Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Emerging Role of Non-collagenous Bone Proteins as Osteokines in Extraosseous Tissues

Author(s): Kenda Jawich, Rana Hadakie, Souhaib Jamal, Rana Habeeb, Sahar Al Fahoum, Alberto Ferlin and Luca De Toni*

Volume 25, Issue 3, 2024

Published on: 01 November, 2023

Page: [215 - 225] Pages: 11

DOI: 10.2174/0113892037268414231017074054

Price: $65

conference banner
Abstract

Bone is a unique tissue, composed of various types of cells embedded in a calcified extracellular matrix (ECM), whose dynamic structure consists of organic and inorganic compounds produced by bone cells. The main inorganic component is represented by hydroxyapatite, whilst the organic ECM is primarily made up of type I collagen and non-collagenous proteins. These proteins play an important role in bone homeostasis, calcium regulation, and maintenance of the hematopoietic niche. Recent advances in bone biology have highlighted the importance of specific bone proteins, named “osteokines”, possessing endocrine functions and exerting effects on nonosseous tissues. Accordingly, osteokines have been found to act as growth factors, cell receptors, and adhesion molecules, thus modifying the view of bone from a static tissue fulfilling mobility to an endocrine organ itself. Since bone is involved in a paracrine and endocrine cross-talk with other tissues, a better understanding of bone secretome and the systemic roles of osteokines is expected to provide benefits in multiple topics: such as identification of novel biomarkers and the development of new therapeutic strategies. The present review discusses in detail the known osseous and extraosseous effects of these proteins and the possible respective clinical and therapeutic significance.

Keywords: Bone proteins , ECM, growth factors, collagen, osteokines, extraosseous tissues.

Graphical Abstract
[1]
Alcorta-Sevillano, N.; Macías, I.; Rodríguez, C.I.; Infante, A. Crucial role of lamin A/C in the migration and differentiation of MSCs in bone. Cells, 2020, 9(6), 1330.
[http://dx.doi.org/10.3390/cells9061330] [PMID: 32466483]
[2]
Zhang, R.; Li, B.; Li, H. Extracellular-matrix mechanics regulate the ocular physiological and pathological activities. J. Ophthalmol., 2023, 2023, 1-11.
[http://dx.doi.org/10.1155/2023/7626920] [PMID: 37521908]
[3]
Capulli, M.; Paone, R.; Rucci, N. Osteoblast and osteocyte: Games without frontiers. Arch. Biochem. Biophys., 2014, 561, 3-12.
[http://dx.doi.org/10.1016/j.abb.2014.05.003] [PMID: 24832390]
[4]
Hsu, Y.H.; Kiel, D.P. Clinical review: Genome-wide association studies of skeletal phenotypes: What we have learned and where we are headed. J. Clin. Endocrinol. Metab., 2012, 97(10), E1958-E1977.
[http://dx.doi.org/10.1210/jc.2012-1890] [PMID: 22965941]
[5]
Dallas, S.L.; Prideaux, M.; Bonewald, L.F. The osteocyte: An endocrine cell and more. Endocr. Rev., 2013, 34(5), 658-690.
[http://dx.doi.org/10.1210/er.2012-1026] [PMID: 23612223]
[6]
Boyce, B.; Yao, Z.; Xing, L. Osteoclasts have multiple roles in bone in addition to bone resorption. Crit. Rev. Eukaryot. Gene Expr., 2009, 19(3), 171-180.
[http://dx.doi.org/10.1615/CritRevEukarGeneExpr.v19.i3.10] [PMID: 19883363]
[7]
Väänänen, K. Mechanism of osteoclast mediated bone resorption—rationale for the design of new therapeutics. Adv. Drug Deliv. Rev., 2005, 57(7), 959-971.
[http://dx.doi.org/10.1016/j.addr.2004.12.018] [PMID: 15876398]
[8]
Florencio-Silva, R.; Sasso, G.R.S.; Sasso-Cerri, E.; Simões, M.J.; Cerri, P.S. Biology of bone tissue: Structure, function, and factors that influence bone cells. BioMed. Res. Int., 2015, 2015, 1-17.
[http://dx.doi.org/10.1155/2015/421746] [PMID: 26247020]
[9]
Carvalho, M.S.; Cabral, J.M.S.; da Silva, C.L.; Vashishth, D. Bone matrix non-collagenous proteins in tissue engineering: Creating new bone by mimicking the extracellular matrix. Polymers (Basel), 2021, 13(7), 1095.
[http://dx.doi.org/10.3390/polym13071095] [PMID: 33808184]
[10]
Lin, X.; Patil, S.; Gao, Y. G.; Qian, A. The bone extracellular matrix in bone formation and regeneration. Front. Pharmacol., 2020, 11
[http://dx.doi.org/10.3389/fphar.2020.00757]
[11]
Mansour, A.; Mezour, M.A.; Badran, Z.; Tamimi, F. Extracellular matrices for bone regeneration: A literature review. Tissue Eng. Part A, 2017, 23(23-24), 1436-1451.
[http://dx.doi.org/10.1089/ten.tea.2017.0026] [PMID: 28562183]
[12]
Sroga, G.E.; Karim, L.; Colón, W.; Vashishth, D. Biochemical characterization of major bone-matrix proteins using nanoscale-size bone samples and proteomics methodology. Mol. Cell. Proteomics, 2011, 10(9), M110.006718.
[http://dx.doi.org/10.1074/mcp.M110.006718] [PMID: 21606484]
[13]
Paiva, K.B.S.; Granjeiro, J.M. Matrix metalloproteinases in bone resorption, remodeling, and repair. Prog. Mol. Biol. Transl. Sci., 2017, 148(9), 203-303.
[http://dx.doi.org/10.1016/bs.pmbts.2017.05.001]
[14]
Karsenty, G.; Oury, F. Regulation of male fertility by the bone-derived hormone osteocalcin. Mol. Cell. Endocrinol., 2014, 382(1), 521-526.
[http://dx.doi.org/10.1016/j.mce.2013.10.008] [PMID: 24145129]
[15]
Pin, F.; Bonewald, L.F.; Bonetto, A. Role of myokines and osteokines in cancer cachexia. Exp. Biol. Med. (Maywood), 2021, 246(19), 2118-2127.
[http://dx.doi.org/10.1177/15353702211009213] [PMID: 33899538]
[16]
Zaidi, M.; Kim, S.M.; Mathew, M.; Korkmaz, F.; Sultana, F.; Miyashita, S.; Gumerova, A.A.; Frolinger, T.; Moldavski, O.; Barak, O.; Pallapati, A.; Rojekar, S.; Caminis, J.; Ginzburg, Y.; Ryu, V.; Davies, T.F.; Lizneva, D.; Rosen, C.J.; Yuen, T. Bone circuitry and interorgan skeletal crosstalk. eLife, 2023, 12, e83142.
[http://dx.doi.org/10.7554/eLife.83142] [PMID: 36656634]
[17]
Termine, J.D. Non-collagen proteins in bone. Ciba Found. Symp., 1988, 136, 178-202.
[http://dx.doi.org/10.1002/9780470513637.ch12] [PMID: 3068009]
[18]
Retting, K.N.; Lyons, K.M. BMPs in Development. Handbook of Cell Signaling, 2nd ed.; Bradshaw, R.A.; Dennis, E.A., Eds.; Academic Press: San Diego, 2010, pp. 1905-1912.
[19]
Kirby, D.J.; Young, M.F. Isolation, production, and analysis of small leucine-rich proteoglycans in bone. Methods Cell Biol., 2018, 143, 281-296.
[http://dx.doi.org/10.1016/bs.mcb.2017.08.016]
[20]
Moorehead, C.; Prudnikova, K.; Marcolongo, M. The regulatory effects of proteoglycans on collagen fibrillogenesis and morphology investigated using biomimetic proteoglycans. J. Struct. Biol., 2019, 206(2), 204-215.
[http://dx.doi.org/10.1016/j.jsb.2019.03.005] [PMID: 30885681]
[21]
Kadler, K.E.; Hill, A.; Canty-Laird, E.G. Collagen fibrillogenesis: Fibronectin, integrins, and minor collagens as organizers and nucleators. Curr. Opin. Cell Biol., 2008, 20(5), 495-501.
[http://dx.doi.org/10.1016/j.ceb.2008.06.008] [PMID: 18640274]
[22]
Corsi, A.; Xu, T.; Chen, X-D.; Boyde, A.; Liang, J.; Mankani, M.; Sommer, B.; Iozzo, R.V.; Eichstetter, I.; Robey, P.G.; Bianco, P.; Young, M.F. Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers-Danlos-like changes in bone and other connective tissues. J. Bone Miner. Res., 2002, 17(7), 1180-1189.
[http://dx.doi.org/10.1359/jbmr.2002.17.7.1180] [PMID: 12102052]
[23]
Danziger, J. Vitamin K-dependent proteins, warfarin, and vascular calcification. Clin. J. Am. Soc. Nephrol., 2008, 3(5), 1504-1510.
[http://dx.doi.org/10.2215/CJN.00770208] [PMID: 18495950]
[24]
Berkner, K.L.; Runge, K.W. Vitamin K-dependent protein activation: Normal gamma-glutamyl carboxylation and disruption in disease. Int. J. Mol. Sci., 2022, 23(10), 5759.
[http://dx.doi.org/10.3390/ijms23105759] [PMID: 35628569]
[25]
Laizé, V.; Martel, P.; Viegas, C.S.B.; Price, P.A.; Cancela, M.L. Evolution of matrix and bone γ-carboxyglutamic acid proteins in vertebrates. J. Biol. Chem., 2005, 280(29), 26659-26668.
[http://dx.doi.org/10.1074/jbc.M500257200] [PMID: 15849363]
[26]
Hauschka, P.V.; Lian, J.B.; Cole, D.E.; Gundberg, C.M. Osteocalcin and matrix Gla protein: Vitamin K-dependent proteins in bone. Physiol. Rev., 1989, 69(3), 990-1047.
[http://dx.doi.org/10.1152/physrev.1989.69.3.990] [PMID: 2664828]
[27]
Grzesik, W.J.; Robey, P.G. Bone matrix RGD glycoproteins: Immunolocalization and interaction with human primary osteoblastic bone cells in vitro. J. Bone Miner. Res., 1994, 9(4), 487-496.
[http://dx.doi.org/10.1002/jbmr.5650090408] [PMID: 7518179]
[28]
Robey, P.G. Bone Matrix Proteoglycans and Glycoproteins. Principles of Bone Biology, 2nd ed.; Academic Press: Cambridge, Massachusetts, 2002, pp. 225-237.
[http://dx.doi.org/10.1016/B978-012098652-1/50116-5]
[29]
Ru, D.W.; Yan, Y.F.; Li, B.; Xie, Q.; Tang, R.; Shen, X.; Yu, G.; Du, J.R.; Wang, E.S. Tetranectin knock-out mice exhibit features of kyphosis and osteoporosis. Fudan Univ. J. Med. Sci., 2016, 43(2)
[http://dx.doi.org/10.3969/j.issn.1672-8467.2016.02.006]
[30]
Bellahcène, A.; Castronovo, V.; Ogbureke, K.U.E.; Fisher, L.W.; Fedarko, N.S. Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): Multifunctional proteins in cancer. Nat. Rev. Cancer, 2008, 8(3), 212-226.
[http://dx.doi.org/10.1038/nrc2345] [PMID: 18292776]
[31]
Harris, S.E.; Gluhak-Heinrich, J.; Harris, M.A.; Yang, W.; Bonewald, L.F.; Riha, D.; Rowe, P.S.; Robling, A.G.; Turner, C.H.; Feng, J.Q.; McKee, M.D.; Nicollela, D. DMP1 and MEPE expression are elevated in osteocytes after mechanical loading in vivo: Theoretical role in controlling mineral quality in the perilacunar matrix. J. Musculoskelet. Neuronal Interact., 2007, 7(4), 313-315.
[PMID: 18094489]
[32]
Bragdon, B.; Moseychuk, O.; Saldanha, S.; King, D.; Julian, J.; Nohe, A. Bone morphogenetic proteins: A critical review. Cell. Signal., 2011, 23(4), 609-620.
[http://dx.doi.org/10.1016/j.cellsig.2010.10.003] [PMID: 20959140]
[33]
Katagiri, T.; Watabe, T. Bone morphogenetic proteins. Cold Spring Harb. Perspect. Biol., 2016, 8(6), a021899.
[http://dx.doi.org/10.1101/cshperspect.a021899] [PMID: 27252362]
[34]
Hyzy, S.L.; Olivares-Navarrete, R.; Schwartz, Z.; Boyan, B.D. BMP2 induces osteoblast apoptosis in a maturation state and noggin-dependent manner. J. Cell. Biochem., 2012, 113(10), 3236-3245.
[http://dx.doi.org/10.1002/jcb.24201] [PMID: 22628200]
[35]
Lombardi, G.; Perego, S.; Luzi, L.; Banfi, G. A four-season molecule: Osteocalcin. Updates in its physiological roles. Endocrine, 2015, 48(2), 394-404.
[http://dx.doi.org/10.1007/s12020-014-0401-0] [PMID: 25158976]
[36]
De Toni, L.; Jawich, K.; De Rocco, P.M.; Di Nisio, A.; Foresta, C. Osteocalcin: A protein hormone connecting metabolism, bone and testis function. Protein Pept. Lett., 2020, 27(12), 1268-1275.
[http://dx.doi.org/10.2174/0929866527666200505220459] [PMID: 32370705]
[37]
Lee, N.K.; Sowa, H.; Hinoi, E.; Ferron, M.; Ahn, J.D.; Confavreux, C.; Dacquin, R.; Mee, P.J.; McKee, M.D.; Jung, D.Y.; Zhang, Z.; Kim, J.K.; Mauvais-Jarvis, F.; Ducy, P.; Karsenty, G. Endocrine regulation of energy metabolism by the skeleton. Cell, 2007, 130(3), 456-469.
[http://dx.doi.org/10.1016/j.cell.2007.05.047] [PMID: 17693256]
[38]
Komori, T. What is the function of osteocalcin? J Oral Biosci., 2020, 62(3), 223-227.
[http://dx.doi.org/10.1016/j.job.2020.05.004]
[39]
Wei, J.; Hanna, T.; Suda, N.; Karsenty, G.; Ducy, P. Osteocalcin promotes β-cell proliferation during development and adulthood through Gprc6a. Diabetes, 2014, 63(3), 1021-1031.
[http://dx.doi.org/10.2337/db13-0887] [PMID: 24009262]
[40]
Ferron, M.; Wei, J.; Yoshizawa, T.; Del Fattore, A.; DePinho, R.A.; Teti, A.; Ducy, P.; Karsenty, G. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell, 2010, 142(2), 296-308.
[http://dx.doi.org/10.1016/j.cell.2010.06.003] [PMID: 20655470]
[41]
De Toni, L.; Di Nisio, A.; Rocca, M.S.; De Rocco Ponce, M.; Ferlin, A.; Foresta, C. Osteocalcin, a bone-derived hormone with important andrological implications. Andrology, 2017, 5(4), 664-670.
[http://dx.doi.org/10.1111/andr.12359] [PMID: 28395130]
[42]
Pi, M.; Quarles, L.D. Multiligand specificity and wide tissue expression of GPRC6A reveals new endocrine networks. Endocrinology, 2012, 153(5), 2062-2069.
[http://dx.doi.org/10.1210/en.2011-2117] [PMID: 22374969]
[43]
Karsenty, G. Update on the Biology of Osteocalcin. Endocr. Pract., 2017, 23(10), 1270-1274.
[http://dx.doi.org/10.4158/EP171966.RA] [PMID: 28704102]
[44]
Hinoi, E. Pivotal role of skeletal tissues in the regulation mechanisms for physiological functions mediated by multiple organ networks. Yakugaku Zasshi, 2012, 132(6), 721-725.
[http://dx.doi.org/10.1248/yakushi.132.721] [PMID: 22687731]
[45]
Ferron, M.; McKee, M.D.; Levine, R.L.; Ducy, P.; Karsenty, G. Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone, 2012, 50(2), 568-575.
[http://dx.doi.org/10.1016/j.bone.2011.04.017] [PMID: 21550430]
[46]
Karsenty, G.; Mera, P. Molecular bases of the crosstalk between bone and muscle. Bone, 2018, 115, 43-49.
[http://dx.doi.org/10.1016/j.bone.2017.04.006] [PMID: 28428077]
[47]
Jawich, K.; Rocca, M.S.; Al Fahoum, S.; Alhalabi, M.; Di Nisio, A.; Foresta, C.; Ferlin, A.; De Toni, L. RS 2247911 polymorphism of GPRC6A gene and serum undercarboxylated-osteocalcin are associated with testis function. J. Endocrinol. Invest., 2022, 45(9), 1673-1682.
[http://dx.doi.org/10.1007/s40618-022-01803-9] [PMID: 35482214]
[48]
Oury, F.; Sumara, G.; Sumara, O.; Ferron, M.; Chang, H.; Smith, C.E.; Hermo, L.; Suarez, S.; Roth, B.L.; Ducy, P.; Karsenty, G. Endocrine regulation of male fertility by the skeleton. Cell, 2011, 144(5), 796-809.
[http://dx.doi.org/10.1016/j.cell.2011.02.004] [PMID: 21333348]
[49]
Pi, M.; Kapoor, K.; Ye, R.; Hwang, D.J.; Miller, D.D.; Smith, J.C.; Baudry, J.; Quarles, L.D. Computationally identified novel agonists for GPRC6A. PLoS One, 2018, 13(4), e0195980.
[http://dx.doi.org/10.1371/journal.pone.0195980] [PMID: 29684031]
[50]
Pi, M.; Kapoor, K.; Ye, R.; Smith, J.C.; Baudry, J.; Quarles, L.D. GPCR6A is a molecular target for the natural products gallate and EGCG in green tea. Mol. Nutr. Food Res., 2018, 62(8), 1700770.
[http://dx.doi.org/10.1002/mnfr.201700770] [PMID: 29468843]
[51]
Oury, F.; Khrimian, L.; Denny, C.A.; Gardin, A.; Chamouni, A.; Goeden, N.; Huang, Y.; Lee, H.; Srinivas, P.; Gao, X.B.; Suyama, S.; Langer, T.; Mann, J.J.; Horvath, T.L.; Bonnin, A.; Karsenty, G. Maternal and offspring pools of osteocalcin influence brain development and functions. Cell, 2013, 155(1), 228-241.
[http://dx.doi.org/10.1016/j.cell.2013.08.042] [PMID: 24074871]
[52]
Shan, C.; Ghosh, A.; Guo, X.; Wang, S.; Hou, Y.; Li, S.; Liu, J. Roles for osteocalcin in brain signalling: Implications in cognition- and motor-related disorders. Mol. Brain, 2019, 12(1), 23.
[http://dx.doi.org/10.1186/s13041-019-0444-5] [PMID: 30909971]
[53]
Khrimian, L.; Obri, A.; Ramos-Brossier, M.; Rousseaud, A.; Moriceau, S.; Nicot, A.S.; Mera, P.; Kosmidis, S.; Karnavas, T.; Saudou, F.; Gao, X.B.; Oury, F.; Kandel, E.; Karsenty, G. Gpr158 mediates osteocalcin’s regulation of cognition. J. Exp. Med., 2017, 214(10), 2859-2873.
[http://dx.doi.org/10.1084/jem.20171320] [PMID: 28851741]
[54]
Price, P.A.; Fraser, J.D.; Metz-Virca, G. Molecular cloning of matrix Gla protein: Implications for substrate recognition by the vitamin K-dependent gamma-carboxylase. Proc. Natl. Acad. Sci. USA, 1987, 84(23), 8335-8339.
[http://dx.doi.org/10.1073/pnas.84.23.8335] [PMID: 3317405]
[55]
Schurgers, L.J.; Spronk, H.M.H.; Skepper, J.N.; Hackeng, T.M.; Shanahan, C.M.; Vermeer, C.; Weissberg, P.L.; Proudfoot, D. Post-translational modifications regulate matrix Gla protein function: Importance for inhibition of vascular smooth muscle cell calcification. J. Thromb. Haemost., 2007, 5(12), 2503-2511.
[http://dx.doi.org/10.1111/j.1538-7836.2007.02758.x] [PMID: 17848178]
[56]
Zhang, J.; Ma, Z.; Yan, K.; Wang, Y.; Yang, Y.; Wu, X. Matrix gla protein promotes the bone formation by up-regulating Wnt/β-catenin signaling pathway. Front. Endocrinol. (Lausanne), 2019, 10, 891.
[http://dx.doi.org/10.3389/fendo.2019.00891] [PMID: 31920993]
[57]
Bjørklund, G.; Svanberg, E.; Dadar, M.; Card, D.J.; Chirumbolo, S.; Harrington, D.J.; Aaseth, J. The role of matrix gla protein (MGP) in vascular calcification. Curr. Med. Chem., 2020, 27(10), 1647-1660.
[http://dx.doi.org/10.2174/0929867325666180716104159] [PMID: 30009696]
[58]
Borrás, T.; Smith, M.H.; Buie, L.K. A novel Mgp -cre knock-in mouse reveals an anticalcification/antistiffness candidate gene in the trabecular meshwork and peripapillary scleral region. Invest. Ophthalmol. Vis. Sci., 2015, 56(4), 2203-2214.
[http://dx.doi.org/10.1167/iovs.15-16460] [PMID: 25711639]
[59]
Willems, B.A.G.; Vermeer, C.; Reutelingsperger, C.P.M.; Schurgers, L.J. The realm of vitamin K dependent proteins: Shifting from coagulation toward calcification. Mol. Nutr. Food Res., 2014, 58(8), 1620-1635.
[http://dx.doi.org/10.1002/mnfr.201300743] [PMID: 24668744]
[60]
Yao, Y.; Nowak, S.; Yochelis, A.; Garfinkel, A.; Boström, K.I. Matrix GLA protein, an inhibitory morphogen in pulmonary vascular development. J. Biol. Chem., 2007, 282(41), 30131-30142.
[http://dx.doi.org/10.1074/jbc.M704297200] [PMID: 17670744]
[61]
Barrett, H.; O’Keeffe, M.; Kavanagh, E.; Walsh, M.; O’Connor, E. Is matrix gla protein associated with vascular calcification? A systematic review. Nutrients, 2018, 10(4), 415.
[http://dx.doi.org/10.3390/nu10040415] [PMID: 29584693]
[62]
Merle, B.; Garnero, P. The multiple facets of periostin in bone metabolism. Osteoporos. Int., 2012, 23(4), 1199-1212.
[http://dx.doi.org/10.1007/s00198-011-1892-7] [PMID: 22310955]
[63]
Kudo, A. Periostin in bone biology. Adv. Exp. Med. Biol., 2019, 1132, 43-47.
[http://dx.doi.org/10.1007/978-981-13-6657-4_5]
[64]
Maruhashi, T.; Kii, I.; Saito, M.; Kudo, A. Interaction between periostin and BMP-1 promotes proteolytic activation of lysyl oxidase. J. Biol. Chem., 2010, 285(17), 13294-13303.
[http://dx.doi.org/10.1074/jbc.M109.088864] [PMID: 20181949]
[65]
Wang, Z.; An, J.; Zhu, D.; Chen, H.; Lin, A.; Kang, J.; Liu, W.; Kang, X. Periostin: An emerging activator of multiple signaling pathways. J. Cell Commun. Signal., 2022, 16(4), 515-530.
[http://dx.doi.org/10.1007/s12079-022-00674-2] [PMID: 35412260]
[66]
Yue, H.; Li, W.; Chen, R.; Wang, J.; Lu, X.; Li, J. Stromal POSTN induced by TGF-β1 facilitates the migration and invasion of ovarian cancer. Gynecol. Oncol., 2021, 160(2), 530-538.
[http://dx.doi.org/10.1016/j.ygyno.2020.11.026] [PMID: 33317907]
[67]
Ma, H.; Wang, J.; Zhao, X.; Wu, T.; Huang, Z.; Chen, D.; Liu, Y.; Ouyang, G. Periostin promotes colorectal tumorigenesis through integrin-FAK-Src pathway-mediated YAP/TAZ activation. Cell Rep., 2020, 30(3), 793-806.e6.
[http://dx.doi.org/10.1016/j.celrep.2019.12.075] [PMID: 31968254]
[68]
Rosset, E.M.; Bradshaw, A.D. SPARC/osteonectin in mineralized tissue. Matrix Biol., 2016, 52-54, 78-87.
[http://dx.doi.org/10.1016/j.matbio.2016.02.001] [PMID: 26851678]
[69]
Rossi, M.K.; Gnanamony, M.; Gondi, C.S. The ‘SPARC’ of life: Analysis of the role of osteonectin/SPARC in pancreatic cancer. Int. J. Oncol., 2016, 48(5), 1765-1771.
[http://dx.doi.org/10.3892/ijo.2016.3417] [PMID: 26983777]
[70]
Mansergh, F.C.; Wells, T.; Elford, C.; Evans, S.L.; Perry, M.J.; Evans, M.J.; Evans, B.A.J. Osteopenia in Sparc (osteonectin)-deficient mice: Characterization of phenotypic determinants of femoral strength and changes in gene expression. Physiol. Genomics, 2007, 32(1), 64-73.
[http://dx.doi.org/10.1152/physiolgenomics.00151.2007] [PMID: 17878319]
[71]
Guweidhi, A.; Kleeff, J.; Adwan, H.; Giese, N.A.; Wente, M.N.; Giese, T.; Büchler, M.W.; Berger, M.R.; Friess, H. Osteonectin influences growth and invasion of pancreatic cancer cells. Ann. Surg., 2005, 242(2), 224-234.
[http://dx.doi.org/10.1097/01.sla.0000171866.45848.68] [PMID: 16041213]
[72]
Bradshaw, A.D.; Sage, E.H. SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. J. Clin. Invest., 2001, 107(9), 1049-1054.
[http://dx.doi.org/10.1172/JCI12939] [PMID: 11342565]
[73]
Hu, J.; Ma, Y.; Ma, J.; Chen, S.; Zhang, X.; Guo, S.; Huang, Z.; Yue, T.; Yang, Y.; Ning, Y.; Zhu, J.; Wang, P.; Wang, X.; Chen, G.; Liu, Y. Macrophage-derived SPARC Attenuates M2-mediated Pro-tumour Phenotypes. J. Cancer, 2020, 11(10), 2981-2992.
[http://dx.doi.org/10.7150/jca.39651] [PMID: 32226513]
[74]
Lund, S.A.; Giachelli, C.M.; Scatena, M. The role of osteopontin in inflammatory processes. J. Cell Commun. Signal., 2009, 3(3-4), 311-322.
[http://dx.doi.org/10.1007/s12079-009-0068-0] [PMID: 19798593]
[75]
Wolak, T. Osteopontin – A multi-modal marker and mediator in atherosclerotic vascular disease. Atherosclerosis, 2014, 236(2), 327-337.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.07.004] [PMID: 25128758]
[76]
O’Regan, A.; Berman, J.S. Osteopontin: A key cytokine in cell-mediated and granulomatous inflammation. Int. J. Exp. Pathol., 2000, 81(6), 373-390.
[http://dx.doi.org/10.1046/j.1365-2613.2000.00163.x] [PMID: 11298186]
[77]
Scatena, M.; Liaw, L.; Giachelli, C.M. Osteopontin. Arterioscler. Thromb. Vasc. Biol., 2007, 27(11), 2302-2309.
[http://dx.doi.org/10.1161/ATVBAHA.107.144824] [PMID: 17717292]
[78]
Addison, W.N.; Azari, F.; Sørensen, E.S.; Kaartinen, M.T.; McKee, M.D. Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, up-regulating osteopontin, and inhibiting alkaline phosphatase activity. J. Biol. Chem., 2007, 282(21), 15872-15883.
[http://dx.doi.org/10.1074/jbc.M701116200] [PMID: 17383965]
[79]
Udagawa, N.; Takahashi, N.; Yasuda, H.; Mizuno, A.; Itoh, K.; Ueno, Y.; Shinki, T.; Gillespie, M.T.; Martin, T.J.; Higashio, K.; Suda, T. Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology, 2000, 141(9), 3478-3484.
[http://dx.doi.org/10.1210/endo.141.9.7634] [PMID: 10965921]
[80]
Singh, A.; Gill, G.; Kaur, H.; Amhmed, M.; Jakhu, H. Role of osteopontin in bone remodeling and orthodontic tooth movement: A review. Prog. Orthod., 2018, 19(1), 18.
[http://dx.doi.org/10.1186/s40510-018-0216-2] [PMID: 29938297]
[81]
Gunes, M.; Temizkan, S.; Apaydin, T.; Ilgin, C.; Haklar, G.; Gogas Yavuz, D. Serum osteoprotegerin levels, endothelial function and carotid intima-media thickness in type 2 diabetic patients. J. Diabetes Complications, 2021, 35(12), 108073.
[http://dx.doi.org/10.1016/j.jdiacomp.2021.108073] [PMID: 34635402]
[82]
Cook, A.C.; Tuck, A.B.; McCarthy, S.; Turner, J.G.; Irby, R.B.; Bloom, G.C.; Yeatman, T.J.; Chambers, A.F. Osteopontin induces multiple changes in gene expression that reflect the six “hallmarks of cancer” in a model of breast cancer progression. Mol. Carcinog., 2005, 43(4), 225-236.
[http://dx.doi.org/10.1002/mc.20105] [PMID: 15864800]
[83]
Shevde, L.A.; Samant, R.S. Role of osteopontin in the pathophysiology of cancer. Matrix Biol., 2014, 37, 131-141.
[http://dx.doi.org/10.1016/j.matbio.2014.03.001] [PMID: 24657887]
[84]
Robertson, B.W.; Bonsal, L.; Chellaiah, M.A. Regulation of Erk1/2 activation by osteopontin in PC3 human prostate cancer cells. Mol. Cancer, 2010, 9(1), 260.
[http://dx.doi.org/10.1186/1476-4598-9-260] [PMID: 20868520]
[85]
Kurisetty, V.V.; Johnston, P.G.; Johnston, N.; Erwin, P.; Crowe, P.; Fernig, D.G.; Campbell, F.C.; Anderson, I.P.; Rudland, P.S.; El-Tanani, M.K. RAN GTPase is an effector of the invasive/metastatic phenotype induced by osteopontin. Oncogene, 2008, 27(57), 7139-7149.
[http://dx.doi.org/10.1038/onc.2008.325] [PMID: 18794800]
[86]
Martinez, C.; Churchman, M.; Freeman, T.; Ilyas, M. Osteopontin provides early proliferative drive and may be dependent upon aberrant c-myc signalling in murine intestinal tumours. Exp. Mol. Pathol., 2010, 88(2), 272-277.
[http://dx.doi.org/10.1016/j.yexmp.2009.12.008] [PMID: 20053348]
[87]
Amilca-Seba, K.; Sabbah, M.; Larsen, A.K.; Denis, J.A. Osteopontin as a regulator of colorectal cancer progression and its clinical applications. Cancers (Basel), 2021, 13(15), 3793.
[http://dx.doi.org/10.3390/cancers13153793] [PMID: 34359694]
[88]
Hao, C.; Lane, J.; Jiang, W.G. Osteopontin and cancer: Insights into its role in drug resistance. Biomedicines, 2023, 11(1), 197.
[http://dx.doi.org/10.3390/biomedicines11010197] [PMID: 36672705]
[89]
Ouyang, X.; Huang, Y.; Jin, X.; Zhao, W.; Hu, T.; Wu, F.; Huang, J. Osteopontin promotes cancer cell drug resistance, invasion, and lactate production and is associated with poor outcome of patients with advanced non-small-cell lung cancer. OncoTargets Ther., 2018, 11, 5933-5941.
[http://dx.doi.org/10.2147/OTT.S164007] [PMID: 30275702]
[90]
Aksoy, A.; Artas, G.; Sevindik, O.G. Predictive value of stathmin-1 and osteopontin expression for taxan resistance in metastatic castrate-resistant prostate cancer. Pak. J. Med. Sci., 2017, 33(3), 560-565.
[http://dx.doi.org/10.12669/pjms.333.12559] [PMID: 28811771]
[91]
Lamort, A.S.; Giopanou, I.; Psallidas, I.; Stathopoulos, G.T. Osteopontin as a Link between Inflammation and Cancer: The Thorax in the Spotlight. Cells, 2019, 8(8), 815.
[http://dx.doi.org/10.3390/cells8080815] [PMID: 31382483]
[92]
Kahles, F.; Findeisen, H.M.; Bruemmer, D. Osteopontin: A novel regulator at the cross roads of inflammation, obesity and diabetes. Mol. Metab., 2014, 3(4), 384-393.
[http://dx.doi.org/10.1016/j.molmet.2014.03.004] [PMID: 24944898]
[93]
Rittling, S.R.; Singh, R. Osteopontin in immune-mediated diseases. J. Dent. Res., 2015, 94(12), 1638-1645.
[http://dx.doi.org/10.1177/0022034515605270] [PMID: 26341976]
[94]
Santamaría, M.H.; Corral, R.S. Osteopontin-dependent regulation of Th1 and Th17 cytokine responses in Trypanosoma cruzi-infected C57BL/6 mice. Cytokine, 2013, 61(2), 491-498.
[http://dx.doi.org/10.1016/j.cyto.2012.10.027] [PMID: 23199812]
[95]
Hirano, Y.; Aziz, M.; Yang, W.L.; Wang, Z.; Zhou, M.; Ochani, M.; Khader, A.; Wang, P. Neutralization of osteopontin attenuates neutrophil migration in sepsis-induced acute lung injury. Crit. Care, 2015, 19(1), 53.
[http://dx.doi.org/10.1186/s13054-015-0782-3] [PMID: 25887405]
[96]
Wesson, J.A.; Johnson, R.J.; Mazzali, M.; Beshensky, A.M.; Stietz, S.; Giachelli, C.; Liaw, L.; Alpers, C.E.; Couser, W.G.; Kleinman, J.G.; Hughes, J. Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. J. Am. Soc. Nephrol., 2003, 14(1), 139-147.
[http://dx.doi.org/10.1097/01.ASN.0000040593.93815.9D] [PMID: 12506146]
[97]
Özkalaycı, F.; Gülmez, Ö.; Uğur-Altun, B.; Pandi-Perumal, S.R.; Altun, A. The role of osteoprotegerin as a cardioprotective versus reactive inflammatory marker: The chicken or the egg paradox. Balkan Med. J., 2018, 35(3), 225-232.
[http://dx.doi.org/10.4274/balkanmedj.2018.0579] [PMID: 29687784]
[98]
Simonet, W.S.; Lacey, D.L.; Dunstan, C.R.; Kelley, M.; Chang, M.S.; Lüthy, R.; Nguyen, H.Q.; Wooden, S.; Bennett, L.; Boone, T.; Shimamoto, G.; DeRose, M.; Elliott, R.; Colombero, A.; Tan, H.L.; Trail, G.; Sullivan, J.; Davy, E.; Bucay, N.; Renshaw-Gegg, L.; Hughes, T.M.; Hill, D.; Pattison, W.; Campbell, P.; Sander, S.; Van, G.; Tarpley, J.; Derby, P.; Lee, R.; Boyle, W.J. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell, 1997, 89(2), 309-319.
[http://dx.doi.org/10.1016/S0092-8674(00)80209-3] [PMID: 9108485]
[99]
Boyce, B.F.; Xing, L. The RANKL/RANK/OPG pathway. Curr. Osteoporos. Rep., 2007, 5(3), 98-104.
[http://dx.doi.org/10.1007/s11914-007-0024-y] [PMID: 17925190]
[100]
Aubin, J.E.; Bonnelye, E. Osteoprotegerin and its ligand: A new paradigm for regulation of osteoclastogenesis and bone resorption. Osteoporos. Int., 2000, 11(11), 905-913.
[http://dx.doi.org/10.1007/s001980070028] [PMID: 11193242]
[101]
Bucay, N.; Sarosi, I.; Dunstan, C.R.; Morony, S.; Tarpley, J.; Capparelli, C.; Scully, S.; Tan, H.L.; Xu, W.; Lacey, D.L.; Boyle, W.J.; Simonet, W.S. osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev., 1998, 12(9), 1260-1268.
[http://dx.doi.org/10.1101/gad.12.9.1260] [PMID: 9573043]
[102]
Saidenberg-Kermanac’h, N.; Cohen-Solal, M.; Bessis, N.; De Vernejoul, M.C.; Boissier, M.C. Role for osteoprotegerin in rheumatoid inflammation. Joint Bone Spine, 2004, 71(1), 9-13.
[http://dx.doi.org/10.1016/S1297-319X(03)00131-3] [PMID: 14769514]
[103]
Akiyama, T.; Shinzawa, M.; Akiyama, N. RANKL-RANK interaction in immune regulatory systems. World J. Orthop., 2012, 3(9), 142-150.
[http://dx.doi.org/10.5312/wjo.v3.i9.142] [PMID: 23173110]
[104]
Chino, T.; Draves, K.E.; Clark, E.A. Regulation of dendritic cell survival and cytokine production by osteoprotegerin. J. Leukoc. Biol., 2009, 86(4), 933-940.
[http://dx.doi.org/10.1189/jlb.0708419] [PMID: 19641036]
[105]
Di Bartolo, B.A.; Schoppet, M.; Mattar, M.Z.; Rachner, T.D.; Shanahan, C.M.; Kavurma, M.M. Calcium and osteoprotegerin regulate IGF1R expression to inhibit vascular calcification. Cardiovasc. Res., 2011, 91(3), 537-545.
[http://dx.doi.org/10.1093/cvr/cvr084] [PMID: 21447702]
[106]
Wang, Y.; Liu, Y.; Huang, Z.; Chen, X.; Zhang, B. The roles of osteoprotegerin in cancer, far beyond a bone player. Cell Death Discov., 2022, 8(1), 252.
[http://dx.doi.org/10.1038/s41420-022-01042-0] [PMID: 35523775]
[107]
Ono, T.; Hayashi, M.; Sasaki, F.; Nakashima, T. RANKL biology: Bone metabolism, the immune system, and beyond. Inflamm. Regen., 2020, 40(1), 2.
[http://dx.doi.org/10.1186/s41232-019-0111-3] [PMID: 32047573]
[108]
Alsterda, A.; Asha, K.; Powrozek, O.; Repak, M.; Goswami, S.; Dunn, A.M.; Memmel, H.C.; Sharma-Walia, N. Salubrinal exposes anticancer properties in inflammatory breast cancer cells by manipulating the endoplasmic reticulum stress pathway. Front. Oncol., 2021, 11, 654940.
[http://dx.doi.org/10.3389/fonc.2021.654940] [PMID: 34094947]
[109]
Holen, I.; Shipman, C.M. Role of osteoprotegerin (OPG) in cancer. Clin. Sci. (Lond.), 2006, 110(3), 279-291.
[http://dx.doi.org/10.1042/CS20050175] [PMID: 16464170]
[110]
Kallioniemi, A. Bone morphogenetic protein 4—a fascinating regulator of cancer cell behavior. Cancer Genet., 2012, 205(6), 267-277.
[http://dx.doi.org/10.1016/j.cancergen.2012.05.009] [PMID: 22749032]
[111]
Farhadieh, R.D.; Gianoutsos, M.P.; Yu, Y.; Walsh, W.R. The role of bone morphogenetic proteins BMP-2 and BMP-4 and their related postreceptor signaling system (Smads) in distraction osteogenesis of the mandible. J. Craniofac. Surg., 2004, 15(5), 714-718.
[http://dx.doi.org/10.1097/00001665-200409000-00003] [PMID: 15346005]
[112]
Choi, S.; Yu, J.; Park, A.; Dubon, M.J.; Do, J.; Kim, Y.; Nam, D.; Noh, J.; Park, K.S. BMP-4 enhances epithelial mesenchymal transition and cancer stem cell properties of breast cancer cells via Notch signaling. Sci. Rep., 2019, 9(1), 11724.
[http://dx.doi.org/10.1038/s41598-019-48190-5] [PMID: 31409851]
[113]
Deng, G.; Chen, Y.; Guo, C.; Yin, L.; Han, Y.; Li, Y.; Fu, Y.; Cai, C.; Shen, H.; Zeng, S. BMP4 promotes the metastasis of gastric cancer by inducing epithelial-mesenchymal transition via Id1. J. Cell Sci., 2020, 133(11), jcs.237222.
[http://dx.doi.org/10.1242/jcs.237222] [PMID: 32376787]
[114]
Westhrin, M.; Holien, T.; Zahoor, M.; Moen, S.H.; Buene, G.; Størdal, B.; Hella, H.; Yuan, H.; de Bruijn, J.D.; Martens, A.; Groen, R.W.J.; Bosch, F.; Smith, U.; Sponaas, A.M.; Sundan, A.; Standal, T. Bone morphogenetic protein 4 gene therapy in mice inhibits myeloma tumor growth, but has a negative impact on bone. JBMR Plus, 2020, 4(1), e10247.
[http://dx.doi.org/10.1002/jbm4.10247] [PMID: 31956851]
[115]
Chiu, C.Y.; Kuo, K.K.; Kuo, T.L.; Lee, K.T.; Cheng, K.H. The activation of MEK/ERK signaling pathway by bone morphogenetic protein 4 to increase hepatocellular carcinoma cell proliferation and migration. Mol. Cancer Res., 2012, 10(3), 415-427.
[http://dx.doi.org/10.1158/1541-7786.MCR-11-0293] [PMID: 22241220]
[116]
Cao, Y.; Tan, Q.; Li, J.; Wang, J. Bone morphogenetic proteins 2, 6, and 9 differentially regulate the osteogenic differentiation of immortalized preodontoblasts. Braz. J. Med. Biol. Res., 2020, 53(9), e9750.
[http://dx.doi.org/10.1590/1414-431x20209750] [PMID: 32756815]
[117]
Simic, P.; Culej, J.B.; Orlic, I.; Grgurevic, L.; Draca, N.; Spaventi, R.; Vukicevic, S. Systemically administered bone morphogenetic protein-6 restores bone in aged ovariectomized rats by increasing bone formation and suppressing bone resorption. J. Biol. Chem., 2006, 281(35), 25509-25521.
[http://dx.doi.org/10.1074/jbc.M513276200] [PMID: 16798745]
[118]
Dichmann, D.S.; Miller, C.P.; Jensen, J.; Scott Heller, R.; Serup, P. Expression and misexpression of members of the FGF and TGFβ families of growth factors in the developing mouse pancreas. Dev. Dyn., 2003, 226(4), 663-674.
[http://dx.doi.org/10.1002/dvdy.10270] [PMID: 12666204]
[119]
Pauk, M.; Bordukalo-Niksic, T.; Brkljacic, J.; Paralkar, V.M.; Brault, A.L.; Dumic-Cule, I.; Borovecki, F.; Grgurevic, L.; Vukicevic, S. A novel role of bone morphogenetic protein 6 (BMP6) in glucose homeostasis. Acta Diabetol., 2019, 56(3), 365-371.
[http://dx.doi.org/10.1007/s00592-018-1265-1] [PMID: 30539233]
[120]
Singla, D.K.; Singla, R.; Wang, J. BMP-7 treatment increases M2 macrophage differentiation and reduces inflammation and plaque formation in Apo E-/- mice. PLoS One, 2016, 11(1), e0147897.
[http://dx.doi.org/10.1371/journal.pone.0147897] [PMID: 26824441]
[121]
Wang, G.; Han, J.; Wang, S.; Li, P. Expression and purification of recombinant human bone morphogenetic protein-7 in Escherichia coli. Prep. Biochem. Biotechnol., 2014, 44(1), 16-25.
[http://dx.doi.org/10.1080/10826068.2013.782043] [PMID: 24117149]
[122]
Narasimhulu, C.A.; Singla, D.K. BMP-7 attenuates sarcopenia and adverse muscle remodeling in diabetic mice via alleviation of lipids, inflammation, HMGB1, and pyroptosis. Antioxidants, 2023, 12(2), 331.
[http://dx.doi.org/10.3390/antiox12020331] [PMID: 36829889]
[123]
Davies, M.R.; Lund, R.J.; Hruska, K.A. BMP-7 is an efficacious treatment of vascular calcification in a murine model of atherosclerosis and chronic renal failure. J. Am. Soc. Nephrol., 2003, 14(6), 1559-1567.
[http://dx.doi.org/10.1097/01.ASN.0000068404.57780.DD] [PMID: 12761256]
[124]
Dorai, H.; Sampath, T.K. Bone morphogenetic protein-7 modulates genes that maintain the vascular smooth muscle cell phenotype in culture. J. Bone Joint Surg. Am., 2001, 83(Pt 1)(Suppl. 1), S1-, 70-S1-78.
[http://dx.doi.org/10.2106/00004623-200100001-00010] [PMID: 11263669]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy