Review Article

基于深度学习的蛋白质-配体结合亲和力预测研究进展:数据集、数据预处理技术和模型架构的综合研究

卷 25, 期 15, 2024

发表于: 24 September, 2024

页: [1041 - 1065] 页: 25

弟呕挨: 10.2174/0113894501330963240905083020

open access plus

Open Access Journals Promotions 2
conference banner
摘要

背景:药物发现是一个复杂而昂贵的过程,涉及几个及时而昂贵的阶段,新的潜在药物化合物必须通过这些阶段才能获得批准。其中一个关键步骤是先导化合物的识别和优化,通过引入包括深度学习(DL)技术在内的计算方法,先导化合物的识别和优化变得更加容易。人们提出了不同的DL模型架构,以了解蛋白质与配体之间相互作用的广阔前景,并预测它们的亲和力,有助于鉴定先导化合物。 目的:本调查通过全面分析最常用的数据集并讨论其质量和局限性,填补了以往研究的空白。它还提供了在蛋白质配体结合亲和力预测(BAP)背景下的最新DL方法的全面分类,为这一不断发展的领域提供了新的视角。 方法:我们彻底检查了常用的BAP数据集及其固有特征。我们的探索扩展到各种预处理步骤和深度学习技术,包括图神经网络,卷积神经网络和变压器,这些都可以在文献中找到。我们进行了广泛的文献研究,以确保在撰写本文时包含最新的BAP深度学习方法。 结果:本研究使用的系统方法强调了通过DL进行BAP的固有挑战,如数据质量、模型可解释性和可解释性,并提出了对未来研究方向的考虑。我们提出了有价值的见解,以加速在研究界开发更有效和可靠的BAP DL模型。 结论:本研究可以大大促进未来预测蛋白质与配体分子亲和力的研究,从而进一步改善整个药物开发过程。

关键词: 深度学习,蛋白质-配体结合亲和力,化合物-蛋白质相互作用,药物发现,药物再利用,DNA序列。

[1]
Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 2004; 3(8): 673-83.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[2]
Mylonas SK, Axenopoulos A, Daras P. DeepSurf: a surface-based deep learning approach for the prediction of ligand binding sites on proteins. Bioinformatics 2021; 37(12): 1681-90.
[http://dx.doi.org/10.1093/bioinformatics/btab009] [PMID: 33471069]
[3]
Wass MN, Kelley LA, Sternberg MJE. 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res 2010; 38(2): W469-73.
[http://dx.doi.org/10.1093/nar/gkq406]
[4]
McNutt AT, Francoeur P, Aggarwal R, et al. GNINA 1.0: molecular docking with deep learning. J Cheminform 2021; 13(1): 43.
[http://dx.doi.org/10.1186/s13321-021-00522-2] [PMID: 34108002]
[5]
Chen L, Tan X, Wang D, et al. TransformerCPI: improving compound–protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments. Bioinformatics 2020; 36(16): 4406-14.
[http://dx.doi.org/10.1093/bioinformatics/btaa524] [PMID: 32428219]
[6]
Lee I, Keum J, Nam H. DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences. PLOS Comput Biol 2019; 15(6): e1007129.
[http://dx.doi.org/10.1371/journal.pcbi.1007129] [PMID: 31199797]
[7]
Zhang Y, Hu Y, Han N, Yang A, Liu X, Cai H. A survey of drug- target interaction and affinity prediction methods via graph neural networks. Comput Biol Med 2023; 163: 107136.
[http://dx.doi.org/10.1016/j.compbiomed.2023.107136] [PMID: 37329615]
[8]
Bagherian M, Sabeti E, Wang K, Sartor MA, Nikolovska-Coleska Z, Najarian K. Machine learning approaches and databases for prediction of drug–target interaction: a survey paper. Brief Bioinform 2021; 22(1): 247-69.
[http://dx.doi.org/10.1093/bib/bbz157] [PMID: 31950972]
[9]
Wang DD, Zhu M, Yan H. Computationally predicting binding affinity in protein–ligand complexes: free energy-based simulations and machine learning-based scoring functions. Brief Bioinform 2021; 22(3): bbaa107.
[http://dx.doi.org/10.1093/bib/bbaa107] [PMID: 32591817]
[10]
Wang Y, Jiao Q, Wang J, Cai X, Zhao W, Cui X. Prediction of protein-ligand binding affinity with deep learning. Comput Struct Biotechnol J 2023; 21: 5796-806.
[http://dx.doi.org/10.1016/j.csbj.2023.11.009]
[11]
Meli R, Morris GM, Biggin PC. Scoring Functions for Protein-Ligand Binding Affinity Prediction Using Structure-based Deep Learning: A Review. Front Bioinform 2022; 2: 885983.
[http://dx.doi.org/10.3389/fbinf.2022.885983] [PMID: 36187180]
[12]
Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol 2011; 162(6): 1239-49.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01127.x] [PMID: 21091654]
[13]
Mullard A. New drugs cost US$2.6 billion to develop. Nat Rev Drug Discov 2014; 13(12): 877-7.
[http://dx.doi.org/10.1038/nrd4507] [PMID: 25435204]
[14]
DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: New estimates of R&D costs. J Health Econ 2016; 47: 20-33.
[http://dx.doi.org/10.1016/j.jhealeco.2016.01.012] [PMID: 26928437]
[15]
Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 2019; 18(1): 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[16]
Dudley JT, Deshpande T, Butte AJ. Exploiting drug-disease relationships for computational drug repositioning. Brief Bioinform 2011; 12(4): 303-11.
[http://dx.doi.org/10.1093/bib/bbr013] [PMID: 21690101]
[17]
Acharya C, Coop A, Polli JE, Mackerell AD Jr. Recent advances in ligand-based drug design: relevance and utility of the conformationally sampled pharmacophore approach. Curr Computeraided Drug Des 2011; 7(1): 10-22.
[http://dx.doi.org/10.2174/157340911793743547] [PMID: 20807187]
[18]
Goodsell DS, Olson AJ. Automated docking of substrates to proteins by simulated annealing. Proteins 1990; 8(3): 195-202.
[http://dx.doi.org/10.1002/prot.340080302] [PMID: 2281083]
[19]
Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking 1 1Edited by F. E. Cohen J Mol Biol 1997; 267(3): 727-48.
[http://dx.doi.org/10.1006/jmbi.1996.0897]
[20]
Chen B, Butte AJ. Leveraging big data to transform target selection and drug discovery. Clin Pharmacol Ther 2016; 99(3): 285-97.
[http://dx.doi.org/10.1002/cpt.318] [PMID: 26659699]
[21]
Huang H, Shukla H, Wu C, Saxena S. Challenges and solutions in proteomics. Curr Genomics 2007; 8(1): 21-8.
[http://dx.doi.org/10.2174/138920207780076910] [PMID: 18645629]
[22]
Lim S, Lu Y, Cho CY, et al. A review on compound-protein interaction prediction methods: Data, format, representation and model. Comput Struct Biotechnol J 2021; 19: 1541-56.
[http://dx.doi.org/10.1016/j.csbj.2021.03.004] [PMID: 33841755]
[23]
Bateman A, Martin M-J, Orchard S, et al. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 2021; 49(D1): D480-9.
[http://dx.doi.org/10.1093/nar/gkaa1100] [PMID: 33237286]
[24]
Berman HM, Westbrook J, Feng Z, et al. The Protein Data Bank. Nucleic Acids Res 2000; 28(1): 235-42.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[25]
Wishart DS, Knox C, Guo AC, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 2006; 34: D668-72.
[http://dx.doi.org/10.1093/nar/gkj067]
[26]
Gaulton A, Hersey A, Nowotka M, et al. The ChEMBL database in 2017. Nucleic Acids Res 2017; 45(D1): D945-54.
[http://dx.doi.org/10.1093/nar/gkw1074] [PMID: 27899562]
[27]
Wang R, Fang X, Lu Y, Wang S. The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. J Med Chem 2004; 47(12): 2977-80.
[http://dx.doi.org/10.1021/jm030580l] [PMID: 15163179]
[28]
Davis MI, Hunt JP, Herrgard S, et al. Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol 2011; 29(11): 1046-51.
[http://dx.doi.org/10.1038/nbt.1990] [PMID: 22037378]
[29]
Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 2007; 35(1): D198-201.
[http://dx.doi.org/10.1093/nar/gkl999]
[30]
Tang J, Szwajda A, Shakyawar S, et al. Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis. J Chem Inf Model 2014; 54(3): 735-43.
[http://dx.doi.org/10.1021/ci400709d] [PMID: 24521231]
[31]
Li Y, Han L, Liu Z, Wang R. Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results. J Chem Inf Model 2014; 54(6): 1717-36.
[http://dx.doi.org/10.1021/ci500081m] [PMID: 24708446]
[32]
Su M, Yang Q, Du Y, et al. Comparative Assessment of Scoring Functions: The CASF-2016 Update. J Chem Inf Model 2019; 59(2): 895-913.
[http://dx.doi.org/10.1021/acs.jcim.8b00545] [PMID: 30481020]
[33]
Liu H, Su M, Lin HX, Wang R, Li Y. Public Data Set of Protein–Ligand Dissociation Kinetic Constants for Quantitative Structure–Kinetics Relationship Studies. ACS Omega 2022; 7(22): 18985-96.
[http://dx.doi.org/10.1021/acsomega.2c02156] [PMID: 35694511]
[34]
Liu Z, Li Y, Han L, et al. PDB-wide collection of binding data: current status of the PDBbind database. Bioinformatics 2015; 31(3): 405-12.
[http://dx.doi.org/10.1093/bioinformatics/btu626] [PMID: 25301850]
[35]
Metz JT, Johnson EF, Soni NB, Merta PJ, Kifle L, Hajduk PJ. Navigating the kinome. Nat Chem Biol 2011; 7(4): 200-2.
[http://dx.doi.org/10.1038/nchembio.530] [PMID: 21336281]
[36]
Anastassiadis T, Deacon SW, Devarajan K, Ma H, Peterson JR. Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat Biotechnol 2011; 29(11): 1039-45.
[http://dx.doi.org/10.1038/nbt.2017] [PMID: 22037377]
[37]
Wei B, Zhang Y, Gong X. DeepLPI: a novel deep learning-based model for protein–ligand interaction prediction for drug repurposing. Sci Rep 2022; 12(1): 18200.
[http://dx.doi.org/10.1038/s41598-022-23014-1] [PMID: 36307509]
[38]
Kundu I, Paul G, Banerjee R. A machine learning approach towards the prediction of protein–ligand binding affinity based on fundamental molecular properties. RSC Advances 2018; 8(22): 12127-37.
[http://dx.doi.org/10.1039/C8RA00003D] [PMID: 35539386]
[39]
Öztürk H, Özgür A, Ozkirimli E. DeepDTA: deep drug– target binding affinity prediction. Bioinformatics 2018; 34(17): i821-9.
[http://dx.doi.org/10.1093/bioinformatics/bty593] [PMID: 30423097]
[40]
Mukherjee S, Ghosh M, Basuchowdhuri P. Deep Graph Convolutional Network and LSTM based approach for predicting drug-target binding affinity 2022.
[http://dx.doi.org/10.1137/1.9781611977172.82]
[41]
Abbasi K, Razzaghi P, Poso A, Amanlou M, Ghasemi JB, Masoudi-Nejad A. DeepCDA: deep cross-domain compound–protein affinity prediction through LSTM and convolutional neural networks. Bioinformatics 2020; 36(17): 4633-42.
[http://dx.doi.org/10.1093/bioinformatics/btaa544] [PMID: 32462178]
[42]
Wang J, Wen N, Wang C, Zhao L, Cheng L. ELECTRA-DTA: a new compound-protein binding affinity prediction model based on the contextualized sequence encoding. J Cheminform 2022; 14(1): 14.
[http://dx.doi.org/10.1186/s13321-022-00591-x] [PMID: 35292100]
[43]
Yang Z, Zhong W, Zhao L, Chen CYC. ML-DTI: Mutual Learning Mechanism for Interpretable Drug–Target Interaction Prediction. J Phys Chem Lett 2021; 12(17): 4247-61.
[http://dx.doi.org/10.1021/acs.jpclett.1c00867] [PMID: 33904745]
[44]
Hu F, Jiang J, Wang D, Zhu M, Yin P. Multi-PLI: interpretable multi-task deep learning model for unifying protein–ligand interaction datasets. J Cheminform 2021; 13(1): 30.
[http://dx.doi.org/10.1186/s13321-021-00510-6] [PMID: 33858485]
[45]
Nguyen T, Le H, Quinn TP, Nguyen T, Le TD, Venkatesh S. GraphDTA: predicting drug–target binding affinity with graph neural networks. Bioinformatics 2021; 37(8): 1140-7.
[http://dx.doi.org/10.1093/bioinformatics/btaa921] [PMID: 33119053]
[46]
Öztürk H, Ozkirimli E, Özgür A. WideDTA: prediction of drug-target binding affinity 2019.
[http://dx.doi.org/10.48550/ARXIV.1902.04166]
[47]
Aly Abdelkader G, Ngnamsie Njimbouom S, Oh TJ, Kim JD. ResBiGAAT: Residual Bi-GRU with attention for protein-ligand binding affinity prediction. Comput Biol Chem 2023; 107: 107969.
[http://dx.doi.org/10.1016/j.compbiolchem.2023.107969] [PMID: 37866117]
[48]
Zhu Z, Yao Z, Zheng X, et al. Drug–target affinity prediction method based on multi-scale information interaction and graph optimization. Comput Biol Med 2023; 167: 107621.
[http://dx.doi.org/10.1016/j.compbiomed.2023.107621] [PMID: 37907030]
[49]
Fang K, Zhang Y, Du S, He J. ColdDTA: Utilizing data augmentation and attention-based feature fusion for drug-target binding affinity prediction. Comput Biol Med 2023; 164: 107372.
[http://dx.doi.org/10.1016/j.compbiomed.2023.107372] [PMID: 37597410]
[50]
Chen Y, Zhu Y, Zhang Z, Wang J, Wang C. Prediction of drug protein interactions based on variable scale characteristic pyramid convolution network. Methods 2023; 211: 42-7.
[http://dx.doi.org/10.1016/j.ymeth.2023.02.007] [PMID: 36804213]
[51]
Jin Z, Wu T, Chen T, et al. CAPLA: improved prediction of protein–ligand binding affinity by a deep learning approach based on a cross-attention mechanism. Bioinformatics 2023; 39(2): btad049.
[http://dx.doi.org/10.1093/bioinformatics/btad049] [PMID: 36688724]
[52]
Zhang L, Ouyang C, Liu Y, Liao Y, Gao Z. Multimodal contrastive representation learning for drug-target binding affinity prediction. Methods 2023; 220: 126-33.
[http://dx.doi.org/10.1016/j.ymeth.2023.11.005] [PMID: 37952703]
[53]
Mokaya M, Imrie F, Van Hoorn WP, Kalisz A, Bradley AR, Deane CM. “Testing the Limits of SMILES-based De Novo Molecular Generation with Curriculum and Deep Reinforcement Learning,” Bioinformatics 2022.
[http://dx.doi.org/10.1101/2022.07.15.500218]
[54]
Wang L, You ZH, Chen X, Yan X, Liu G, Zhang W. RFDT: A Rotation Forest-based Predictor for Predicting Drug-Target Interactions Using Drug Structure and Protein Sequence Information. Curr Protein Pept Sci 2018; 19(5): 445-54.
[http://dx.doi.org/10.2174/1389203718666161114111656] [PMID: 27842479]
[55]
Fernández-de Gortari E, García-Jacas CR, Martinez-Mayorga K, Medina-Franco JL. Database fingerprint (DFP): an approach to represent molecular databases. J Cheminform 2017; 9(1): 9.
[http://dx.doi.org/10.1186/s13321-017-0195-1] [PMID: 28224019]
[56]
Wang K, Zhou R, Tang J, Li M. GraphscoreDTA: optimized graph neural network for protein–ligand binding affinity prediction. Bioinformatics 2023; 39(6): btad340.
[http://dx.doi.org/10.1093/bioinformatics/btad340] [PMID: 37225408]
[57]
Jiang M, Li Z, Zhang S, et al. Drug–target affinity prediction using graph neural network and contact maps. RSC Advances 2020; 10(35): 20701-12.
[http://dx.doi.org/10.1039/D0RA02297G] [PMID: 35517730]
[58]
Stepniewska-Dziubinska MM, Zielenkiewicz P, Siedlecki P. Development and evaluation of a deep learning model for protein–ligand binding affinity prediction. Bioinformatics 2018; 34(21): 3666-74.
[http://dx.doi.org/10.1093/bioinformatics/bty374] [PMID: 29757353]
[59]
Kabsch W, Sander C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983; 22(12): 2577-637.
[http://dx.doi.org/10.1002/bip.360221211] [PMID: 6667333]
[60]
Lim J, Ryu S, Park K, Choe YJ, Ham J, Kim WY. Predicting Drug–Target Interaction Using a Novel Graph Neural Network with 3D Structure-Embedded Graph Representation. J Chem Inf Model 2019; 59(9): 3981-8.
[http://dx.doi.org/10.1021/acs.jcim.9b00387] [PMID: 31443612]
[61]
Liao J, Chen H, Wei L, Wei L. GSAML-DTA: An interpretable drug-target binding affinity prediction model based on graph neural networks with self-attention mechanism and mutual information. Comput Biol Med 2022; 150: 106145.
[http://dx.doi.org/10.1016/j.compbiomed.2022.106145] [PMID: 37859276]
[62]
Fu H, Niu Z, Zhang C, Ma J, Chen J. Visual Cortex Inspired CNN Model for Feature Construction in Text Analysis. Front Comput Neurosci 2016; 10: 64.
[http://dx.doi.org/10.3389/fncom.2016.00064] [PMID: 27471460]
[63]
He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition 2015.
[http://dx.doi.org/10.48550/ARXIV.1512.03385]
[64]
Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM 2017; 60(6): 84-90.
[http://dx.doi.org/10.1145/3065386]
[65]
Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition 2014.
[http://dx.doi.org/10.48550/ARXIV.1409.1556]
[66]
Szegedy C, et al. Going Deeper with Convolutions 2014.
[http://dx.doi.org/10.48550/ARXIV.1409.4842]
[67]
Pahikkala T, Airola A, Pietilä S, et al. Toward more realistic drug- target interaction predictions. Brief Bioinform 2015; 16(2): 325-37.
[http://dx.doi.org/10.1093/bib/bbu010] [PMID: 24723570]
[68]
He T, Heidemeyer M, Ban F, Cherkasov A, Ester M. SimBoost: a read-across approach for predicting drug–target binding affinities using gradient boosting machines. J Cheminform 2017; 9(1): 24.
[http://dx.doi.org/10.1186/s13321-017-0209-z] [PMID: 29086119]
[69]
Zhao Q, Xiao F, Yang M, Li Y, Wang J. AttentionDTA: prediction of drug–target binding affinity using attention model 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). San Diego, CA, USA. 2019; pp. In: IEEE; 64-9.
[http://dx.doi.org/10.1109/BIBM47256.2019.8983125]
[70]
Wang K, Zhou R, Li Y, Li M. DeepDTAF: a deep learning method to predict protein–ligand binding affinity. Brief Bioinform 2021; 22(5): bbab072.
[http://dx.doi.org/10.1093/bib/bbab072] [PMID: 33834190]
[71]
Majumdar S, Nandi SK, Ghosal S, et al. Deep Learning-Based Potential Ligand Prediction Framework for COVID-19 with Drug- Target Interaction Model. Cognit Comput 2021; (Feb): 1-13.
[http://dx.doi.org/10.1007/s12559-021-09840-x] [PMID: 33552306]
[72]
Du X, Li Y, Xia YL, et al. Insights into Protein–Ligand Interactions: Mechanisms, Models, and Methods. Int J Mol Sci 2016; 17(2): 144.
[http://dx.doi.org/10.3390/ijms17020144] [PMID: 26821017]
[73]
Zheng L, Fan J, Mu Y. OnionNet: a Multiple-Layer Intermolecular-Contact-Based Convolutional Neural Network for Protein–Ligand Binding Affinity Prediction. ACS Omega 2019; 4(14): 15956-65.
[http://dx.doi.org/10.1021/acsomega.9b01997] [PMID: 31592466]
[74]
Shim J, Hong ZY, Sohn I, Hwang C. Prediction of drug–target binding affinity using similarity-based convolutional neural network. Sci Rep 2021; 11(1): 4416.
[http://dx.doi.org/10.1038/s41598-021-83679-y] [PMID: 33627791]
[75]
Rifaioglu AS, Cetin Atalay R, Cansen Kahraman D, Doğan T, Martin M, Atalay V. MDeePred: novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery. Bioinformatics 2021; 37(5): 693-704.
[http://dx.doi.org/10.1093/bioinformatics/btaa858] [PMID: 33067636]
[76]
de Souza JG, Fernandes MAC, de Melo Barbosa R. A Novel Deep Neural Network Technique for Drug–Target Interaction. Pharmaceutics 2022; 14(3): 625.
[http://dx.doi.org/10.3390/pharmaceutics14030625] [PMID: 35336000]
[77]
Melsted P, Pritchard JK. Efficient counting of k-mers in DNA sequences using a bloom filter. BMC Bioinformatics 2011; 12(1): 333.
[http://dx.doi.org/10.1186/1471-2105-12-333] [PMID: 21831268]
[78]
Rizk G, Lavenier D, Chikhi R. DSK: k -mer counting with very low memory usage. Bioinformatics 2013; 29(5): 652-3.
[http://dx.doi.org/10.1093/bioinformatics/btt020] [PMID: 23325618]
[79]
Kiranyaz S, Avci O, Abdeljaber O, Ince T, Gabbouj M, Inman DJ. 1D convolutional neural networks and applications: A survey. Mech Syst Signal Process 2021; 151: 107398.
[http://dx.doi.org/10.1016/j.ymssp.2020.107398]
[80]
Alzubaidi L, Zhang J, Humaidi AJ, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data 2021; 8(1): 53.
[http://dx.doi.org/10.1186/s40537-021-00444-8] [PMID: 33816053]
[81]
Wang R, Lai L, Wang S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des 2002; 16(1): 11-26.
[http://dx.doi.org/10.1023/A:1016357811882] [PMID: 12197663]
[82]
Hartshorn MJ, Verdonk ML, Chessari G, et al. Diverse, high-quality test set for the validation of protein-ligand docking performance. J Med Chem 2007; 50(4): 726-41.
[http://dx.doi.org/10.1021/jm061277y] [PMID: 17300160]
[83]
Jiménez J, Škalič M, Martínez-Rosell G, De Fabritiis G. KDEEP : Protein–Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks. J Chem Inf Model 2018; 58(2): 287-96.
[http://dx.doi.org/10.1021/acs.jcim.7b00650] [PMID: 29309725]
[84]
Wang Y, Wei Z, Xi L. Sfcnn: a novel scoring function based on 3D convolutional neural network for accurate and stable protein–ligand affinity prediction. BMC Bioinformatics 2022; 23(1): 222.
[http://dx.doi.org/10.1186/s12859-022-04762-3] [PMID: 35676617]
[85]
Li Y, Rezaei MA, Li C, Li X. DeepAtom: A Framework for Protein-Ligand Binding Affinity Prediction. 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). San Diego, CA, USA. 2019; pp. In: IEEE; 303-10.
[http://dx.doi.org/10.1109/BIBM47256.2019.8982964]
[86]
Kwon Y, Shin WH, Ko J, Lee J. AK-Score: Accurate Protein-Ligand Binding Affinity Prediction Using an Ensemble of 3D-Convolutional Neural Networks. Int J Mol Sci 2020; 21(22): 8424.
[http://dx.doi.org/10.3390/ijms21228424] [PMID: 33182567]
[87]
Volkov M, Turk JA, Drizard N, et al. On the Frustration to Predict Binding Affinities from Protein–Ligand Structures with Deep Neural Networks. J Med Chem 2022; 65(11): 7946-58.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00487] [PMID: 35608179]
[88]
Yang J, Shen C, Huang N. Predicting or Pretending: Artificial Intelligence for Protein-Ligand Interactions Lack of Sufficiently Large and Unbiased Datasets. Front Pharmacol 2020; 11: 69.
[http://dx.doi.org/10.3389/fphar.2020.00069] [PMID: 32161539]
[89]
Chen L, Cruz A, Ramsey S, et al. Hidden bias in the DUD-E dataset leads to misleading performance of deep learning in structure-based virtual screening. PLoS One 2019; 14(8): e0220113.
[http://dx.doi.org/10.1371/journal.pone.0220113] [PMID: 31430292]
[90]
Liu Q, Wang PS, Zhu C, et al. OctSurf: Efficient hierarchical voxel-based molecular surface representation for protein-ligand affinity prediction. J Mol Graph Model 2021; 105: 107865.
[http://dx.doi.org/10.1016/j.jmgm.2021.107865] [PMID: 33640787]
[91]
Zhao Q, Zhao H, Zheng K, Wang J. HyperAttentionDTI: improving drug–protein interaction prediction by sequence-based deep learning with attention mechanism. Bioinformatics 2022; 38(3): 655-62.
[http://dx.doi.org/10.1093/bioinformatics/btab715] [PMID: 34664614]
[92]
Zhu X, Liu J, Zhang J, Yang Z, Yang F, Zhang X. FingerDTA: A Fingerprint-Embedding Framework for Drug-Target Binding Affinity Prediction. Big Data Mining and Analytics 2023; 6(1): 1-10.
[http://dx.doi.org/10.26599/BDMA.2022.9020005]
[93]
Wang S, Liu D, Ding M, et al. SE-OnionNet: A Convolution Neural Network for Protein–Ligand Binding Affinity Prediction. Front Genet 2021; 11: 607824.
[http://dx.doi.org/10.3389/fgene.2020.607824] [PMID: 33737946]
[94]
Schmidt RM. Recurrent Neural Networks (RNNs): A gentle Introduction and Overview 2019.
[http://dx.doi.org/10.48550/ARXIV.1912.05911]
[95]
Shen Z, Zhang Q, Han K, Huang DS. A Deep Learning Model for RNA-Protein Binding Preference Prediction Based on Hierarchical LSTM and Attention Network IEEE/ACM Transactions on Computational Biology and Bioinformatics. Washington, DC, United States.: IEEE Computer Society Press 2020; pp. 1-1.
[http://dx.doi.org/10.1109/TCBB.2020.3007544]
[96]
Jisna VA, Jayaraj PB. Protein Structure Prediction: Conventional and Deep Learning Perspectives. Protein J 2021; 40(4): 522-44.
[http://dx.doi.org/10.1007/s10930-021-10003-y] [PMID: 34050498]
[97]
Panda B, Majhi B. A novel improved prediction of protein structural class using deep recurrent neural network. Evol Intell 2021; 14(2): 253-60.
[http://dx.doi.org/10.1007/s12065-018-0171-3]
[98]
Wang L, Zhong X, Wang S, Zhang H, Liu Y. A novel end-to-end method to predict RNA secondary structure profile based on bidirectional LSTM and residual neural network. BMC Bioinformatics 2021; 22(1): 169.
[http://dx.doi.org/10.1186/s12859-021-04102-x] [PMID: 33789581]
[99]
Zhai H, Hou H, Luo J, Liu X, Wu Z, Wang J. DGDTA: dynamic graph attention network for predicting drug–target binding affinity. BMC Bioinformatics 2023; 24(1): 367.
[http://dx.doi.org/10.1186/s12859-023-05497-5] [PMID: 37777712]
[100]
Wang X, Liu J, Zhang C, Wang S. SSGraphCPI: A Novel Model for Predicting Compound-Protein Interactions Based on Deep Learning. Int J Mol Sci 2022; 23(7): 3780.
[http://dx.doi.org/10.3390/ijms23073780] [PMID: 35409140]
[101]
Zhijian L, Shaohua J, Yigao L, Min G. GDGRU-DTA: Predicting Drug-Target Binding Affinity Based on GNN and Double GRU 2022.
[http://dx.doi.org/10.5121/csit.2022.120703]
[102]
Vaswani A, et al. Attention Is All You Need 2017.
[http://dx.doi.org/10.48550/ARXIV.1706.03762]
[103]
Li H, Zhao D, Zeng J. KPGT: Knowledge-Guided Pre-training of Graph Transformer for Molecular Property Prediction Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. In: ACM; 14 August; Washington DC USA: 2022; pp. 857-67.
[http://dx.doi.org/10.1145/3534678.3539426]
[104]
Wang S, Guo Y, Wang Y, Sun H, Huang J. SMILES-BERT: Large Scale Unsupervised Pre-Training for Molecular Property Prediction Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. Niagara Falls NY USA. 2019; pp. In: ACM; 04 September; 429-36.
[http://dx.doi.org/10.1145/3307339.3342186]
[105]
Zhang X, Guo H, Zhang F, et al. HNetGO: protein function prediction via heterogeneous network transformer. Brief Bioinform 2023; 24(6): bbab556.
[http://dx.doi.org/10.1093/bib/bbab556] [PMID: 37861172]
[106]
Ji Y, Zhou Z, Liu H, Davuluri RV. DNABERT: pre-trained Bidirectional Encoder Representations from Transformers model for DNA-language in genome. Bioinformatics 2021; 37(15): 2112-20.
[http://dx.doi.org/10.1093/bioinformatics/btab083] [PMID: 33538820]
[107]
Le NQK, Ho QT, Nguyen TTD, Ou YY. A transformer architecture based on BERT and 2D convolutional neural network to identify DNA enhancers from sequence information. Brief Bioinform 2021; 22(5): bbab005.
[http://dx.doi.org/10.1093/bib/bbab005] [PMID: 33539511]
[108]
Zhang L, Qin X, Liu M, Liu G, Ren Y. BERT-m7G: A Transformer Architecture Based on BERT and Stacking Ensemble to Identify RNA N7-Methylguanosine Sites from Sequence Information. Comput Math Methods Med 2021; 2021: 1-10.
[http://dx.doi.org/10.1155/2021/7764764] [PMID: 34484416]
[109]
Baid G, Cook DE, Shafin K, et al. DeepConsensus improves the accuracy of sequences with a gap-aware sequence transformer. Nat Biotechnol 2022; (Sep):
[http://dx.doi.org/10.1038/s41587-022-01435-7] [PMID: 36050551]
[110]
Clauwaert J, Menschaert G, Waegeman W. Explainability in transformer models for functional genomics. Brief Bioinform 2021; 22(5): bbab060.
[http://dx.doi.org/10.1093/bib/bbab060] [PMID: 33834200]
[111]
Raad J, Bugnon LA, Milone DH, Stegmayer G. miRe2e: a full end-to-end deep model based on transformers for prediction of pre-miRNAs. Bioinformatics 2022; 38(5): 1191-7.
[http://dx.doi.org/10.1093/bioinformatics/btab823] [PMID: 34875006]
[112]
Hu F, Hu Y, Zhang J, Wang D, Yin P. Structure Enhanced Protein-Drug Interaction Prediction using Transformer and Graph Embedding 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). In: IEEE; Seoul, Korea. 2020; pp. 16-19 December; 1010-4.
[http://dx.doi.org/10.1109/BIBM49941.2020.9313456]
[113]
Saadat M, Behjati A, Zare-Mirakabad F, Gharaghani S. “Drug-Target Binding Affinity Prediction Using Transformers,” Bioinformatics 2021.
[http://dx.doi.org/10.1101/2021.09.30.462610]
[114]
Alley EC, Khimulya G, Biswas S, AlQuraishi M, Church GM. Unified rational protein engineering with sequence-based deep representation learning. Nat Methods 2019; 16(12): 1315-22.
[http://dx.doi.org/10.1038/s41592-019-0598-1] [PMID: 31636460]
[115]
Elnaggar A, et al. CodeTrans: Towards Cracking the Language of Silicon’s Code Through Self-Supervised Deep Learning and High Performance Computing 2021.
[http://dx.doi.org/10.48550/ARXIV.2104.02443]
[116]
Liu Y, et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach 2019.
[http://dx.doi.org/10.48550/ARXIV.1907.11692]
[117]
Monteiro NRC, Oliveira JL, Arrais JP. DTITR: End-to-end drug–target binding affinity prediction with transformers. Comput Biol Med 2022; 147: 105772.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105772] [PMID: 35777085]
[118]
Rose T, Monti N, Anand N, Shen T. “PLAPT: Protein-Ligand Binding Affinity Prediction Using Pretrained Transformers,” Bioinformatics 2024.
[http://dx.doi.org/10.1101/2024.02.08.575577]
[119]
Elnaggar A, et al. ProtTrans: Towards Cracking the Language of Life’s Code Through Self-Supervised Deep Learning and High Performance Computing 2020.
[http://dx.doi.org/10.48550/ARXIV.2007.06225]
[120]
Chithrananda S, Grand G, Ramsundar B. ChemBERTa: Large-Scale Self-Supervised Pretraining for Molecular Property Prediction 2020.
[http://dx.doi.org/10.48550/ARXIV.2010.09885]
[121]
Gori M, Monfardini G, Scarselli F. A new model for learning in graph domains 2005 IEEE International Joint Conference on Neural Networks. 31 July 2005; Montreal, Que., Canada. 2005; pp. In: IEEE; 729-34.
[http://dx.doi.org/10.1109/IJCNN.2005.1555942]
[122]
Lin X. DeepGS: Deep Representation Learning of Graphs and Sequences for Drug-Target Binding Affinity Prediction 2020.
[http://dx.doi.org/10.48550/ARXIV.2003.13902]
[123]
Jin Y, Lu J, Shi R, Yang Y. EmbedDTI: Enhancing the Molecular Representations via Sequence Embedding and Graph Convolutional Network for the Prediction of Drug-Target Interaction. Biomolecules 2021; 11(12): 1783.
[http://dx.doi.org/10.3390/biom11121783] [PMID: 34944427]
[124]
Wang P, et al. “X-DPI: A structure-aware multi-modal deep learning model for drug-protein interactions prediction,” Bioinformatics 2021.
[http://dx.doi.org/10.1101/2021.06.17.448780]
[125]
Jiang M, Wang S, Zhang S, Zhou W, Zhang Y, Li Z. Sequence-based drug-target affinity prediction using weighted graph neural networks. BMC Genomics 2022; 23(1): 449.
[http://dx.doi.org/10.1186/s12864-022-08648-9] [PMID: 35715739]
[126]
Pandey M, Radaeva M, Mslati H, et al. Ligand Binding Prediction Using Protein Structure Graphs and Residual Graph Attention Networks. Molecules 2022; 27(16): 5114.
[http://dx.doi.org/10.3390/molecules27165114] [PMID: 36014351]
[127]
Kipf TN, Welling M. Semi-Supervised Classification with Graph Convolutional Networks 2016.
[http://dx.doi.org/10.48550/ARXIV.1609.02907]
[128]
Son J, Kim D. Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities. PLoS One 2021; 16(4): e0249404.
[http://dx.doi.org/10.1371/journal.pone.0249404] [PMID: 33831016]
[129]
Shen H, Zhang Y, Zheng C, Wang B, Chen P. A Cascade Graph Convolutional Network for Predicting Protein–Ligand Binding Affinity. Int J Mol Sci 2021; 22(8): 4023.
[http://dx.doi.org/10.3390/ijms22084023] [PMID: 33919681]
[130]
Bianchi FM, Grattarola D, Livi L, Alippi C. Graph Neural Networks with Convolutional ARMA Filters. IEEE Trans Pattern Anal Mach Intell 2022; 44(7): 3496-507.
[http://dx.doi.org/10.1109/TPAMI.2021.3054830] [PMID: 33497331]
[131]
Feng X, Qu J, Wang T, Wang B, Lyu X, Tang Z. Attention-enhanced Graph Cross-convolution for Protein-Ligand Binding Affinity Prediction 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Houston, TX, USA. 2021; pp. In: IEEE; 1299-302.
[http://dx.doi.org/10.1109/BIBM52615.2021.9669341]
[132]
Xu K, Hu W, Leskovec J, Jegelka S. How Powerful are Graph Neural Networks? 2018.
[http://dx.doi.org/10.48550/ARXIV.1810.00826]
[133]
Guo J. Improving structure-based protein-ligand affinity prediction by graph representation learning and ensemble learning. PLoS One 2024; 19(1): e0296676.
[http://dx.doi.org/10.1371/journal.pone.0296676] [PMID: 38232063]
[134]
Zhang X, et al. “PLANET: A Multi-Objective Graph Neural Network Model for Protein–Ligand Binding Affinity Prediction,” Bioinformatics 2023.
[http://dx.doi.org/10.1101/2023.02.01.526585]
[135]
Bae H, Nam H. GraphATT-DTA: Attention-Based Novel Representation of Interaction to Predict Drug-Target Binding Affinity. Biomedicines 2022; 11(1): 67.
[http://dx.doi.org/10.3390/biomedicines11010067] [PMID: 36672575]
[136]
Wu H, Liu J, Jiang T, et al. AttentionMGT-DTA: A multi-modal drug-target affinity prediction using graph transformer and attention mechanism. Neural Netw 2024; 169: 623-36.
[http://dx.doi.org/10.1016/j.neunet.2023.11.018] [PMID: 37976593]
[137]
Qi H, Yu T, Yu W, Liu C. Drug–target affinity prediction with extended graph learning-convolutional networks. BMC Bioinformatics 2024; 25(1): 75.
[http://dx.doi.org/10.1186/s12859-024-05698-6] [PMID: 38365583]
[138]
Suviriyapaisal N, Wichadakul D. “iEdgeDTA: integrated edge information and 1D graph convolutional neural networks for binding affinity prediction,” Chemistry 2023.
[http://dx.doi.org/10.26434/chemrxiv-2023-qs2w0]
[139]
Zhang S, Jiang M, Wang S, Wang X, Wei Z, Li Z. SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network. Int J Mol Sci 2021; 22(16): 8993.
[http://dx.doi.org/10.3390/ijms22168993] [PMID: 34445696]
[140]
Dalkıran A, Atakan A, Rifaioğlu AS, et al. Transfer learning for drug–target interaction prediction Bioinformatics 2023; 39(1): i103-10.
[http://dx.doi.org/10.1093/bioinformatics/btad234]
[141]
Wang C, Chen Y, Zhang Y, et al. A reinforcement learning approach for protein–ligand binding pose prediction. BMC Bioinformatics 2022; 23(1): 368.
[http://dx.doi.org/10.1186/s12859-022-04912-7] [PMID: 36076158]
[142]
Huang Y, Huang HY, Chen Y, et al. A Robust Drug–Target Interaction Prediction Framework with Capsule Network and Transfer Learning. Int J Mol Sci 2023; 24(18): 14061.
[http://dx.doi.org/10.3390/ijms241814061] [PMID: 37762364]
[143]
Fan FJ, Shi Y. Effects of data quality and quantity on deep learning for protein-ligand binding affinity prediction. Bioorg Med Chem 2022; 72: 117003.
[http://dx.doi.org/10.1016/j.bmc.2022.117003] [PMID: 36103795]
[144]
Zhang S, Jin Y, Liu T, et al. SS-GNN: A Simple-Structured Graph Neural Network for Affinity Prediction. ACS Omega 2023; 8(25): 22496-507.
[http://dx.doi.org/10.1021/acsomega.3c00085] [PMID: 37396234]
[145]
Selvaraju RR, Cogswell M, Das A, et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization 2017 IEEE International Conference on Computer Vision (ICCV). Venice. 2017; pp. In: IEEE; 22-29 October 2017; 618-26.
[http://dx.doi.org/10.1109/ICCV.2017.74]
[146]
Ribeiro MT, Singh S, Guestrin C. Why Should I Trust You?’: Explaining the Predictions of Any Classifier Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco California USA. 2016; pp. In: ACM; 13 August 2016; 1135-44.
[http://dx.doi.org/10.1145/2939672.2939778]
[147]
Lundberg SM, Lee S-I. A Unified Approach to Interpreting Model Predictions.Advances in Neural Information Processing Systems 30. Curran Associates, Inc. 2017; I: pp. 4765-74.https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
[148]
Mody V, Ho J, Wills S, et al. Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents. Commun Biol 2021; 4(1): 93.
[http://dx.doi.org/10.1038/s42003-020-01577-x] [PMID: 33473151]
[149]
Qiao Z, Nie W, Vahdat A, Miller TF III, Anandkumar A. State-specific protein–ligand complex structure prediction with a multiscale deep generative model. Nat Mach Intell 2024; 6(2): 195-208.
[http://dx.doi.org/10.1038/s42256-024-00792-z]
[150]
Shityakov S, Aglikov AS, Skorb EV, Nosonovsky M. Voronoi Entropy as a Ligand Molecular Descriptor of Protein–Ligand Interactions. ACS Omega 2023; 8(48): 46190-6.
[http://dx.doi.org/10.1021/acsomega.3c07328] [PMID: 38075811]
[151]
Lee E, Yoo J, Lee H, et al. MetaDTA: meta-learning-based drug- target binding affinity prediction. MLDD workshop, ICLR 2022.
[152]
Wang Y, Xia Y, Yan J, Yuan Y, Shen HB, Pan X. ZeroBind: a protein-specific zero-shot predictor with subgraph matching for drug-target interactions. Nat Commun 2023; 14(1): 7861.
[http://dx.doi.org/10.1038/s41467-023-43597-1] [PMID: 38030641]

© 2024 Bentham Science Publishers | Privacy Policy