Review Article

Therapeutic Correlation of TLR-4 Mediated NF-κB Inflammatory Pathways in Ischemic Injuries

Author(s): Veerta Sharma, Prateek Sharma and Thakur Gurjeet Singh*

Volume 25, Issue 15, 2024

Published on: 13 September, 2024

Page: [1027 - 1040] Pages: 14

DOI: 10.2174/0113894501322228240830063605

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Ischemia-reperfusion (I/R) injury refers to the tissue damage that happens when blood flow returns to tissue after a period of ischemia. I/R injuries are implicated in a large array of pathological conditions, such as cerebral, myocardial, renal, intestinal, retinal and hepatic ischemia. The hallmark of these pathologies is excessive inflammation. Toll-like receptors (TLRs) are recognized as significant contributors to inflammation caused by pathogens and, more recently, inflammation caused by injury. TLR-4 activation initiates a series of events that results in activation of nuclear factor kappa-B (NF-κB), which stimulates the production of pro-inflammatory cytokines and chemokines, exacerbating tissue injury. Therefore, through a comprehensive review of current research and experimentation, this investigation elucidates the TLRs signalling pathway and the role of TLR-4/NF-κB in the pathophysiology of I/R injuries. Furthermore, this review highlights the various pharmacological agents (TLR-4/NF-κB inhibitors) with special emphasis on the various ischemic injuries (cerebral, myocardial, renal, intestinal, retinal and hepatic). Future research should prioritise investigating the specific molecular pathways that cause TLR-4/NF-κBmediated inflammation in ischemic injuries. Additionally, efforts should be made to enhance treatment approaches in order to enhance patient outcomes.

Keywords: Ischemia-reperfusion, toll-like receptors, retinal ischemia, cerebral ischemia, cell survival, intestinal ischemia.

Graphical Abstract
[1]
Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 2012; 298: 229-317.
[http://dx.doi.org/10.1016/B978-0-12-394309-5.00006-7] [PMID: 22878108]
[2]
Liew FY, Xu D, Brint EK, O’Neill LAJ. Negative regulation of Toll-like receptor-mediated immune responses. Nat Rev Immunol 2005; 5(6): 446-58.
[http://dx.doi.org/10.1038/nri1630] [PMID: 15928677]
[3]
Arslan F, Keogh B, McGuirk P, Parker AE. TLR2 and TLR4 in ischemia reperfusion injury. Mediators Inflamm 2010; 2010: 1-8.
[http://dx.doi.org/10.1155/2010/704202] [PMID: 20628516]
[4]
Arroyo DS, Soria JA, Gaviglio EA, Rodriguez-Galan MC, Iribarren P. Toll-like receptors are key players in neurodegeneration. Int Immunopharmacol 2011; 11(10): 1415-21.
[http://dx.doi.org/10.1016/j.intimp.2011.05.006] [PMID: 21616174]
[5]
Calvo-Rodriguez M, García-Rodríguez C, Villalobos C, Núñez L. Role of toll like receptor 4 in Alzheimer’s disease. Front Immunol 2020; 11: 1588.
[http://dx.doi.org/10.3389/fimmu.2020.01588] [PMID: 32983082]
[6]
Okun E, Griffioen KJ, Mattson MP. Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci 2011; 34(5): 269-81.
[http://dx.doi.org/10.1016/j.tins.2011.02.005] [PMID: 21419501]
[7]
Cui W, Sun C, Ma Y, Wang S, Wang X, Zhang Y. Inhibition of TLR4 induces M2 microglial polarization and provides neuroprotection via the NLRP3 inflammasome in Alzheimer’s disease. Front Neurosci 2020; 14: 444.
[http://dx.doi.org/10.3389/fnins.2020.00444] [PMID: 32508567]
[8]
Bsibsi M, Ravid R, Gveric D, van Noort JM. Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 2002; 61(11): 1013-21.
[http://dx.doi.org/10.1093/jnen/61.11.1013] [PMID: 12430718]
[9]
Buchanan MM, Hutchinson M, Watkins LR, Yin H. Toll-like receptor 4 in CNS pathologies. J Neurochem 2010; 114(1): 13-27.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06736.x] [PMID: 20402965]
[10]
Ferrao R, Zhou H, Shan Y, et al. IRAK4 dimerization and trans-autophosphorylation are induced by Myddosome assembly. Mol Cell 2014; 55(6): 891-903.
[http://dx.doi.org/10.1016/j.molcel.2014.08.006] [PMID: 25201411]
[11]
Sharma V, Sharma P, Singh TG. Wnt signalling pathways as mediators of neuroprotective mechanisms: therapeutic implications in stroke. Mol Biol Rep 2024; 51(1): 247.
[http://dx.doi.org/10.1007/s11033-023-09202-w] [PMID: 38300425]
[12]
Guijarro-Muñoz I, Compte M, Álvarez-Cienfuegos A, Álvarez- Vallina L, Sanz L. Lipopolysaccharide activates Toll-like receptor 4 (TLR4)-mediated NF-κB signaling pathway and proinflammatory response in human pericytes. J Biol Chem 2014; 289(4): 2457-68.
[http://dx.doi.org/10.1074/jbc.M113.521161] [PMID: 24307174]
[13]
Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010; 140(6): 805-20.
[http://dx.doi.org/10.1016/j.cell.2010.01.022] [PMID: 20303872]
[14]
Ostuni R, Zanoni I, Granucci F. Deciphering the complexity of Toll-like receptor signaling. Cell Mol Life Sci 2010; 67(24): 4109-34.
[http://dx.doi.org/10.1007/s00018-010-0464-x] [PMID: 20680392]
[15]
Nagase H, Okugawa S, Ota Y, et al. Expression and function of Toll-like receptors in eosinophils: activation by Toll-like receptor 7 ligand. J Immunol 2003; 171(8): 3977-82.
[http://dx.doi.org/10.4049/jimmunol.171.8.3977] [PMID: 14530316]
[16]
Sharma V, Sharma P, Singh TG. Mechanistic insights on TLR-4 mediated inflammatory pathway in neurodegenerative diseases. Pharmacol Rep 2024; 76(4): 679-92.
[http://dx.doi.org/10.1007/s43440-024-00613-5] [PMID: 38918327]
[17]
Arumugam TV, Okun E, Tang SC, Thundyil J, Taylor SM, Woodruff TM. Toll-like receptors in ischemia-reperfusion injury. Shock 2009; 32(1): 4-16.
[http://dx.doi.org/10.1097/SHK.0b013e318193e333] [PMID: 19008778]
[18]
Wang YC, Lin S, Yang QW. Toll-like receptors in cerebral ischemic inflammatory injury. J Neuroinflammation 2011; 8(1): 134.
[http://dx.doi.org/10.1186/1742-2094-8-134] [PMID: 21982558]
[19]
Liu X, Zhang X, Wang F, et al. Improvement in cerebral ischemia–reperfusion injury through the TLR4/NF-κB pathway after Kudiezi injection in rats. Life Sci 2017; 191: 132-40.
[http://dx.doi.org/10.1016/j.lfs.2017.10.035] [PMID: 29080695]
[20]
Lei JR, Tu XK, Wang Y, Tu DW, Shi SS. Resveratrol downregulates the TLR4 signaling pathway to reduce brain damage in a rat model of focal cerebral ischemia. Exp Ther Med 2019; 17(4): 3215-21.
[http://dx.doi.org/10.3892/etm.2019.7324] [PMID: 30936996]
[21]
Liu J, Chen Q, Jian Z, et al. Daphnetin protects against cerebral ischemia/reperfusion injury in mice via inhibition of TLR4/NF-κB signaling pathway. BioMed Res Int 2016; 2016: 1-6.
[http://dx.doi.org/10.1155/2016/2816056]
[22]
Cheng J, Zhu P, Qin H, et al. Dexmedetomidine attenuates cerebral ischemia/reperfusion injury in neonatal rats by inhibiting TLR4 signaling. J Int Med Res 2018; 46(7): 2925-32.
[http://dx.doi.org/10.1177/0300060518781382] [PMID: 29926753]
[23]
Wang SL, Duan L, Xia B, Liu Z, Wang Y, Wang GM. Dexmedetomidine preconditioning plays a neuroprotective role and suppresses TLR4/NF-κB pathways model of cerebral ischemia reperfusion. Biomed Pharmacother 2017; 93: 1337-42.
[http://dx.doi.org/10.1016/j.biopha.2017.06.051] [PMID: 28753906]
[24]
Zhang FB, Wang JP, Zhang HX, Fan GM, Cui X. Effect of β-patchoulene on cerebral ischemia-reperfusion injury and the TLR4/NF-κB signaling pathway. Exp Ther Med 2019; 17(5): 3335-42.
[http://dx.doi.org/10.3892/etm.2019.7374] [PMID: 30988709]
[25]
Liu Y, Lei Z, Chai H, Kang Q, Qin X. Salidroside alleviates hepatic ischemia–reperfusion injury during liver transplant in rat through regulating TLR-4/NF-κB/NLRP3 inflammatory pathway. Sci Rep 2022; 12(1): 13973.
[http://dx.doi.org/10.1038/s41598-022-18369-4] [PMID: 35978104]
[26]
Fan X, Elkin K, Shi Y, et al. Schisandrin B improves cerebral ischemia and reduces reperfusion injury in rats through TLR4/NF-κB signaling pathway inhibition. Neurol Res 2020; 42(8): 693-702.
[http://dx.doi.org/10.1080/01616412.2020.1782079] [PMID: 32657248]
[27]
Lv Y, Qian Y, Fu L, Chen X, Zhong H, Wei X. Hydroxysafflor yellow A exerts neuroprotective effects in cerebral ischemia reperfusion-injured mice by suppressing the innate immune TLR4-inducing pathway. Eur J Pharmacol 2015; 769: 324-32.
[http://dx.doi.org/10.1016/j.ejphar.2015.11.036] [PMID: 26607471]
[28]
Chen X, Yao Z, Peng X, et al. Eupafolin alleviates cerebral ischemia/reperfusion injury in rats via blocking the TLR4/NF-κB signaling pathway. Mol Med Rep 2020; 22(6): 5135-44.
[http://dx.doi.org/10.3892/mmr.2020.11637] [PMID: 33173992]
[29]
Chen H, Zhang RQ, Wei XG, Ren XM, Gao XQ. Mechanism of TLR-4/NF-κB pathway in myocardial ischemia reperfusion injury of mouse. Asian Pac J Trop Med 2016; 9(5): 503-7.
[http://dx.doi.org/10.1016/j.apjtm.2016.03.021] [PMID: 27261863]
[30]
Yuan L, Dai X, Fu H, et al. Vaspin protects rats against myocardial ischemia/reperfusion injury (MIRI) through the TLR4/NF-κB signaling pathway. Eur J Pharmacol 2018; 835: 132-9.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.052] [PMID: 30063916]
[31]
Yang J, Jiang H, Yang J, et al. Valsartan preconditioning protects against myocardial ischemia–reperfusion injury through TLR4/NF-κB signaling pathway. Mol Cell Biochem 2009; 330(1-2): 39-46.
[http://dx.doi.org/10.1007/s11010-009-0098-1] [PMID: 19370315]
[32]
Li J, Xie C, Zhuang J, et al. Resveratrol attenuates inflammation in the rat heart subjected to ischemia-reperfusion: Role of the TLR4/NF-κB signaling pathway. Mol Med Rep 2015; 11(2): 1120-6.
[PMID: 25405531]
[33]
Lin J, Wang H, Li J, et al. κ-Opioid receptor stimulation modulates TLR4/NF-κB signaling in the rat heart subjected to ischemia–reperfusion. Cytokine 2013; 61(3): 842-8.
[http://dx.doi.org/10.1016/j.cyto.2013.01.002] [PMID: 23402995]
[34]
Zhang X, Du Q, Yang Y, et al. The protective effect of Luteolin on myocardial ischemia/reperfusion (I/R) injury through TLR4/NF-κB/NLRP3 inflammasome pathway. Biomed Pharmacother 2017; 91: 1042-52.
[http://dx.doi.org/10.1016/j.biopha.2017.05.033] [PMID: 28525945]
[35]
Dong LY, Chen F, Xu M, Yao LP, Zhang YJ, Zhuang Y. Quercetin attenuates myocardial ischemia-reperfusion injury via downregulation of the HMGB1-TLR4-NF-κB signaling pathway. Am J Transl Res 2018; 10(5): 1273-83.
[PMID: 29887944]
[36]
Ma C, Jiang Y, Zhang X, Chen X, Liu Z, Tian X. Isoquercetin ameliorates myocardial infarction through anti-inflammation and anti-apoptosis factor and regulating TLR4-NF-κB signal pathway. Mol Med Rep 2018; 17(5): 6675-80.
[http://dx.doi.org/10.3892/mmr.2018.8709] [PMID: 29532872]
[37]
Li J, Yang Y, Wang H, Ma D, Wang H, Chu L. Baicalein Ameliorates Myocardial Ischemia Through Reduction of Oxidative Stress, Inflammation and Apoptosis NF-κB Homeostasis Pathway via by TLR4/MyD88/MAPK and L-type Regulation Ca2+. Channels 2022.
[38]
Bai Y, Li Z, Liu W, Gao D, Liu M, Zhang P. Biochanin A attenuates myocardial ischemia/reperfusion injury through the TLR4/NF-κB/NLRP3 signaling pathway. Acta Cir Bras 2019; 34(11): e201901104.
[http://dx.doi.org/10.1590/s0102-865020190110000004] [PMID: 31859817]
[39]
Wu HS, Zhang JX, Wang L, Tian Y, Wang H, Rotstein O. Toll- like receptor 4 involvement in hepatic ischemia/reperfusion injury in mice. Hepatobiliary Pancreat Dis Int 2004; 3(2): 250-3.
[PMID: 15138120]
[40]
Zhang S, Feng Z, Gao W, et al. Aucubin attenuates liver ischemia-reperfusion injury by inhibiting the HMGB1/TLR-4/NF-κB signaling pathway, oxidative stress, and apoptosis. Front Pharmacol 2020; 11: 544124.
[http://dx.doi.org/10.3389/fphar.2020.544124] [PMID: 33013386]
[41]
Kamel EO, Hassanein EHM, Ahmed MA, Ali FEM. Perindopril ameliorates hepatic ischemia reperfusion injury via regulation of NF-κB-p65/TLR-4, JAK1/STAT-3, Nrf-2, and PI3K/Akt/mTOR signaling pathways. Anat Rec (Hoboken) 2020; 303(7): 1935-49.
[http://dx.doi.org/10.1002/ar.24292] [PMID: 31606943]
[42]
Sherif IO, Al-Shaalan NH. Vildagliptin attenuates hepatic ischemia/reperfusion injury via the TLR4/NF-κB signaling pathway. Oxid Med Cell Longev 2018; 2018(1): 3509091.
[http://dx.doi.org/10.1155/2018/3509091] [PMID: 30405876]
[43]
Hassanein EHM, Khader HF, Elmansy RA, et al. Umbelliferone alleviates hepatic ischemia/reperfusion-induced oxidative stress injury via targeting Keap-1/Nrf-2/ARE and TLR4/NF-κB-p65 signaling pathway. Environ Sci Pollut Res Int 2021; 28(47): 67863-79.
[http://dx.doi.org/10.1007/s11356-021-15184-8] [PMID: 34268687]
[44]
Ibrahim MA, Abdelzaher WY, Ibrahim YF, et al. Diacerein protects rats with liver ischemia/reperfusion damage: Down-regulation of TLR4/ NFκ-B signaling pathway. Biomed Pharmacother 2021; 134: 111063.
[http://dx.doi.org/10.1016/j.biopha.2020.111063] [PMID: 33348310]
[45]
Wang L, Li N, Lin D, Zang Y. Curcumin protects against hepatic ischemia/reperfusion induced injury through inhibiting TLR4/NF-κB pathway. Oncotarget 2017; 8(39): 65414-20.
[http://dx.doi.org/10.18632/oncotarget.18676] [PMID: 29029441]
[46]
Gendy AM, Elnagar MR, Allam MM, et al. Berberine-loaded nanostructured lipid carriers mitigate warm hepatic ischemia/reperfusion-induced lesion through modulation of HMGB1/TLR4/NF-κB signaling and autophagy. Biomed Pharmacother 2022; 145: 112122.
[http://dx.doi.org/10.1016/j.biopha.2021.112122] [PMID: 34489150]
[47]
Morsy MA, Ibrahim YF, Abdel Hafez SMN, et al. Paeonol attenuates hepatic ischemia/reperfusion injury by modulating the Nrf2/HO-1 and TLR4/MYD88/NF-κB signaling pathways. Antioxidants 2022; 11(9): 1687.
[http://dx.doi.org/10.3390/antiox11091687] [PMID: 36139761]
[48]
Li X, Wang L, Yang X, Huang C. Metformin attenuates ischemia-reperfusion injury of fatty liver in rats through inhibition of the TLR4/NF-κB axis. Balkan Med J 2021; 37(4): 196-202.
[http://dx.doi.org/10.4274/balkanmedj.galenos.2020.2019.9.31] [PMID: 32270948]
[49]
Yao L, Cai H, Fang Q, et al. Piceatannol alleviates liver ischaemia/reperfusion injury by inhibiting TLR4/NF-κB/NLRP3 in hepatic macrophages. Eur J Pharmacol 2023; 960: 176149.
[http://dx.doi.org/10.1016/j.ejphar.2023.176149] [PMID: 37866744]
[50]
Guan L, Li C, Zhang Y, et al. Puerarin ameliorates retinal ganglion cell damage induced by retinal ischemia/reperfusion through inhibiting the activation of TLR4/NLRP3 inflammasome. Life Sci 2020; 256: 117935.
[http://dx.doi.org/10.1016/j.lfs.2020.117935] [PMID: 32526286]
[51]
Dvoriantchikova G, Hernandez E, Grant J, Santos ARC, Yang H, Ivanov D. The high-mobility group box-1 nuclear factor mediates retinal injury after ischemia reperfusion. Invest Ophthalmol Vis Sci 2011; 52(10): 7187-94.
[http://dx.doi.org/10.1167/iovs.11-7793] [PMID: 21828158]
[52]
Li M, Jia C, Kazmierkiewicz KL, et al. Comprehensive analysis of gene expression in human retina and supporting tissues. Hum Mol Genet 2014; 23(15): 4001-14.
[http://dx.doi.org/10.1093/hmg/ddu114] [PMID: 24634144]
[53]
Chen Z, Qiu PY, Ma CG. Dexmedetomidine preconditioning protects against retinal ischemia/reperfusion injury and inhibits inflammation response via toll-like receptor 4 (TLR4) pathway. Biomed Pharmacother 2017; 93: 1018-24.
[http://dx.doi.org/10.1016/j.biopha.2017.06.050] [PMID: 28724211]
[54]
Liu J, Zhang N, Zhang M, et al. N-acetylserotonin alleviated the expression of interleukin-1β in retinal ischemia–reperfusion rats via the TLR4/NF-κB/NLRP3 pathway. Exp Eye Res 2021; 208: 108595.
[http://dx.doi.org/10.1016/j.exer.2021.108595] [PMID: 34000276]
[55]
Zhang YL, Wang RB, Li WY, Xia FZ, Liu L. Pioglitazone ameliorates retinal ischemia/reperfusion injury via suppressing NLRP3 inflammasome activities. Int J Ophthalmol 2017; 10(12): 1812-8.
[PMID: 29259897]
[56]
Ulbrich F, Eisert L, Buerkle H, Goebel U, Schallner N. Propofol, but not ketamine or midazolam, exerts neuroprotection after ischaemic injury by inhibition of Toll-like receptor 4 and nuclear factor kappa-light-chain-enhancer of activated B-cell signalling: A combined in vitro and animal study. EJA 2016; 33(9): 670-80.
[57]
Rusai K, Sollinger D, Baumann M, et al. Toll-like receptors 2 and 4 in renal ischemia/reperfusion injury. Pediatr Nephrol 2010; 25(5): 853-60.
[http://dx.doi.org/10.1007/s00467-009-1422-4] [PMID: 20130923]
[58]
Meng X, Wei M, Wang D, et al. The protective effect of hesperidin against renal ischemia-reperfusion injury involves the TLR-4/NF-κB/iNOS pathway in rats. Physiol Int 2020; 107(1): 82-91.
[http://dx.doi.org/10.1556/2060.2020.00003] [PMID: 32491283]
[59]
Mohamed ME, Kandeel M, Abd El-Lateef HM, El-Beltagi HS, Younis NS. The protective effect of anethole against renal ischemia/reperfusion: the role of the TLR2, 4/MYD88/NFκB pathway. Antioxidants 2022; 11(3): 535.
[http://dx.doi.org/10.3390/antiox11030535] [PMID: 35326185]
[60]
Qi M, Zheng L, Qi Y, et al. Dioscin attenuates renal ischemia/reperfusion injury by inhibiting the TLR4/MyD88 signaling pathway via up-regulation of HSP70. Pharmacol Res 2015; 100: 341-52.
[http://dx.doi.org/10.1016/j.phrs.2015.08.025] [PMID: 26348276]
[61]
Lee JW, Kim SC, Ko YS, et al. Renoprotective effect of paricalcitol via a modulation of the TLR4-NF-κB pathway in ischemia/reperfusion-induced acute kidney injury. Biochem Biophys Res Commun 2014; 444(2): 121-7.
[http://dx.doi.org/10.1016/j.bbrc.2014.01.005] [PMID: 24434153]
[62]
Li YW, Zhang Y, Zhang L, et al. Protective effect of tea polyphenols on renal ischemia/reperfusion injury via suppressing the activation of TLR4/NF-κB p65 signal pathway. Gene 2014; 542(1): 46-51.
[http://dx.doi.org/10.1016/j.gene.2014.03.021] [PMID: 24630969]
[63]
Qiu Y, Wu Y, Zhao H, Sun H, Gao S. Maresin 1 mitigates renal ischemia/reperfusion injury in mice via inhibition of the TLR4/MAPK/ NF-κB pathways and activation of the Nrf2 pathway. Drug Des Devel Ther 2019; 13: 739-45.
[http://dx.doi.org/10.2147/DDDT.S188654] [PMID: 30863013]
[64]
Wang L, Liu XH, Chen H, et al. Picroside II protects rat kidney against ischemia/reperfusion-induced oxidative stress and inflammation by the TLR4/NF-κB pathway. Exp Ther Med 2015; 9(4): 1253-8.
[http://dx.doi.org/10.3892/etm.2015.2225] [PMID: 25780418]
[65]
Abou-Hany HO, Atef H, Said E, Elkashef HA, Salem HA. Crocin reverses unilateral renal ischemia reperfusion injury-induced augmentation of oxidative stress and toll like receptor-4 activity. Environ Toxicol Pharmacol 2018; 59: 182-9.
[http://dx.doi.org/10.1016/j.etap.2018.03.017] [PMID: 29625388]
[66]
Mura M, Andrade CF, Han B, et al. Intestinal ischemia-reperfusion-induced acute lung injury and oncotic cell death in multiple organs. Shock 2007; 28(2): 227-38.
[http://dx.doi.org/10.1097/SHK.0b013e318033e927] [PMID: 17666944]
[67]
Stefanutti G, Pierro A, Vinardi S, Spitz L, Eaton S. Moderate hypothermia protects against systemic oxidative stress in a rat model of intestinal ischemia and reperfusion injury. Shock 2005; 24(2): 159-64.
[http://dx.doi.org/10.1097/01.shk.0000168871.60531.6f] [PMID: 16044087]
[68]
Fukata M, Michelsen KS, Eri R, et al. Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis. Am J Physiol Gastrointest Liver Physiol 2005; 288(5): G1055-65.
[http://dx.doi.org/10.1152/ajpgi.00328.2004] [PMID: 15826931]
[69]
Effect of dexmedetomidine pretreatment on TLR4/NF-κB signaling pathway during intestinal ischemia-reperfusion in rats. Chinese Journal of Anesthesiology 2019; 31-5.
[70]
Zhang Y, Zhou Y, Wang M, et al. Qingchang Mixture Prevents the Intestinal Ischemia-reperfusion Injury through TLR4/NF-kB Pathway. Comb Chem High Throughput Screen 2023; 26(1): 49-57.
[http://dx.doi.org/10.2174/1386207325666220328090126] [PMID: 35345995]
[71]
Chen Y, Wu J, Zhu J, et al. Artesunate Provides Neuroprotection against Cerebral Ischemia–Reperfusion Injury via the TLR-4/NF-κB Pathway in Rats. Biol Pharm Bull 2021; 44(3): 350-6.
[http://dx.doi.org/10.1248/bpb.b20-00604] [PMID: 33390425]
[72]
Zhang J, Wu Y, Weng Z, Zhou T, Feng T, Lin Y. Glycyrrhizin protects brain against ischemia–reperfusion injury in mice through HMGB1-TLR4-IL-17A signaling pathway. Brain Res 2014; 1582: 176-86.
[http://dx.doi.org/10.1016/j.brainres.2014.07.002] [PMID: 25111887]
[73]
Wang X, An F, Wang S, An Z, Wang S. Orientin attenuates cerebral ischemia/reperfusion injury in rat model through the AQP-4 and TLR4/NF-κB/TNF-α signaling pathway. J Stroke Cerebrovasc Dis 2017; 26(10): 2199-214.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2017.05.002] [PMID: 28645524]
[74]
Wang CP, Li JL, Zhang LZ, et al. Isoquercetin protects cortical neurons from oxygen–glucose deprivation–reperfusion induced injury via suppression of TLR4–NF-кB signal pathway. Neurochem Int 2013; 63(8): 741-9.
[http://dx.doi.org/10.1016/j.neuint.2013.09.018] [PMID: 24099731]
[75]
Tao X, Sun X, Yin L, et al. Dioscin ameliorates cerebral ischemia/reperfusion injury through the downregulation of TLR4 signaling via HMGB-1 inhibition. Free Radic Biol Med 2015; 84: 103-15.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.03.003] [PMID: 25772012]
[76]
Wang C, Sun H, Song Y, et al. Pterostilbene attenuates inflammation in rat heart subjected to ischemia-reperfusion: role of TLR4/NF-κB signaling pathway. Int J Clin Exp Med 2015; 8(2): 1737-46.
[PMID: 25932102]
[77]
Yao Y, Lin L, Tang W, et al. Pretreatment with geniposide mitigates myocardial ischemia/reperfusion injury by modulating inflammatory response through TLR4/NF-κB pathway. Eur J Histochem 2023; 67(3): 3742.
[http://dx.doi.org/10.4081/ejh.2023.3742] [PMID: 37682077]
[78]
Xie T, Li K, Gong X, et al. Paeoniflorin protects against liver ischemia/reperfusion injury in mice via inhibiting HMGB1-TLR4 signaling pathway. Phytother Res 2018; 32(11): 2247-55.
[http://dx.doi.org/10.1002/ptr.6161] [PMID: 30047580]
[79]
Morsy MA, Abdel-Gaber SA, Rifaai RA, Mohammed MM, Nair AB, Abdelzaher WY. Protective mechanisms of telmisartan against hepatic ischemia/reperfusion injury in rats may involve PPARγ-induced TLR4/NF-κB suppression. Biomed Pharmacother 2022; 145: 112374.
[http://dx.doi.org/10.1016/j.biopha.2021.112374] [PMID: 34915671]
[80]
Mahmoud MF, Gamal S, El-Fayoumi HM. Limonin attenuates hepatocellular injury following liver ischemia and reperfusion in rats via toll-like receptor dependent pathway. Eur J Pharmacol 2014; 740: 676-82.
[http://dx.doi.org/10.1016/j.ejphar.2014.06.010] [PMID: 24967531]
[81]
Yu ZY, Cheng G. Protective effect of liriodendrin against liver ischaemia/reperfusion injury in mice via modulating oxidative stress, inflammation and nuclear factor kappa B/toll-like receptor 4 pathway. Folia Morphol (Warsz) 2023; 82(3): 668-76.
[http://dx.doi.org/10.5603/FM.a2022.0049] [PMID: 35607873]
[82]
Sharma V, Singh TG. Drug induced nephrotoxicity- A mechanistic approach. Mol Biol Rep 2023; 50(8): 6975-86.
[http://dx.doi.org/10.1007/s11033-023-08573-4] [PMID: 37378746]
[83]
Abdallah DM, El-Abhar HS. Pentoxifylline treatment alleviates kidney ischemia/reperfusion injury: Novel involvement of galectin-3 and ASK-1/JNK & ERK1/2/NF-κB/HMGB-1 trajectories. J Pharmacol Sci 2021; 146(3): 136.: 148.
[84]
Lee JC. Effects of nafamostat mesilate, a protease Inhibitor, on ischemia/reperfusion-induced kidney injury in mice. Eur J Anat 2017; 21(4): 279-86.
[85]
Rehni AK, Singh TG, Jaggi AS, Singh N. Pharmacological preconditioning of the brain: a possible interplay between opioid and calcitonin gene related peptide transduction systems. Pharmacol Rep 2008; 60(6): 904-13.
[PMID: 19211983]
[86]
Arora A, Behl T, Sehgal A, et al. Unravelling the involvement of gut microbiota in type 2 diabetes mellitus. Life Sci 2021; 273: 119311.
[http://dx.doi.org/10.1016/j.lfs.2021.119311] [PMID: 33662428]
[87]
Behl T, Kumar K, Brisc C, et al. Exploring the multifocal role of phytochemicals as immunomodulators. Biomed Pharmacother 2021; 133: 110959.
[http://dx.doi.org/10.1016/j.biopha.2020.110959] [PMID: 33197758]
[88]
Gashimova U, Guliyeva R, Javadova K, Ibishova A, Panakhova E. Histological examination of retinal function and the effects of curcuma longa on memory correction in experimental olfactory bulbectomy rat models. Advances in Biology & Earth Sciences 2024; 9(1)
[89]
Miryusifova K, Malikova G, Allahverdiyeva A, Huseynova N, Umudlu A. The saffron effects on the dynamics of experimental epilepsy. Advances in Biology & Earth Sciences 2024; 9(1)
[90]
Karadağ M, Omarova S. Use of Prunus armeniaca L. seed oil and pulp in health and cosmetic products. Advances in Biology & Earth Sciences 2024; 9(1)

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy