://dx.doi.org/10.1021/acs.jcim.9b00387] [PMID: 31443612]
[61]
Liao J, Chen H, Wei L, Wei L. GSAML-DTA: An interpretable drug-target binding affinity prediction model based on graph neural networks with self-attention mechanism and mutual information. Comput Biol Med 2022; 150: 106145.
[http://dx.doi.org/10.1016/j.compbiomed.2022.106145] [PMID: 37859276]
[62]
Fu H, Niu Z, Zhang C, Ma J, Chen J. Visual Cortex Inspired CNN Model for Feature Construction in Text Analysis. Front Comput Neurosci 2016; 10: 64.
[http://dx.doi.org/10.3389/fncom.2016.00064] [PMID: 27471460]
[63]
He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition 2015.
[http://dx.doi.org/10.48550/ARXIV.1512.03385]
[64]
Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM 2017; 60(6): 84-90.
[http://dx.doi.org/10.1145/3065386]
[65]
Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition 2014.
[http://dx.doi.org/10.48550/ARXIV.1409.1556]
[66]
Szegedy C, et al. Going Deeper with Convolutions 2014.
[http://dx.doi.org/10.48550/ARXIV.1409.4842]
[67]
Pahikkala T, Airola A, Pietilä S, et al. Toward more realistic drug- target interaction predictions. Brief Bioinform 2015; 16(2): 325-37.
[http://dx.doi.org/10.1093/bib/bbu010] [PMID: 24723570]
[68]
He T, Heidemeyer M, Ban F, Cherkasov A, Ester M. SimBoost: a read-across approach for predicting drug–target binding affinities using gradient boosting machines. J Cheminform 2017; 9(1): 24.
[http://dx.doi.org/10.1186/s13321-017-0209-z] [PMID: 29086119]
[69]
Zhao Q, Xiao F, Yang M, Li Y, Wang J. AttentionDTA: prediction of drug–target binding affinity using attention model 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). San Diego, CA, USA. 2019; pp. In: IEEE; 64-9.
[http://dx.doi.org/10.1109/BIBM47256.2019.8983125]
[70]
Wang K, Zhou R, Li Y, Li M. DeepDTAF: a deep learning method to predict protein–ligand binding affinity. Brief Bioinform 2021; 22(5): bbab072.
[http://dx.doi.org/10.1093/bib/bbab072] [PMID: 33834190]
[71]
Majumdar S, Nandi SK, Ghosal S, et al. Deep Learning-Based Potential Ligand Prediction Framework for COVID-19 with Drug- Target Interaction Model. Cognit Comput 2021; (Feb): 1-13.
[http://dx.doi.org/10.1007/s12559-021-09840-x] [PMID: 33552306]
[72]
Du X, Li Y, Xia YL, et al. Insights into Protein–Ligand Interactions: Mechanisms, Models, and Methods. Int J Mol Sci 2016; 17(2): 144.
[http://dx.doi.org/10.3390/ijms17020144] [PMID: 26821017]
[73]
Zheng L, Fan J, Mu Y. OnionNet: a Multiple-Layer Intermolecular-Contact-Based Convolutional Neural Network for Protein–Ligand Binding Affinity Prediction. ACS Omega 2019; 4(14): 15956-65.
[http://dx.doi.org/10.1021/acsomega.9b01997] [PMID: 31592466]
[74]
Shim J, Hong ZY, Sohn I, Hwang C. Prediction of drug–target binding affinity using similarity-based convolutional neural network. Sci Rep 2021; 11(1): 4416.
[http://dx.doi.org/10.1038/s41598-021-83679-y] [PMID: 33627791]
[75]
Rifaioglu AS, Cetin Atalay R, Cansen Kahraman D, Doğan T, Martin M, Atalay V. MDeePred: novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery. Bioinformatics 2021; 37(5): 693-704.
[http://dx.doi.org/10.1093/bioinformatics/btaa858] [PMID: 33067636]
[76]
de Souza JG, Fernandes MAC, de Melo Barbosa R. A Novel Deep Neural Network Technique for Drug–Target Interaction. Pharmaceutics 2022; 14(3): 625.
[http://dx.doi.org/10.3390/pharmaceutics14030625] [PMID: 35336000]
[77]
Melsted P, Pritchard JK. Efficient counting of k-mers in DNA sequences using a bloom filter. BMC Bioinformatics 2011; 12(1): 333.
[http://dx.doi.org/10.1186/1471-2105-12-333] [PMID: 21831268]
[78]
Rizk G, Lavenier D, Chikhi R. DSK: k -mer counting with very low memory usage. Bioinformatics 2013; 29(5): 652-3.
[http://dx.doi.org/10.1093/bioinformatics/btt020] [PMID: 23325618]
[79]
Kiranyaz S, Avci O, Abdeljaber O, Ince T, Gabbouj M, Inman DJ. 1D convolutional neural networks and applications: A survey. Mech Syst Signal Process 2021; 151: 107398.
[http://dx.doi.org/10.1016/j.ymssp.2020.107398]
[80]
Alzubaidi L, Zhang J, Humaidi AJ, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data 2021; 8(1): 53.
[http://dx.doi.org/10.1186/s40537-021-00444-8] [PMID: 33816053]
[81]
Wang R, Lai L, Wang S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des 2002; 16(1): 11-26.
[http://dx.doi.org/10.1023/A:1016357811882] [PMID: 12197663]
[82]
Hartshorn MJ, Verdonk ML, Chessari G, et al. Diverse, high-quality test set for the validation of protein-ligand docking performance. J Med Chem 2007; 50(4): 726-41.
[http://dx.doi.org/10.1021/jm061277y] [PMID: 17300160]
[83]
Jiménez J, Škalič M, Martínez-Rosell G, De Fabritiis G. KDEEP : Protein–Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks. J Chem Inf Model 2018; 58(2): 287-96.
[http://dx.doi.org/10.1021/acs.jcim.7b00650] [PMID: 29309725]
[84]
Wang Y, Wei Z, Xi L. Sfcnn: a novel scoring function based on 3D convolutional neural network for accurate and stable protein–ligand affinity prediction. BMC Bioinformatics 2022; 23(1): 222.
[http://dx.doi.org/10.1186/s12859-022-04762-3] [PMID: 35676617]
[85]
Li Y, Rezaei MA, Li C, Li X. DeepAtom: A Framework for Protein-Ligand Binding Affinity Prediction. 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). San Diego, CA, USA. 2019; pp. In: IEEE; 303-10.
[http://dx.doi.org/10.1109/BIBM47256.2019.8982964]
[86]
Kwon Y, Shin WH, Ko J, Lee J. AK-Score: Accurate Protein-Ligand Binding Affinity Prediction Using an Ensemble of 3D-Convolutional Neural Networks. Int J Mol Sci 2020; 21(22): 8424.
[http://dx.doi.org/10.3390/ijms21228424] [PMID: 33182567]
[87]
Volkov M, Turk JA, Drizard N, et al. On the Frustration to Predict Binding Affinities from Protein–Ligand Structures with Deep Neural Networks. J Med Chem 2022; 65(11): 7946-58.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00487] [PMID: 35608179]
[88]
Yang J, Shen C, Huang N. Predicting or Pretending: Artificial Intelligence for Protein-Ligand Interactions Lack of Sufficiently Large and Unbiased Datasets. Front Pharmacol 2020; 11: 69.
[http://dx.doi.org/10.3389/fphar.2020.00069] [PMID: 32161539]
[89]
Chen L, Cruz A, Ramsey S, et al. Hidden bias in the DUD-E dataset leads to misleading performance of deep learning in structure-based virtual screening. PLoS One 2019; 14(8): e0220113.
[http://dx.doi.org/10.1371/journal.pone.0220113] [PMID: 31430292]
[90]
Liu Q, Wang PS, Zhu C, et al. OctSurf: Efficient hierarchical voxel-based molecular surface representation for protein-ligand affinity prediction. J Mol Graph Model 2021; 105: 107865.
[http://dx.doi.org/10.1016/j.jmgm.2021.107865] [PMID: 33640787]
[91]
Zhao Q, Zhao H, Zheng K, Wang J. HyperAttentionDTI: improving drug–protein interaction prediction by sequence-based deep learning with attention mechanism. Bioinformatics 2022; 38(3): 655-62.
[http://dx.doi.org/10.1093/bioinformatics/btab715] [PMID: 34664614]
[92]
Zhu X, Liu J, Zhang J, Yang Z, Yang F, Zhang X. FingerDTA: A Fingerprint-Embedding Framework for Drug-Target Binding Affinity Prediction. Big Data Mining and Analytics 2023; 6(1): 1-10.
[http://dx.doi.org/10.26599/BDMA.2022.9020005]
[93]
Wang S, Liu D, Ding M, et al. SE-OnionNet: A Convolution Neural Network for Protein–Ligand Binding Affinity Prediction. Front Genet 2021; 11: 607824.
[http://dx.doi.org/10.3389/fgene.2020.607824] [PMID: 33737946]
[94]
Schmidt RM. Recurrent Neural Networks (RNNs): A gentle Introduction and Overview 2019.
[http://dx.doi.org/10.48550/ARXIV.1912.05911]
[95]
Shen Z, Zhang Q, Han K, Huang DS. A Deep Learning Model for RNA-Protein Binding Preference Prediction Based on Hierarchical LSTM and Attention Network IEEE/ACM Transactions on Computational Biology and Bioinformatics. Washington, DC, United States.: IEEE Computer Society Press 2020; pp. 1-1.
[http://dx.doi.org/10.1109/TCBB.2020.3007544]
[96]
Jisna VA, Jayaraj PB. Protein Structure Prediction: Conventional and Deep Learning Perspectives. Protein J 2021; 40(4): 522-44.
[http://dx.doi.org/10.1007/s10930-021-10003-y] [PMID: 34050498]
[97]
Panda B, Majhi B. A novel improved prediction of protein structural class using deep recurrent neural network. Evol Intell 2021; 14(2): 253-60.
[http://dx.doi.org/10.1007/s12065-018-0171-3]
[98]
Wang L, Zhong X, Wang S, Zhang H, Liu Y. A novel end-to-end method to predict RNA secondary structure profile based on bidirectional LSTM and residual neural network. BMC Bioinformatics 2021; 22(1): 169.
[http://dx.doi.org/10.1186/s12859-021-04102-x] [PMID: 33789581]
[99]
Zhai H, Hou H, Luo J, Liu X, Wu Z, Wang J. DGDTA: dynamic graph attention network for predicting drug–target binding affinity. BMC Bioinformatics 2023; 24(1): 367.
[http://dx.doi.org/10.1186/s12859-023-05497-5] [PMID: 37777712]
[100]
Wang X, Liu J, Zhang C, Wang S. SSGraphCPI: A Novel Model for Predicting Compound-Protein Interactions Based on Deep Learning. Int J Mol Sci 2022; 23(7): 3780.
[http://dx.doi.org/10.3390/ijms23073780] [PMID: 35409140]
[101]
Zhijian L, Shaohua J, Yigao L, Min G. GDGRU-DTA: Predicting Drug-Target Binding Affinity Based on GNN and Double GRU 2022.
[http://dx.doi.org/10.5121/csit.2022.120703]
[102]
Vaswani A, et al. Attention Is All You Need 2017.
[http://dx.doi.org/10.48550/ARXIV.1706.03762]
[103]
Li H, Zhao D, Zeng J. KPGT: Knowledge-Guided Pre-training of Graph Transformer for Molecular Property Prediction Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. In: ACM; 14 August; Washington DC USA: 2022; pp. 857-67.
[http://dx.doi.org/10.1145/3534678.3539426]
[104]
Wang S, Guo Y, Wang Y, Sun H, Huang J. SMILES-BERT: Large Scale Unsupervised Pre-Training for Molecular Property Prediction Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. Niagara Falls NY USA. 2019; pp. In: ACM; 04 September; 429-36.
[http://dx.doi.org/10.1145/3307339.3342186]
[105]
Zhang X, Guo H, Zhang F, et al. HNetGO: protein function prediction via heterogeneous network transformer. Brief Bioinform 2023; 24(6): bbab556.
[http://dx.doi.org/10.1093/bib/bbab556] [PMID: 37861172]
[106]
Ji Y, Zhou Z, Liu H, Davuluri RV. DNABERT: pre-trained Bidirectional Encoder Representations from Transformers model for DNA-language in genome. Bioinformatics 2021; 37(15): 2112-20.
[http://dx.doi.org/10.1093/bioinformatics/btab083] [PMID: 33538820]
[107]
Le NQK, Ho QT, Nguyen TTD, Ou YY. A transformer architecture based on BERT and 2D convolutional neural network to identify DNA enhancers from sequence information. Brief Bioinform 2021; 22(5): bbab005.
[http://dx.doi.org/10.1093/bib/bbab005] [PMID: 33539511]
[108]
Zhang L, Qin X, Liu M, Liu G, Ren Y. BERT-m7G: A Transformer Architecture Based on BERT and Stacking Ensemble to Identify RNA N7-Methylguanosine Sites from Sequence Information. Comput Math Methods Med 2021; 2021: 1-10.
[http://dx.doi.org/10.1155/2021/7764764] [PMID: 34484416]
[109]
Baid G, Cook DE, Shafin K, et al. DeepConsensus improves the accuracy of sequences with a gap-aware sequence transformer. Nat Biotechnol 2022; (Sep):
[http://dx.doi.org/10.1038/s41587-022-01435-7] [PMID: 36050551]
[110]
Clauwaert J, Menschaert G, Waegeman W. Explainability in transformer models for functional genomics. Brief Bioinform 2021; 22(5): bbab060.
[http://dx.doi.org/10.1093/bib/bbab060] [PMID: 33834200]
[111]
Raad J, Bugnon LA, Milone DH, Stegmayer G. miRe2e: a full end-to-end deep model based on transformers for prediction of pre-miRNAs. Bioinformatics 2022; 38(5): 1191-7.
[http://dx.doi.org/10.1093/bioinformatics/btab823] [PMID: 34875006]
[112]
Hu F, Hu Y, Zhang J, Wang D, Yin P. Structure Enhanced Protein-Drug Interaction Prediction using Transformer and Graph Embedding 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). In: IEEE; Seoul, Korea. 2020; pp. 16-19 December; 1010-4.
[http://dx.doi.org/10.1109/BIBM49941.2020.9313456]
[113]
Saadat M, Behjati A, Zare-Mirakabad F, Gharaghani S. “Drug-Target Binding Affinity Prediction Using Transformers,” Bioinformatics 2021.
[http://dx.doi.org/10.1101/2021.09.30.462610]
[114]
Alley EC, Khimulya G, Biswas S, AlQuraishi M, Church GM. Unified rational protein engineering with sequence-based deep representation learning. Nat Methods 2019; 16(12): 1315-22.
[http://dx.doi.org/10.1038/s41592-019-0598-1] [PMID: 31636460]
[115]
Elnaggar A, et al. CodeTrans: Towards Cracking the Language of Silicon’s Code Through Self-Supervised Deep Learning and High Performance Computing 2021.
[http://dx.doi.org/10.48550/ARXIV.2104.02443]
[116]
Liu Y, et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach 2019.
[http://dx.doi.org/10.48550/ARXIV.1907.11692]
[117]
Monteiro NRC, Oliveira JL, Arrais JP. DTITR: End-to-end drug–target binding affinity prediction with transformers. Comput Biol Med 2022; 147: 105772.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105772] [PMID: 35777085]
[118]
Rose T, Monti N, Anand N, Shen T. “PLAPT: Protein-Ligand Binding Affinity Prediction Using Pretrained Transformers,” Bioinformatics 2024.
[http://dx.doi.org/10.1101/2024.02.08.575577]
[119]
Elnaggar A, et al. ProtTrans: Towards Cracking the Language of Life’s Code Through Self-Supervised Deep Learning and High Performance Computing 2020.
[http://dx.doi.org/10.48550/ARXIV.2007.06225]
[120]
Chithrananda S, Grand G, Ramsundar B. ChemBERTa: Large-Scale Self-Supervised Pretraining for Molecular Property Prediction 2020.
[http://dx.doi.org/10.48550/ARXIV.2010.09885]
[121]
Gori M, Monfardini G, Scarselli F. A new model for learning in graph domains 2005 IEEE International Joint Conference on Neural Networks. 31 July 2005; Montreal, Que., Canada. 2005; pp. In: IEEE; 729-34.
[http://dx.doi.org/10.1109/IJCNN.2005.1555942]
[122]
Lin X. DeepGS: Deep Representation Learning of Graphs and Sequences for Drug-Target Binding Affinity Prediction 2020.
[http://dx.doi.org/10.48550/ARXIV.2003.13902]
[123]
Jin Y, Lu J, Shi R, Yang Y. EmbedDTI: Enhancing the Molecular Representations via Sequence Embedding and Graph Convolutional Network for the Prediction of Drug-Target Interaction. Biomolecules 2021; 11(12): 1783.
[http://dx.doi.org/10.3390/biom11121783] [PMID: 34944427]
[124]
Wang P, et al. “X-DPI: A structure-aware multi-modal deep learning model for drug-protein interactions prediction,” Bioinformatics 2021.
[http://dx.doi.org/10.1101/2021.06.17.448780]
[125]
Jiang M, Wang S, Zhang S, Zhou W, Zhang Y, Li Z. Sequence-based drug-target affinity prediction using weighted graph neural networks. BMC Genomics 2022; 23(1): 449.
[http://dx.doi.org/10.1186/s12864-022-08648-9] [PMID: 35715739]
[126]
Pandey M, Radaeva M, Mslati H, et al. Ligand Binding Prediction Using Protein Structure Graphs and Residual Graph Attention Networks. Molecules 2022; 27(16): 5114.
[http://dx.doi.org/10.3390/molecules27165114] [PMID: 36014351]
[127]
Kipf TN, Welling M. Semi-Supervised Classification with Graph Convolutional Networks 2016.
[http://dx.doi.org/10.48550/ARXIV.1609.02907]
[128]
Son J, Kim D. Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities. PLoS One 2021; 16(4): e0249404.
[http://dx.doi.org/10.1371/journal.pone.0249404] [PMID: 33831016]
[129]
Shen H, Zhang Y, Zheng C, Wang B, Chen P. A Cascade Graph Convolutional Network for Predicting Protein–Ligand Binding Affinity. Int J Mol Sci 2021; 22(8): 4023.
[http://dx.doi.org/10.3390/ijms22084023] [PMID: 33919681]
[130]
Bianchi FM, Grattarola D, Livi L, Alippi C. Graph Neural Networks with Convolutional ARMA Filters. IEEE Trans Pattern Anal Mach Intell 2022; 44(7): 3496-507.
[http://dx.doi.org/10.1109/TPAMI.2021.3054830] [PMID: 33497331]
[131]
Feng X, Qu J, Wang T, Wang B, Lyu X, Tang Z. Attention-enhanced Graph Cross-convolution for Protein-Ligand Binding Affinity Prediction 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Houston, TX, USA. 2021; pp. In: IEEE; 1299-302.
[http://dx.doi.org/10.1109/BIBM52615.2021.9669341]
[132]
Xu K, Hu W, Leskovec J, Jegelka S. How Powerful are Graph Neural Networks? 2018.
[http://dx.doi.org/10.48550/ARXIV.1810.00826]
[133]
Guo J. Improving structure-based protein-ligand affinity prediction by graph representation learning and ensemble learning. PLoS One 2024; 19(1): e0296676.
[http://dx.doi.org/10.1371/journal.pone.0296676] [PMID: 38232063]
[134]
Zhang X, et al. “PLANET: A Multi-Objective Graph Neural Network Model for Protein–Ligand Binding Affinity Prediction,” Bioinformatics 2023.
[http://dx.doi.org/10.1101/2023.02.01.526585]
[135]
Bae H, Nam H. GraphATT-DTA: Attention-Based Novel Representation of Interaction to Predict Drug-Target Binding Affinity. Biomedicines 2022; 11(1): 67.
[http://dx.doi.org/10.3390/biomedicines11010067] [PMID: 36672575]
[136]
Wu H, Liu J, Jiang T, et al. AttentionMGT-DTA: A multi-modal drug-target affinity prediction using graph transformer and attention mechanism. Neural Netw 2024; 169: 623-36.
[http://dx.doi.org/10.1016/j.neunet.2023.11.018] [PMID: 37976593]
[137]
Qi H, Yu T, Yu W, Liu C. Drug–target affinity prediction with extended graph learning-convolutional networks. BMC Bioinformatics 2024; 25(1): 75.
[http://dx.doi.org/10.1186/s12859-024-05698-6] [PMID: 38365583]
[138]
Suviriyapaisal N, Wichadakul D. “iEdgeDTA: integrated edge information and 1D graph convolutional neural networks for binding affinity prediction,” Chemistry 2023.
[http://dx.doi.org/10.26434/chemrxiv-2023-qs2w0]
[139]
Zhang S, Jiang M, Wang S, Wang X, Wei Z, Li Z. SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network. Int J Mol Sci 2021; 22(16): 8993.
[http://dx.doi.org/10.3390/ijms22168993] [PMID: 34445696]
[140]
Dalkıran A, Atakan A, Rifaioğlu AS, et al. Transfer learning for drug–target interaction prediction Bioinformatics 2023; 39(1): i103-10.
[http://dx.doi.org/10.1093/bioinformatics/btad234]
[141]
Wang C, Chen Y, Zhang Y, et al. A reinforcement learning approach for protein–ligand binding pose prediction. BMC Bioinformatics 2022; 23(1): 368.
[http://dx.doi.org/10.1186/s12859-022-04912-7] [PMID: 36076158]
[142]
Huang Y, Huang HY, Chen Y, et al. A Robust Drug–Target Interaction Prediction Framework with Capsule Network and Transfer Learning. Int J Mol Sci 2023; 24(18): 14061.
[http://dx.doi.org/10.3390/ijms241814061] [PMID: 37762364]
[143]
Fan FJ, Shi Y. Effects of data quality and quantity on deep learning for protein-ligand binding affinity prediction. Bioorg Med Chem 2022; 72: 117003.
[http://dx.doi.org/10.1016/j.bmc.2022.117003] [PMID: 36103795]
[144]
Zhang S, Jin Y, Liu T, et al. SS-GNN: A Simple-Structured Graph Neural Network for Affinity Prediction. ACS Omega 2023; 8(25): 22496-507.
[http://dx.doi.org/10.1021/acsomega.3c00085] [PMID: 37396234]
[145]
Selvaraju RR, Cogswell M, Das A, et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization 2017 IEEE International Conference on Computer Vision (ICCV). Venice. 2017; pp. In: IEEE; 22-29 October 2017; 618-26.
[http://dx.doi.org/10.1109/ICCV.2017.74]
[146]
Ribeiro MT, Singh S, Guestrin C. Why Should I Trust You?’: Explaining the Predictions of Any Classifier Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco California USA. 2016; pp. In: ACM; 13 August 2016; 1135-44.
[http://dx.doi.org/10.1145/2939672.2939778]
[147]
Lundberg SM, Lee S-I. A Unified Approach to Interpreting Model Predictions.Advances in Neural Information Processing Systems 30. Curran Associates, Inc. 2017; I: pp. 4765-74.https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
[148]
Mody V, Ho J, Wills S, et al. Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents. Commun Biol 2021; 4(1): 93.
[http://dx.doi.org/10.1038/s42003-020-01577-x] [PMID: 33473151]
[149]
Qiao Z, Nie W, Vahdat A, Miller TF III, Anandkumar A. State-specific protein–ligand complex structure prediction with a multiscale deep generative model. Nat Mach Intell 2024; 6(2): 195-208.
[http://dx.doi.org/10.1038/s42256-024-00792-z]
[150]
Shityakov S, Aglikov AS, Skorb EV, Nosonovsky M. Voronoi Entropy as a Ligand Molecular Descriptor of Protein–Ligand Interactions. ACS Omega 2023; 8(48): 46190-6.
[http://dx.doi.org/10.1021/acsomega.3c07328] [PMID: 38075811]
[151]
Lee E, Yoo J, Lee H, et al. MetaDTA: meta-learning-based drug- target binding affinity prediction. MLDD workshop, ICLR 2022.
[152]
Wang Y, Xia Y, Yan J, Yuan Y, Shen HB, Pan X. ZeroBind: a protein-specific zero-shot predictor with subgraph matching for drug-target interactions. Nat Commun 2023; 14(1): 7861.
[http://dx.doi.org/10.1038/s41467-023-43597-1] [PMID: 38030641]

© 2024 Bentham Science Publishers | Privacy Policy