Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Bile Acids as Signaling Molecules: Role of Ursodeoxycholic Acid in Cholestatic Liver Disease

Author(s): Eduardo Cifuentes-Silva and Claudio Cabello-Verrugio*

Volume 25, Issue 3, 2024

Published on: 18 August, 2023

Page: [206 - 214] Pages: 9

DOI: 10.2174/1389203724666230818092800

Price: $65

conference banner
Abstract

Ursodeoxycholic acid (UDCA) is a natural substance physiologically produced in the liver. Initially used to dissolve gallstones, it is now successfully used in treating primary biliary cirrhosis and as adjuvant therapy for various hepatobiliary cholestatic diseases. However, the mechanisms underlying its beneficial effects still need to be clarified. Evidence suggests three mechanisms of action for UDCA that could benefit humans with cholestatic liver disease (CLD): protection of cholangiocytes against hydrophobic bile acid (BA) cytotoxicity, stimulation of hepatobiliary excretion, and protection of hepatocytes against BA-induced apoptosis. These mechanisms may act individually or together to potentiate them. At the molecular level, it has been observed that UDCA can generate modifications in the transcription and translation of proteins essential in the transport of BA, correcting the deficit in BA secretion in CLD, in addition to activating signaling pathways to translocate these transporters to the sites where they should fulfill their function. Inhibition of BA-induced hepatocyte apoptosis may play a role in CLD, characterized by BA retention in the hepatocyte. Thus, different mechanisms of action contribute to the improvement after UDCA administration in CLD. On the other hand, the effects of UDCA on tissues that possess receptors that may interact with BAs in pathological contexts, such as skeletal muscle, are still unclear. This work aims to describe the main molecular mechanisms by which UDCA acts in the human body, emphasizing the interaction in tissues other than the liver.

Keywords: Ursodeoxycholic acid, liver diseases, skeletal muscle, hepatobiliary cholestatic diseases, cholestatic liver disease, hydrophobic bile acid.

Graphical Abstract
[1]
Monte, M.J.; Marin, J.J.G.; Antelo, A.; Vazquez-Tato, J. Bile acids: Chemistry, physiology, and pathophysiology. World J. Gastroenterol., 2009, 15(7), 804-816.
[http://dx.doi.org/10.3748/wjg.15.804] [PMID: 19230041]
[2]
Chiang, J.Y.L. Bile acids: Regulation of synthesis. J. Lipid Res., 2009, 50(10), 1955-1966.
[http://dx.doi.org/10.1194/jlr.R900010-JLR200] [PMID: 19346330]
[3]
Pedersen, J.I. Peroxisomal oxidation of the steroid side chain in bile acid formation. Biochimie, 1993, 75(3-4), 159-165.
[http://dx.doi.org/10.1016/0300-9084(93)90073-2] [PMID: 8507677]
[4]
Orozco-Aguilar, J.; Simon, F.; Cabello-Verrugio, C. Redoxdependent effects in the physiopathological role of bile acids. Oxid. Med. Cell. Longev., 2021, 2021, 1-15.
[http://dx.doi.org/10.1155/2021/4847941] [PMID: 34527174]
[5]
Zangerolamo, L.; Vettorazzi, J.F.; Rosa, L.R.O.; Carneiro, E.M.; Barbosa, H.C.L. The bile acid TUDCA and neurodegenerative disorders: An overview. Life Sci., 2021, 272, 119252.
[http://dx.doi.org/10.1016/j.lfs.2021.119252] [PMID: 33636170]
[6]
Warren, D.B.; Chalmers, D.K.; Hutchison, K.; Dang, W.; Pouton, C.W. Molecular dynamics simulations of spontaneous bile salt aggregation. Colloids Surf. A Physicochem. Eng. Asp., 2006, 280(1-3), 182-193.
[http://dx.doi.org/10.1016/j.colsurfa.2006.02.009]
[7]
Hofmann, A.F. Pharmacology of ursodeoxycholic acid, an enterohepatic drug. Scand. J. Gastroenterol., 1994, 29, 1-15.
[http://dx.doi.org/10.3109/00365529409103618] [PMID: 7824870]
[8]
Chiang, J.Y. Bile acid metabolism and signaling. Compr. Physiol., 2013, 3(3), 1191-1212.
[http://dx.doi.org/10.1002/cphy.c120023] [PMID: 23897684]
[9]
Wang, D.Q.H.; Tazuma, S.; Cohen, D.E.; Carey, M.C. Feeding natural hydrophilic bile acids inhibits intestinal cholesterol absorption : Studies in the gallstonesusceptible mouse. Am. J. Physiol. Gastrointest. Liver Physiol., 2003, 285(3), G494-G502.
[http://dx.doi.org/10.1152/ajpgi.00156.2003] [PMID: 12748061]
[10]
Ding, L.; Yang, L.; Wang, Z.; Huang, W. Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharm. Sin. B, 2015, 5(2), 135-144.
[http://dx.doi.org/10.1016/j.apsb.2015.01.004] [PMID: 26579439]
[11]
Duboc, H.; Taché, Y.; Hofmann, A. F. The bile acid TGR5 membrane receptor: From basic research to clinical application Digestive and Liver Dis., 2014, 46(4), 302-312.
[12]
Wolkoff, A.W.; Cohen, D.E. I. Hepatocyte transport of bile acids. Am. J. Physiol. Gastrointest. Liver Physiol., 2003, 284(2), G175-G179.
[http://dx.doi.org/10.1152/ajpgi.00409.2002] [PMID: 12529265]
[13]
Ridlon, J.M.; Bajaj, J.S. The human gut sterolbiome : Bile acid-microbiome endocrine aspects and therapeutics. Acta Pharm. Sin. B, 2015, 5(2), 99-105.
[http://dx.doi.org/10.1016/j.apsb.2015.01.006] [PMID: 26579434]
[14]
Li, T.; Chiang, J.Y.L. Nuclear receptors in bile acid metabolism. Drug Metab. Rev., 2013, 45(1), 145-155.
[http://dx.doi.org/10.3109/03602532.2012.740048] [PMID: 23330546]
[15]
Russell, D.W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem., 2003, 72(1), 137-174.
[http://dx.doi.org/10.1146/annurev.biochem.72.121801.161712] [PMID: 12543708]
[16]
Zhang, M.; Chiang, J.Y.L. Transcriptional regulation of the human sterol 12alpha-hydroxylase gene (CYP8B1): roles of heaptocyte nuclear factor 4alpha in mediating bile acid repression. J. Biol. Chem., 2001, 276(45), 41690-41699.
[http://dx.doi.org/10.1074/jbc.M105117200] [PMID: 11535594]
[17]
McGlone, E.R.; Bloom, S.R. Bile acids and the metabolic syndrome. Ann. Clin. Biochem., 2019, 56(3), 326-337.
[http://dx.doi.org/10.1177/0004563218817798] [PMID: 30453753]
[18]
Lee, J.W.; Cowley, E.S.; Wolf, P.G.; Doden, H.L.; Murai, T.; Caicedo, K.Y.O.; Ly, L.K.; Sun, F.; Takei, H.; Nittono, H.; Daniel, S.L.; Cann, I.; Gaskins, H.R.; Anantharaman, K.; Alves, J.M.P.; Ridlon, J.M. Formation of secondary allobile acids by novel enzymes from gut firmicutes. Gut Microb., 2022, 14(1), 2132903.
[http://dx.doi.org/10.1080/19490976.2022.2132903] [PMID: 36343662]
[19]
Lepercq, P.; Gérard, P.; Béguet, F.; Raibaud, P.; Grill, J.P.; Relano, P.; Cayuela, C.; Juste, C. Epimerization of chenodeoxycholic acid to ursodeoxycholic acid by clostridium baratii isolated from human feces. FEMS Microbiol. Lett., 2004, 235(1), 65-72.
[http://dx.doi.org/10.1111/j.1574-6968.2004.tb09568.x] [PMID: 15158263]
[20]
Jia, E.; Liu, Z.; Pan, M.; Lu, J.; Ge, Q. Regulation of bile acid metabolismrelated signaling pathways by gut microbiota in diseases. J. Zhejiang Univ. Sci. B, 2019, 20(10), 781-792.
[http://dx.doi.org/10.1631/jzus.B1900073] [PMID: 31489798]
[21]
Cariello, M.; Piccinin, E.; Garcia-Irigoyen, O.; Sabbà, C.; Moschetta, A. Nuclear receptor FXR, bile acids and liver damage : Introducing the progressive familial intrahepatic cholestasis with FXR mutations. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(4)(4 Pt B), 1308-1318.
[http://dx.doi.org/10.1016/j.bbadis.2017.09.019] [PMID: 28965883]
[22]
Bishop-Bailey, D.; Walsh, D.T.; Warner, T.D. Expression and activation of the farnesoid X receptor in the vasculature. Proc. Natl. Acad. Sci. USA, 2004, 101(10), 3668-3673.
[http://dx.doi.org/10.1073/pnas.0400046101] [PMID: 14990788]
[23]
Gui, T.; Gai, Z. Genome-wide profiling to analyze the effects of FXR activation on mouse renal proximal tubular cells. Genom. Data, 2015, 6, 31-32.
[http://dx.doi.org/10.1016/j.gdata.2015.07.026] [PMID: 26697325]
[24]
Shin, D.J.; Wang, L. Bile acid-activated receptors: A review on FXR and other nuclear receptors. Handb. Exp. Pharmacol., 2019, 256, 51-72.
[http://dx.doi.org/10.1007/164_2019_236] [PMID: 31230143]
[25]
Kim, I.; Ahn, S.H.; Inagaki, T.; Choi, M.; Ito, S.; Guo, G.L.; Kliewer, S.A.; Gonzalez, F.J. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J. Lipid Res., 2007, 48(12), 2664-2672.
[http://dx.doi.org/10.1194/jlr.M700330-JLR200] [PMID: 17720959]
[26]
Inagaki, T.; Choi, M.; Moschetta, A.; Peng, L.; Cummins, C.L.; McDonald, J.G.; Luo, G.; Jones, S.A.; Goodwin, B.; Richardson, J.A.; Gerard, R.D.; Repa, J.J.; Mangelsdorf, D.J.; Kliewer, S.A. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab., 2005, 2(4), 217-225.
[http://dx.doi.org/10.1016/j.cmet.2005.09.001] [PMID: 16213224]
[27]
Teng, S.; Piquette-Miller, M. Hepatoprotective role of PXR activation and MRP3 in cholic acid-induced cholestasis. Br. J. Pharmacol., 2007, 151(3), 367-376.
[http://dx.doi.org/10.1038/sj.bjp.0707235] [PMID: 17435798]
[28]
Han, S.; Li, T.; Ellis, E.; Strom, S.; Chiang, J.Y.L. A novel bile acidactivated vitamin D receptor signaling in human hepatocytes. Mol. Endocrinol., 2010, 24(6), 1151-1164.
[http://dx.doi.org/10.1210/me.2009-0482] [PMID: 20371703]
[29]
Chiang, J.Y.L.; Kimmel, R.; Stroup, D. Regulation of cholesterol 7α-hydroxylase gene ( CYP7A1 ) transcription by the liver orphan receptor (LXRα). Gene, 2001, 262(1-2), 257-265.
[http://dx.doi.org/10.1016/S0378-1119(00)00518-7] [PMID: 11179691]
[30]
Kawamata, Y.; Fujii, R.; Hosoya, M.; Harada, M.; Yoshida, H.; Miwa, M.; Fukusumi, S.; Habata, Y.; Itoh, T.; Shintani, Y.; Hinuma, S.; Fujisawa, Y.; Fujino, M. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem., 2003, 278(11), 9435-9440.
[http://dx.doi.org/10.1074/jbc.M209706200] [PMID: 12524422]
[31]
Tiwari, A.; Maiti, P. TGR5: An emerging bile acid G-protein-coupled receptor target for the potential treatment of metabolic disorders. Drug Discov. Today, 2009, 14(9-10), 523-530.
[http://dx.doi.org/10.1016/j.drudis.2009.02.005] [PMID: 19429513]
[32]
Li, T.; Chiang, J.Y.L. Bile acid signaling in metabolic disease and drug therapy. Pharmacol. Rev., 2014, 66(4), 948-983.
[http://dx.doi.org/10.1124/pr.113.008201] [PMID: 25073467]
[33]
Perino, A.; Pols, T.W.H.; Nomura, M.; Stein, S.; Pellicciari, R.; Schoonjans, K. TGR5 reduces macrophage migration through mTOR-induced C/EBPβ differential translation. J. Clin. Invest., 2014, 124(12), 5424-5436.
[http://dx.doi.org/10.1172/JCI76289] [PMID: 25365223]
[34]
Guo, C.; Chen, W.D.; Wang, Y.D. TGR5, Not only a metabolic regulator. Front. Physiol., 2016, 7, 646.
[http://dx.doi.org/10.3389/fphys.2016.00646] [PMID: 28082913]
[35]
Wang, Y.D.; Chen, W.D.; Yu, D.; Forman, B.M.; Huang, W. The G-Protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) in mice. Hepatology, 2011, 54(4), 1421-1432.
[http://dx.doi.org/10.1002/hep.24525] [PMID: 21735468]
[36]
Guo, C.; Qi, H.; Yu, Y.; Zhang, Q.; Su, J.; Yu, D.; Huang, W.; Chen, W.D.; Wang, Y.D. The G-protein-coupled bile acid receptor Gpbar1 (TGR5) inhibits gastric inflammation through antagonizing NF-κB signaling pathway. Front. Pharmacol., 2015, 6, 287.
[http://dx.doi.org/10.3389/fphar.2015.00287] [PMID: 26696888]
[37]
Kida, T.; Tsubosaka, Y.; Hori, M.; Ozaki, H.; Murata, T. Bile acid receptor TGR5 agonism induces no production and reduces monocyte adhesion in vascular endothelial cells. Arterioscler. Thromb. Vasc. Biol., 2013, 33(7), 1663-1669.
[http://dx.doi.org/10.1161/ATVBAHA.113.301565] [PMID: 23619297]
[38]
Abrigo, J.; Campos, F.; Gonzalez, F.; Aguirre, F.; Gonzalez, A.; Huerta-Salgado, C.; Conejeros, S.; Simon, F.; Arrese, M.; Cabrera, D.; Elorza, A.A.; Cabello-Verrugio, C. Sarcopenia induced by chronic liver disease in mice requires the expression of the bile acids membrane receptor TGR5. Int. J. Mol. Sci., 2020, 21(21), 7922.
[http://dx.doi.org/10.3390/ijms21217922] [PMID: 33113850]
[39]
Abrigo, J.; Gonzalez, F.; Aguirre, F.; Tacchi, F.; Gonzalez, A.; Meza, M.P.; Simon, F.; Cabrera, D.; Arrese, M.; Karpen, S.; Cabello-Verrugio, C. Cholic acid and deoxycholic acid induce skeletal muscle atrophy through a mechanism dependent on TGR5 receptor. J. Cell. Physiol., 2021, 236(1), 260-272.
[http://dx.doi.org/10.1002/jcp.29839] [PMID: 32506638]
[40]
Son, S.W.; Song, D.S.; Chang, U.I.; Yang, J.M. Definition of sarcopenia in chronic liver disease. Life, 2021, 11(4), 349.
[http://dx.doi.org/10.3390/life11040349] [PMID: 33923561]
[41]
Fickert, P.; Stöger, U.; Fuchsbichler, A.; Moustafa, T.; Marschall, H.U.; Weiglein, A.H.; Tsybrovskyy, O.; Jaeschke, H.; Zatloukal, K.; Denk, H.; Trauner, M. A new xenobioticinduced mouse model of sclerosing cholangitis and biliary fibrosis. Am. J. Pathol., 2007, 171(2), 525-536.
[http://dx.doi.org/10.2353/ajpath.2007.061133] [PMID: 17600122]
[42]
Abrigo, J.; Marín, T.; Aguirre, F.; Tacchi, F.; Vilos, C.; Simon, F.; Arrese, M.; Cabrera, D.; Cabello-Verrugio, C. N-acetyl cysteine attenuates the sarcopenia and muscle apoptosis induced by chronic liver disease. Curr. Mol. Med., 2019, 20(1), 60-71.
[http://dx.doi.org/10.2174/1566524019666190917124636] [PMID: 31530262]
[43]
Campos, F.; Abrigo, J.; Aguirre, F.; Garcés, B.; Arrese, M.; Karpen, S.; Cabrera, D.; Andía, M.E.; Simon, F.; Cabello-Verrugio, C. Sarcopenia in a mice model of chronic liver disease : Role of the ubiquitin–proteasome system and oxidative stress. Pflugers Arch., 2018, 470(10), 1503-1519.
[http://dx.doi.org/10.1007/s00424-018-2167-3] [PMID: 29926227]
[44]
Tamai, Y.; Eguchi, A.; Shigefuku, R.; Kitamura, H.; Tempaku, M.; Sugimoto, R.; Kobayashi, Y.; Iwasa, M.; Takei, Y.; Nakagawa, H. Association of lithocholic acid with skeletal muscle hypertrophy through TGR5-IGF-1 and skeletal muscle mass in cultured mouse myotubes, chronic liver disease rats and humans. eLife, 2022, 11, e80638.
[http://dx.doi.org/10.7554/eLife.80638] [PMID: 36206032]
[45]
Hofmann, A.F.; Hagey, L.R. Bile acids : Chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell. Mol. Life Sci., 2008, 65(16), 2461-2483.
[http://dx.doi.org/10.1007/s00018-008-7568-6] [PMID: 18488143]
[46]
Hope, A.A.; Morrison, R.S. What Is the Clinical Course of Advanced Liver Disease and What Symptoms Are Associated With It?Evidence-Based Practice in Palliative Medicine; Goldstein, N.E.; Morrison, R.S., Eds.; W.B. Saunders: Philadelphia, 2013, pp. 300-307.
[http://dx.doi.org/10.1016/B978-1-4377-3796-7.00053-7]
[47]
Moon, A. M.; Singal, A. G.; Tapper, E. B. Contemporary epidemiology of chronic liver disease and cirrhosis. Clin.gastroenterol. hepatol., 2020, 18(12), 2650-2666.
[48]
Santiago, P.; Scheinberg, A.R.; Levy, C. Cholestatic liver diseases: New targets, new therapies. Ther. Adv. Gastroenterol., 2018, 11
[http://dx.doi.org/10.1177/1756284818787400] [PMID: 30159035]
[49]
Carey, E.J.; Ali, A.H.; Lindor, K.D. Primary biliary cirrhosis. Lancet, 2015, 386(10003), 1565-1575.
[http://dx.doi.org/10.1016/S0140-6736(15)00154-3] [PMID: 26364546]
[50]
Karlsen, T.H.; Folseraas, T.; Thorburn, D.; Vesterhus, M. Primary sclerosing cholangitis : A comprehensive review. J. Hepatol., 2017, 67(6), 1298-1323.
[http://dx.doi.org/10.1016/j.jhep.2017.07.022] [PMID: 28802875]
[51]
Paumgartner, G.; Beuers, U. Mechanisms of action and therapeutic efficacy of ursodeoxycholic acid in cholestatic liver disease. Clin. Liver Dis., 2004, 8(1), 67-81, vi.
[http://dx.doi.org/10.1016/S1089-3261(03)00135-1] [PMID: 15062194]
[52]
Goossens, J.F.; Bailly, C. Ursodeoxycholic acid and cancer : From chemoprevention to chemotherapy. Pharmacol. Ther., 2019, 203, 107396.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107396] [PMID: 31356908]
[53]
Lazaridis, K.N.; Gores, G.J.; Lindor, K.D. Ursodeoxycholic acid ‘mechanisms of action and clinical use in hepatobiliary disorders’. J. Hepatol., 2001, 35(1), 134-146.
[http://dx.doi.org/10.1016/S0168-8278(01)00092-7] [PMID: 11495032]
[54]
Beuers, U. Drug Insight: mechanisms and sites of action of ursodeoxycholic acid in cholestasis. Nat. Clin. Pract. Gastroenterol. Hepatol., 2006, 3(6), 318-328.
[http://dx.doi.org/10.1038/ncpgasthep0521] [PMID: 16741551]
[55]
Köck, K.; Brouwer, K.L.R. A perspective on efflux transport proteins in the liver. Clin. Pharmacol. Ther., 2012, 92(5), 599-612.
[http://dx.doi.org/10.1038/clpt.2012.79] [PMID: 22948894]
[56]
Setchell, K.D.; Rodrigues, C.M.; Clerici, C.; Solinas, A.; Morelli, A.; Gartung, C.; Boyer, J. Bile acid concentrations in human and rat liver tissue and in hepatocyte nuclei. Gastroenterology, 1997, 112(1), 226-235.
[http://dx.doi.org/10.1016/S0016-5085(97)70239-7] [PMID: 8978363]
[57]
Marschall, H.; Wagner, M.; Zollner, G.; Fickert, P.; Diczfalusy, U.; Gumhold, J.; Silbert, D.; Fuchsbichler, A.; Benthin, L.; Grundström, R.; Gustafsson, U.; Sahlin, S.; Einarsson, C.; Trauner, M. Complementary stimulation of hepatobiliary transport and detoxification systems by rifampicin and ursodeoxycholic acid in humans. Gastroenterology, 2005, 129(2), 476-485.
[http://dx.doi.org/10.1016/j.gastro.2005.05.009] [PMID: 16083704]
[58]
Milkiewicz, P.; Roma, M.G.; Elias, E.; Coleman, R. Hepatoprotection with tauroursodeoxycholate and muricholate against taurolithocholate induced cholestasis: involvement of signal transduction pathways. Gut, 2002, 51(1), 113-119.
[http://dx.doi.org/10.1136/gut.51.1.113] [PMID: 12077103]
[59]
Paumgartner, G.; Beuers, U. Ursodeoxycholic acid in cholestatic liver disease: Mechanisms of action and therapeutic use revisited. Hepatology, 2002, 36(3), 525-531.
[http://dx.doi.org/10.1053/jhep.2002.36088] [PMID: 12198643]
[60]
Schoemaker, M.H.; Conde de la Rosa, L.; Buist-Homan, M.; Vrenken, T.E.; Havinga, R.; Poelstra, K.; Haisma, H.J.; Jansen, P.L.M.; Moshage, H. Tauroursodeoxycholic acid protects rat hepatocytes from bile acid-induced apoptosis via activation of survival pathways. Hepatology, 2004, 39(6), 1563-1573.
[http://dx.doi.org/10.1002/hep.20246] [PMID: 15185297]
[61]
Amaral, J.D.; Viana, R.J.S.; Ramalho, R.M.; Steer, C.J.; Rodrigues, C.M.P. Bile acids: Regulation of apoptosis by ursodeoxycholic acid. J. Lipid Res., 2009, 50(9), 1721-1734.
[http://dx.doi.org/10.1194/jlr.R900011-JLR200] [PMID: 19417220]
[62]
Parés, A.; Caballería, L.; Rodés, J.; Bruguera, M.; Rodrigo, L.; García-Plaza, A.; Berenguer, J.; Rodríguez-Martínez, D.; Mercader, J.; Velicia, R. Long-term effects of ursodeoxycholic acid in primary biliary cirrhosis: Results of a double-blind controlled multicentric trial. J. Hepatol., 2000, 32(4), 561-566.
[http://dx.doi.org/10.1016/S0168-8278(00)80216-0] [PMID: 10782903]
[63]
Van Nieuwkerk, C.M.; Elferink, R.P.; Groen, A.K.; Ottenhoff, R.; Tytgat, G.N.; Dingemans, K.P.; Van Den Bergh Weerman, M.A.; Offerhaus, G.J. Effects of ursodeoxycholate and cholate feeding on liver disease in FVB mice with a disrupted mdr2 P-glycoprotein gene. Gastroenterology, 1996, 111(1), 165-171.
[http://dx.doi.org/10.1053/gast.1996.v111.pm8698195] [PMID: 8698195]
[64]
Cazzagon, N.; Floreani, A. Primary biliary cholangitis: Treatment. Curr. Opin. Gastroenterol., 2021, 37(2), 99-104.
[http://dx.doi.org/10.1097/MOG.0000000000000708] [PMID: 33492001]
[65]
Alpini, G.; Baiocchi, L.; Glaser, S.; Ueno, Y.; Marzioni, M.; Francis, H.; Phinizy, J.L.; Angelico, M.; LeSage, G. Ursodeoxycholate and tauroursodeoxycholate inhibit cholangiocyte growth and secretion of BDL rats through activation of PKC alpha. Hepatology, 2002, 35(5), 1041-1052.
[http://dx.doi.org/10.1053/jhep.2002.32712] [PMID: 11981754]
[66]
Beuers, U.; Trauner, M.; Jansen, P.; Poupon, R. New paradigms in the treatment of hepatic cholestasis: From UDCA to FXR, PXR and beyond. J. Hepatol., 2015, 62(1)(Suppl.), S25-S37.
[http://dx.doi.org/10.1016/j.jhep.2015.02.023] [PMID: 25920087]
[67]
Rodrigues, C.M.; Fan, G.; Ma, X.; Kren, B.T.; Steer, C.J. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J. Clin. Invest., 1998, 101(12), 2790-2799.
[http://dx.doi.org/10.1172/JCI1325] [PMID: 9637713]
[68]
Halilbasic, E.; Claudel, T.; Trauner, M. Bile acid transporters and regulatory nuclear receptors in the liver and beyond. J. Hepatol., 2013, 58(1), 155-168.
[http://dx.doi.org/10.1016/j.jhep.2012.08.002] [PMID: 22885388]
[69]
Boatright, J.H.; Nickerson, J.M.; Moring, A.G.; Pardue, M.T. Bile acids in treatment of ocular disease. J. Ocul. Biol. Dis. Infor., 2009, 2(3), 149-159.
[http://dx.doi.org/10.1007/s12177-009-9030-x] [PMID: 20046852]
[70]
Palmela, I.; Correia, L.; Silva, R.F.M.; Sasaki, H.; Kim, K.S.; Brites, D.; Brito, M.A. Hydrophilic bile acids protect human blood-brain barrier endothelial cells from disruption by unconjugated bilirubin: An in vitro study. Front. Neurosci., 2015, 9, 80.
[http://dx.doi.org/10.3389/fnins.2015.00080] [PMID: 25821432]
[71]
Orozco-Aguilar, J.; Tacchi, F.; Aguirre, F.; Valero-Breton, M.; Castro-Sepulveda, M.; Simon, F.; Cabello-Verrugio, C. Ursodeoxycholic acid induces sarcopenia associated with decreased protein synthesis and autophagic flux. Biol. Res., 2023, 56(1), 28.
[http://dx.doi.org/10.1186/s40659-023-00431-8] [PMID: 37237400]
[72]
Dura, E.; Domingo, J.; Göçeri, E.; Martí-Bonmatí, L. A method for liver segmentation in perfusion MR images using probabilistic atlases and viscous reconstruction. Pattern Anal. Appl., 2018, 21(4), 1083-1095.
[http://dx.doi.org/10.1007/s10044-017-0666-z]
[73]
Goceri, E. A comparative evaluation for liver segmentation from spir images and a novel level set method using signed pressure force function; Izmir Institute of Technology: Turkey, 2013, pp. 1-136.
[74]
Göçeri, E.; Ünlü, M. Z.; Dicle, O. J. T. J. o. E. E.; Sciences, C. A comparative performance evaluation of various approaches for liver segmentation from SPIR images., Turk. J. Electr. Eng. Comp. Sci., 2015, 23(3), 741-768.
[75]
Goceri, E.; Unlu, M.Z.; Guzelis, C.; Dicle, O. In an automatic level set based liver segmentation from MRI data sets. 2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA), 15-18 Oct. 20122012, pp. 192-197.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy