摘要
表观遗传修饰在与不同病理相关的基因调控中发挥着至关重要的作用。我们饮食中的各种营养素(例如维生素)可以调节这些表观遗传机制。它们还可以直接或间接调节病理生理因素和过程。最重要的是,维生素 A、B、C 和 D 最近已被证明与维生素 E 和 K 一起参与此类调节。尽管它们对 DNA 甲基化过程有影响,但对维生素介导的表观遗传的深入了解变更情况尚待调查。此外,维生素作为营养保健品在 DNA 甲基化中的作用对于用于各种人类疾病的靶向治疗可能很重要。总的来说,这篇综述对维生素作为表观遗传调节剂或营养保健品的作用进行了简要调查,强调了它们在表观遗传治疗中的潜力。
关键词: 表观遗传学,表观基因组,维生素,DNA甲基化,营养保健品,病理学。
[1]
Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature 2007; 447(7143): 433-40.
[http://dx.doi.org/10.1038/nature05919] [PMID: 17522677]
[http://dx.doi.org/10.1038/nature05919] [PMID: 17522677]
[2]
Herceg Z. Epigenetics and cancer: Towards an evaluation of the impact of environmental and dietary factors. Mutagenesis 2007; 22(2): 91-103.
[http://dx.doi.org/10.1093/mutage/gel068] [PMID: 17284773]
[http://dx.doi.org/10.1093/mutage/gel068] [PMID: 17284773]
[3]
Ducasse M, Brown MA. Epigenetic aberrations and cancer. Mol Cancer 2006; 5(1): 60.
[http://dx.doi.org/10.1186/1476-4598-5-60] [PMID: 17092350]
[http://dx.doi.org/10.1186/1476-4598-5-60] [PMID: 17092350]
[4]
Cheong HS, Lee HC, Park BL, et al. Epigenetic modification of retinoic acid-treated human embryonic stem cells. BMB Rep 2010; 43(12): 830-5.
[http://dx.doi.org/10.5483/BMBRep.2010.43.12.830] [PMID: 21189161]
[http://dx.doi.org/10.5483/BMBRep.2010.43.12.830] [PMID: 21189161]
[5]
Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16(1): 6-21.
[http://dx.doi.org/10.1101/gad.947102] [PMID: 11782440]
[http://dx.doi.org/10.1101/gad.947102] [PMID: 11782440]
[6]
Gennari C. Calcium and vitamin D nutrition and bone disease of the elderly. Public Health Nutr 2001; 4(2b): 547-59.
[http://dx.doi.org/10.1079/PHN2001140] [PMID: 11683549]
[http://dx.doi.org/10.1079/PHN2001140] [PMID: 11683549]
[7]
McGregor GP, Biesalski HK. Rationale and impact of vitamin C in clinical nutrition. Curr Opin Clin Nutr Metab Care 2006; 9(6): 697-703.
[http://dx.doi.org/10.1097/01.mco.0000247478.79779.8f] [PMID: 17053422]
[http://dx.doi.org/10.1097/01.mco.0000247478.79779.8f] [PMID: 17053422]
[8]
Mock DM. Biotin: From nutrition to therapeutics. J Nutr 2017; 147(8): 1487-92.
[http://dx.doi.org/10.3945/jn.116.238956] [PMID: 28701385]
[http://dx.doi.org/10.3945/jn.116.238956] [PMID: 28701385]
[9]
Yoon J, Chung H, Kim Y. Analysis of selected water-soluble Vitamin B1, B2, B3, and B12 contents in namul (Wild Greens) consumed in Korea. Korean J Food Nutr 2019; 32(1): 61-8.
[10]
Addo-Lartey A. Associations between Vitamin D status, adiposity, and inflammatory biomarkers in young women (18-30 Years). PhD thesis, University of Massachusetts Amherst 2014; p. 332.
[11]
Tukur M, et al. Vitamin A status of steady state sickle cell anaemia patients compared to normal control in Maiduguri north eastern Nigeria. J Adv Med Med Res 2015; 1-6.
[12]
Hore TA. Modulating epigenetic memory through vitamins and TET: Implications for regenerative medicine and cancer treatment. Epigenomics 2017; 9(6): 863-71.
[http://dx.doi.org/10.2217/epi-2017-0021] [PMID: 28554227]
[http://dx.doi.org/10.2217/epi-2017-0021] [PMID: 28554227]
[13]
Aranda A, Pascual A. Nuclear hormone receptors and gene expression. Physiol Rev 2001; 81(3): 1269-304.
[http://dx.doi.org/10.1152/physrev.2001.81.3.1269] [PMID: 11427696]
[http://dx.doi.org/10.1152/physrev.2001.81.3.1269] [PMID: 11427696]
[14]
Bushue N, Wan YJY. Retinoid pathway and cancer therapeutics. Adv Drug Deliv Rev 2010; 62(13): 1285-98.
[http://dx.doi.org/10.1016/j.addr.2010.07.003] [PMID: 20654663]
[http://dx.doi.org/10.1016/j.addr.2010.07.003] [PMID: 20654663]
[15]
Zhou Y, Zhao LJ, Xu X, et al. DNA methylation levels of CYP2R1 and CYP24A1 predict vitamin D response variation. J Steroid Biochem Mol Biol 2014; 144((Pt A)): 207-14.
[http://dx.doi.org/10.1016/j.jsbmb.2013.10.004] [PMID: 24128439]
[http://dx.doi.org/10.1016/j.jsbmb.2013.10.004] [PMID: 24128439]
[16]
Bocker MT, Tuorto F, Raddatz G, et al. Hydroxylation of 5-methylcytosine by TET2 maintains the active state of the mammalian HOXA cluster. Nat Commun 2012; 3(1): 818.
[http://dx.doi.org/10.1038/ncomms1826] [PMID: 22569366]
[http://dx.doi.org/10.1038/ncomms1826] [PMID: 22569366]
[17]
Pera MF, Reubinoff B, Trounson A. Human embryonic stem cells. J Cell Sci 2000; 113(1): 5-10.
[http://dx.doi.org/10.1242/jcs.113.1.5] [PMID: 10591620]
[http://dx.doi.org/10.1242/jcs.113.1.5] [PMID: 10591620]
[18]
Kraus TFJ, Globisch D, Wagner M, et al. Low values of 5-hydroxymethylcytosine (5hmC), the “sixth base,” are associated with anaplasia in human brain tumors. Int J Cancer 2012; 131(7): 1577-90.
[http://dx.doi.org/10.1002/ijc.27429] [PMID: 22234893]
[http://dx.doi.org/10.1002/ijc.27429] [PMID: 22234893]
[19]
Stefanska B, Karlic H, Varga F, Fabianowska-Majewska K, Haslberger AG. Epigenetic mechanisms in anti-cancer actions of bioactive food components - the implications in cancer prevention. Br J Pharmacol 2012; 167(2): 279-97.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02002.x] [PMID: 22536923]
[http://dx.doi.org/10.1111/j.1476-5381.2012.02002.x] [PMID: 22536923]
[20]
Ashmead AS. Three ships with beriberi outbreaks shown to have had extensive formation of carbonic oxides during the voyage — analysis of beriberi blood — conclusion that beriberi is nothing but carbonic poisoning of the blood. Science 1893; 22(547): 48-9.
[http://dx.doi.org/10.1126/science.ns-22.547.48] [PMID: 17749988]
[http://dx.doi.org/10.1126/science.ns-22.547.48] [PMID: 17749988]
[21]
Bubber P, Ke ZJ, Gibson GE. Tricarboxylic acid cycle enzymes following thiamine deficiency. Neurochem Int 2004; 45(7): 1021-8.
[http://dx.doi.org/10.1016/j.neuint.2004.05.007] [PMID: 15337301]
[http://dx.doi.org/10.1016/j.neuint.2004.05.007] [PMID: 15337301]
[22]
Rosenfeld L. Vitamine-vitamin. The early years of discovery. Clin Chem 1997; 43(4): 680-5.
[http://dx.doi.org/10.1093/clinchem/43.4.680] [PMID: 9105273]
[http://dx.doi.org/10.1093/clinchem/43.4.680] [PMID: 9105273]
[23]
Pekovich SR, Martin PR, Singleton CK. Thiamine deficiency decreases steady-state transketolase and pyruvate dehydrogenase but not α-ketoglutarate dehydrogenase mRNA levels in three human cell types. J Nutr 1998; 128(4): 683-7.
[http://dx.doi.org/10.1093/jn/128.4.683] [PMID: 9521628]
[http://dx.doi.org/10.1093/jn/128.4.683] [PMID: 9521628]
[24]
Holowach J, Kauffman F, Ikossi MG, Thomas C, McDougal DB. The effects of a thiamine antagonist, pyrithiamine, on levels of selected metabolic intermediates and on activities of thiamine-dependent enzymes in brain and liver. J Neurochem 1968; 15(7): 621-31.
[http://dx.doi.org/10.1111/j.1471-4159.1968.tb08961.x] [PMID: 5675587]
[http://dx.doi.org/10.1111/j.1471-4159.1968.tb08961.x] [PMID: 5675587]
[25]
Pannunzio P, Hazell AS, Pannunzio M, Rao KVR, Butterworth RF. Thiamine deficiency results in metabolic acidosis and energy failure in cerebellar granule cells: An in vitro model for the study of cell death mechanisms in Wernicke’s encephalopathy. J Neurosci Res 2000; 62(2): 286-92.
[http://dx.doi.org/10.1002/1097-4547(20001015)62:2<286:AID-JNR13>3.0.CO;2-0] [PMID: 11020221]
[http://dx.doi.org/10.1002/1097-4547(20001015)62:2<286:AID-JNR13>3.0.CO;2-0] [PMID: 11020221]
[26]
Gaitonde MK, Fayein NA, Johnson AL. Decreased metabolism in vivo of glucose into amino acids of the brain of thiamine-deficient rats after treatment with pyrithiamine. J Neurochem 1975; 24(6): 1215-23.
[http://dx.doi.org/10.1111/j.1471-4159.1975.tb03901.x] [PMID: 1127434]
[http://dx.doi.org/10.1111/j.1471-4159.1975.tb03901.x] [PMID: 1127434]
[27]
Todd KG, Butterworth RF. Evaluation of the role of NMDA-mediated excitotoxicity in the selective neuronal loss in experimental Wernicke encephalopathy. Exp Neurol 1998; 149(1): 130-8.
[http://dx.doi.org/10.1006/exnr.1997.6677] [PMID: 9454622]
[http://dx.doi.org/10.1006/exnr.1997.6677] [PMID: 9454622]
[28]
Traviesa DC. Magnesium deficiency: A possible cause of thiamine refractoriness in Wernicke-Korsakoff encephalopathy. J Neurol Neurosurg Psychiatry 1974; 37(8): 959-62.
[http://dx.doi.org/10.1136/jnnp.37.8.959] [PMID: 4420329]
[http://dx.doi.org/10.1136/jnnp.37.8.959] [PMID: 4420329]
[29]
Zieve L, Doizaki WM, Stenroos LE. Effect of magnesium deficiency on blood and liver transketolase activity and on the recovery of enzyme activity in thiamine-deficient rats receiving thiamine. J Lab Clin Med 1968; 72(2): 268-77.
[PMID: 4299534]
[PMID: 4299534]
[30]
Pangrekar J, Krishnaswamy K, Jagadeesan V. Effects of riboflavin deficiency and riboflavin administration on carcinogen-DNA binding. Food Chem Toxicol 1993; 31(10): 745-50.
[http://dx.doi.org/10.1016/0278-6915(93)90146-P] [PMID: 8225133]
[http://dx.doi.org/10.1016/0278-6915(93)90146-P] [PMID: 8225133]
[31]
Powers HJ. Riboflavin (vitamin B-2) and health. Am J Clin Nutr 2003; 77(6): 1352-60.
[http://dx.doi.org/10.1093/ajcn/77.6.1352] [PMID: 12791609]
[http://dx.doi.org/10.1093/ajcn/77.6.1352] [PMID: 12791609]
[32]
Kostecki LM, Thomas M, Linford G, et al. Niacin deficiency delays DNA excision repair and increases spontaneous and nitro-sourea-induced chromosomal instability in rat bone marrow. Mutat Res 2007; 625(1-2): 50-61.
[http://dx.doi.org/10.1016/j.mrfmmm.2007.05.008] [PMID: 17618655]
[http://dx.doi.org/10.1016/j.mrfmmm.2007.05.008] [PMID: 17618655]
[33]
Kirkland JB. Niacin status impacts chromatin structure. J Nutr 2009; 139(12): 2397-401.
[http://dx.doi.org/10.3945/jn.109.111757] [PMID: 19812221]
[http://dx.doi.org/10.3945/jn.109.111757] [PMID: 19812221]
[34]
Couturier A, Keller J, Most E, Ringseis R, Eder K. Niacin in pharmacological doses alters microRNA expression in skeletal muscle of obese Zucker rats. PLoS One 2014; 9(5): e98313.
[http://dx.doi.org/10.1371/journal.pone.0098313] [PMID: 24847987]
[http://dx.doi.org/10.1371/journal.pone.0098313] [PMID: 24847987]
[35]
Andrieux P, Fontannaz P, Kilinc T, Giménez EC. Pantothenic acid (vitamin B5) in fortified foods: Comparison of a novel ultra-performance liquid chromatography-tandem mass spectrometry method and a microbiological assay (AOAC Official Method 992.07). J AOAC Int 2012; 95(1): 143-8.
[http://dx.doi.org/10.5740/jaoacint.10-333] [PMID: 22468352]
[http://dx.doi.org/10.5740/jaoacint.10-333] [PMID: 22468352]
[37]
Miller JW, Rucker RB. Pantothenic acid. In: Present knowledge in nutrition. Elsevier 2020; pp. 273-87.
[http://dx.doi.org/10.1016/B978-0-323-66162-1.00016-0]
[http://dx.doi.org/10.1016/B978-0-323-66162-1.00016-0]
[38]
Kennedy D. B vitamins and the brain: Mechanisms, dose and efficacy-a review. Nutrients 2016; 8(2): 68.
[http://dx.doi.org/10.3390/nu8020068] [PMID: 26828517]
[http://dx.doi.org/10.3390/nu8020068] [PMID: 26828517]
[39]
Maruti SS, Ulrich CM, Jupe ER, White E. MTHFR C677T and postmenopausal breast cancer risk by intakes of one-carbon metabolism nutrients: A nested case-control study. Breast Cancer Res 2009; 11(6): R91.
[http://dx.doi.org/10.1186/bcr2462] [PMID: 20030812]
[http://dx.doi.org/10.1186/bcr2462] [PMID: 20030812]
[40]
Hassan YI, Zempleni J. Epigenetic regulation of chromatin structure and gene function by biotin. J Nutr 2006; 136(7): 1763-5.
[http://dx.doi.org/10.1093/jn/136.7.1763] [PMID: 16772434]
[http://dx.doi.org/10.1093/jn/136.7.1763] [PMID: 16772434]
[41]
Paul B, Barnes S, Demark-Wahnefried W, et al. Influences of diet and the gut microbiome on epigenetic modulation in cancer and other diseases. Clin Epigenetics 2015; 7(1): 112.
[http://dx.doi.org/10.1186/s13148-015-0144-7] [PMID: 26478753]
[http://dx.doi.org/10.1186/s13148-015-0144-7] [PMID: 26478753]
[42]
Kothapalli N, Camporeale G, Kueh A, et al. Biological functions of biotinylated histones. J Nutr Biochem 2005; 16(7): 446-8.
[http://dx.doi.org/10.1016/j.jnutbio.2005.03.025] [PMID: 15992689]
[http://dx.doi.org/10.1016/j.jnutbio.2005.03.025] [PMID: 15992689]
[43]
Selhub J. Folate, vitamin B12 and vitamin B6 and one carbon metabolism. J Nutr Health Aging 2002; 6(1): 39-42.
[PMID: 11813080]
[PMID: 11813080]
[44]
Choi SW, Friso S. Epigenetics: A new bridge between nutrition and health. Adv Nutr 2010; 1(1): 8-16.
[http://dx.doi.org/10.3945/an.110.1004] [PMID: 22043447]
[http://dx.doi.org/10.3945/an.110.1004] [PMID: 22043447]
[45]
Snitkin ES, Zelazny AM, Thomas PJ, et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med 2012; 4(148): 148ra116.
[http://dx.doi.org/10.1126/scitranslmed.3004129] [PMID: 22914622]
[http://dx.doi.org/10.1126/scitranslmed.3004129] [PMID: 22914622]
[46]
Beckett EL, Veysey M, Lucock M. Folate and microRNA: Bidirectional interactions. Clin Chim Acta 2017; 474: 60-6.
[http://dx.doi.org/10.1016/j.cca.2017.09.001] [PMID: 28882489]
[http://dx.doi.org/10.1016/j.cca.2017.09.001] [PMID: 28882489]
[47]
Madhaiyan K, Sridhar R, Sundarrajan S, Venugopal JR, Ramakrishna S. Vitamin B12 loaded polycaprolactone nanofibers: A novel transdermal route for the water soluble energy supplement delivery. Int J Pharm 2013; 444(1-2): 70-6.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.040] [PMID: 23370432]
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.040] [PMID: 23370432]
[48]
Spence JD. B vitamin therapy for homocysteine: Renal function and vitamin B12 determine cardiovascular outcomes. Clin Chem Lab Med 2013; 51(3): 633-7.
[http://dx.doi.org/10.1515/cclm-2012-0465] [PMID: 23449527]
[http://dx.doi.org/10.1515/cclm-2012-0465] [PMID: 23449527]
[49]
Keat WL, Heidi S, Anthony A, et al. A potential epigenetic marker mediating serum folate and vitamin B12 levels contributes to the risk of ischemic stroke. BioMed Res Int 2015; 2015: 167976.
[50]
Mahajan A, Sapehia D, Thakur S, Mohanraj PS, Bagga R, Kaur J. Effect of imbalance in folate and vitamin B12 in maternal/parental diet on global methylation and regulatory miRNAs. Sci Rep 2019; 9(1): 17602.
[http://dx.doi.org/10.1038/s41598-019-54070-9] [PMID: 31772242]
[http://dx.doi.org/10.1038/s41598-019-54070-9] [PMID: 31772242]
[51]
Yadav DK, Shrestha S, Lillycrop KA, et al. Vitamin B 12 supplementation influences methylation of genes associated with Type 2 diabetes and its intermediate traits. Epigenomics 2018; 10(1): 71-90.
[http://dx.doi.org/10.2217/epi-2017-0102] [PMID: 29135286]
[http://dx.doi.org/10.2217/epi-2017-0102] [PMID: 29135286]
[52]
Kok DEG, Dhonukshe-Rutten RAM, Lute C, et al. The effects of long-term daily folic acid and vitamin B12 supplementation on genome-wide DNA methylation in elderly subjects. Clin Epigenetics 2015; 7(1): 121.
[http://dx.doi.org/10.1186/s13148-015-0154-5] [PMID: 26568774]
[http://dx.doi.org/10.1186/s13148-015-0154-5] [PMID: 26568774]
[53]
Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009; 324(5929): 930-5.
[http://dx.doi.org/10.1126/science.1170116] [PMID: 19372391]
[http://dx.doi.org/10.1126/science.1170116] [PMID: 19372391]
[54]
Chen J, Guo L, Zhang L, et al. Vitamin C modulates TET1 function during somatic cell reprogramming. Nat Genet 2013; 45(12): 1504-9.
[http://dx.doi.org/10.1038/ng.2807] [PMID: 24162740]
[http://dx.doi.org/10.1038/ng.2807] [PMID: 24162740]
[55]
Cerami E, Jianjiong G, Ugur D, et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2(5): 401-4.
[56]
Blaschke K, Ebata KT, Karimi MM, et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 2013; 500(7461): 222-6.
[http://dx.doi.org/10.1038/nature12362] [PMID: 23812591]
[http://dx.doi.org/10.1038/nature12362] [PMID: 23812591]
[57]
Shenoy N, Bhagat T, Nieves E, et al. Upregulation of TET activity with ascorbic acid induces epigenetic modulation of lymphoma cells. Blood Cancer J 2017; 7(7): e587-7.
[http://dx.doi.org/10.1038/bcj.2017.65] [PMID: 28731456]
[http://dx.doi.org/10.1038/bcj.2017.65] [PMID: 28731456]
[58]
Lopes N, Carvalho J, Durães C, et al. 1Alpha,25-dihydroxyvitamin D3 induces de novo E-cadherin expression in triple-negative breast cancer cells by CDH1-promoter demethylation. Anticancer Res 2012; 32(1): 249-57.
[PMID: 22213313]
[PMID: 22213313]
[59]
Cimmino L, Neel BG, Aifantis I. Vitamin C in stem cell reprogramming and cancer. Trends Cell Biol 2018; 28(9): 698-708.
[http://dx.doi.org/10.1016/j.tcb.2018.04.001] [PMID: 29724526]
[http://dx.doi.org/10.1016/j.tcb.2018.04.001] [PMID: 29724526]
[60]
Camarena V, Wang G. The epigenetic role of vitamin C in health and disease. Cell Mol Life Sci 2016; 73(8): 1645-58.
[http://dx.doi.org/10.1007/s00018-016-2145-x] [PMID: 26846695]
[http://dx.doi.org/10.1007/s00018-016-2145-x] [PMID: 26846695]
[61]
Chen DJ, Li LJ, Yang XK, et al. Altered microRNAs expression in T cells of patients with SLE involved in the lack of vitamin D. Oncotarget 2017; 8(37): 62099-110.
[http://dx.doi.org/10.18632/oncotarget.19062] [PMID: 28977929]
[http://dx.doi.org/10.18632/oncotarget.19062] [PMID: 28977929]
[62]
Wojtas AM, Kang SS, Olley BM, et al. Loss of clusterin shifts amyloid deposition to the cerebrovasculature via disruption of perivascular drainage pathways. Proc Natl Acad Sci 2017; 114(33): E6962-71.
[http://dx.doi.org/10.1073/pnas.1701137114] [PMID: 28701379]
[http://dx.doi.org/10.1073/pnas.1701137114] [PMID: 28701379]
[63]
Rowling MJ, McMullen MH, Schalinske KL. Vitamin A and its derivatives induce hepatic glycine N-methyltransferase and hypomethylation of DNA in rats. J Nutr 2002; 132(3): 365-9.
[http://dx.doi.org/10.1093/jn/132.3.365] [PMID: 11880556]
[http://dx.doi.org/10.1093/jn/132.3.365] [PMID: 11880556]
[64]
Kalani A, Chaturvedi P, Kalani K, Kamat P, Chaturvedi P, Tyagi N. A high methionine, low folate and vitamin B6/B12 containing diet can be associated with memory loss by epigenetic silencing of netrin-1. Neural Regen Res 2019; 14(7): 1247-54.
[http://dx.doi.org/10.4103/1673-5374.251333] [PMID: 30804256]
[http://dx.doi.org/10.4103/1673-5374.251333] [PMID: 30804256]
[65]
Ye H, Xu H, Qiao M, et al. MicroRNA expression profiles analysis of apheresis platelets treated with vitamin B2 and ultraviolet-B during storage. Transfus Apheresis Sci 2021; 60(3): 103079.
[http://dx.doi.org/10.1016/j.transci.2021.103079] [PMID: 33602623]
[http://dx.doi.org/10.1016/j.transci.2021.103079] [PMID: 33602623]
[66]
Abdul QA, Yu BP, Chung HY, Jung HA, Choi JS. Epigenetic modifications of gene expression by lifestyle and environment. Arch Pharm Res 2017; 40(11): 1219-37.
[http://dx.doi.org/10.1007/s12272-017-0973-3] [PMID: 29043603]
[http://dx.doi.org/10.1007/s12272-017-0973-3] [PMID: 29043603]
[67]
Supic G, Jagodic M, Magic Z. Epigenetics: A new link between nutrition and cancer. Nutr Cancer 2013; 65(6): 781-92.
[http://dx.doi.org/10.1080/01635581.2013.805794] [PMID: 23909721]
[http://dx.doi.org/10.1080/01635581.2013.805794] [PMID: 23909721]
[68]
Chung TL, Brena RM, Kolle G, et al. Vitamin C promotes widespread yet specific DNA demethylation of the epigenome in human embryonic stem cells. Stem Cells 2010; 28(10): 1848-55.
[http://dx.doi.org/10.1002/stem.493] [PMID: 20687155]
[http://dx.doi.org/10.1002/stem.493] [PMID: 20687155]
[69]
Pendás-Franco N, Aguilera O, Pereira F, González-Sancho JM, Muñoz A. Vitamin D and Wnt/β-catenin pathway in colon cancer: Role and regulation of DICKKOPF genes. Anticancer Res 2008; 28(5A): 2613-23.
[PMID: 19035286]
[PMID: 19035286]
[70]
Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol 2014; 21(3): 319-29.
[http://dx.doi.org/10.1016/j.chembiol.2013.12.016] [PMID: 24529992]
[http://dx.doi.org/10.1016/j.chembiol.2013.12.016] [PMID: 24529992]
[71]
Pereira F, Barbáchano A, Singh PK, Campbell MJ, Muñoz A, Larriba MJ. Vitamin D has wide regulatory effects on histone demethylase genes. Cell Cycle 2012; 11(6): 1081-9.
[http://dx.doi.org/10.4161/cc.11.6.19508] [PMID: 22370479]
[http://dx.doi.org/10.4161/cc.11.6.19508] [PMID: 22370479]
[72]
Carlberg C, Seuter S. A genomic perspective on vitamin D signaling. Anticancer Res 2009; 29(9): 3485-93.
[PMID: 19667142]
[PMID: 19667142]
[73]
Seuter S, Pehkonen P, Heikkinen S, Carlberg C. Dynamics of 1α,25-dihydroxyvitamin D3-dependent chromatin accessibility of early vitamin D receptor target genes. Biochim Biophys Acta Gene Regul Mech 2013; 1829(12): 1266-75.
[http://dx.doi.org/10.1016/j.bbagrm.2013.10.003] [PMID: 24185200]
[http://dx.doi.org/10.1016/j.bbagrm.2013.10.003] [PMID: 24185200]
[74]
Lopes N, Sousa B, Martins D, et al. Alterations in Vitamin D signalling and metabolic pathways in breast cancer progression: A study of VDR, CYP27B1 and CYP24A1 expression in benign and malignant breast lesions Vitamin D pathways unbalanced in breast lesions. BMC Cancer 2010; 10(1): 483.
[http://dx.doi.org/10.1186/1471-2407-10-483]
[http://dx.doi.org/10.1186/1471-2407-10-483]
[75]
Doig CL, Singh PK, Dhiman VK, et al. Recruitment of NCOR1 to VDR target genes is enhanced in prostate cancer cells and associates with altered DNA methylation patterns. Carcinogenesis 2013; 34(2): 248-56.
[http://dx.doi.org/10.1093/carcin/bgs331] [PMID: 23087083]
[http://dx.doi.org/10.1093/carcin/bgs331] [PMID: 23087083]
[76]
Anderson CM, Gillespie SL, Thiele DK, Ralph JL, Ohm JE. Effects of maternal vitamin D supplementation on the maternal and infant epigenome. Breastfeed Med 2018; 13(5): 371-80.
[http://dx.doi.org/10.1089/bfm.2017.0231] [PMID: 29782187]
[http://dx.doi.org/10.1089/bfm.2017.0231] [PMID: 29782187]
[77]
Fetahu IS, Höbaus J, Kállay E. Vitamin D and the epigenome. Front Physiol 2014; 5: 164.
[http://dx.doi.org/10.3389/fphys.2014.00164] [PMID: 24808866]
[http://dx.doi.org/10.3389/fphys.2014.00164] [PMID: 24808866]
[78]
Hong S, Cho YW, Yu LR, Yu H, Veenstra TD, Ge K. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci 2007; 104(47): 18439-44.
[http://dx.doi.org/10.1073/pnas.0707292104] [PMID: 18003914]
[http://dx.doi.org/10.1073/pnas.0707292104] [PMID: 18003914]
[79]
Parasramka MA, Ho E, Williams DE, Dashwood RH. MicroRNAs, diet, and cancer: New mechanistic insights on the epigenetic actions of phytochemicals. Mol Carcinog 2012; 51(3): 213-30.
[http://dx.doi.org/10.1002/mc.20822] [PMID: 21739482]
[http://dx.doi.org/10.1002/mc.20822] [PMID: 21739482]
[80]
Fu B, Wang H, Wang J, et al. Epigenetic regulation of BMP2 by 1,25-dihydroxyvitamin D3 through DNA methylation and histone modification. PLoS One 2013; 8(4): e61423.
[http://dx.doi.org/10.1371/journal.pone.0061423] [PMID: 23620751]
[http://dx.doi.org/10.1371/journal.pone.0061423] [PMID: 23620751]
[81]
Dambal S, Giangreco AA, Acosta AM, et al. microRNAs and DICER1 are regulated by 1,25-dihydroxyvitamin D in prostate stroma. J Steroid Biochem Mol Biol 2017; 167: 192-202.
[http://dx.doi.org/10.1016/j.jsbmb.2017.01.004] [PMID: 28089917]
[http://dx.doi.org/10.1016/j.jsbmb.2017.01.004] [PMID: 28089917]
[82]
Sun M, Zhang Q, Yang X, Qian SY, Guo B. Vitamin D enhances the efficacy of irinotecan through miR-627-mediated inhibition of intratumoral drug metabolism. Mol Cancer Ther 2016; 15(9): 2086-95.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0095] [PMID: 27458137]
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0095] [PMID: 27458137]
[83]
Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, et al. Inflammation, oxidative stress, and obesity. Int J Mol Sci 2011; 12(5): 3117-32.
[http://dx.doi.org/10.3390/ijms12053117] [PMID: 21686173]
[http://dx.doi.org/10.3390/ijms12053117] [PMID: 21686173]
[84]
Ziech D, Franco R, Pappa A, Panayiotidis MI. Reactive Oxygen Species (ROS)-Induced genetic and epigenetic alterations in human carcinogenesis. Mutat Res 2011; 711(1-2): 167-73.
[http://dx.doi.org/10.1016/j.mrfmmm.2011.02.015] [PMID: 21419141]
[http://dx.doi.org/10.1016/j.mrfmmm.2011.02.015] [PMID: 21419141]
[85]
Falk J, Munné-Bosch S. Tocochromanol functions in plants: Antioxidation and beyond. J Exp Bot 2010; 61(6): 1549-66.
[http://dx.doi.org/10.1093/jxb/erq030] [PMID: 20385544]
[http://dx.doi.org/10.1093/jxb/erq030] [PMID: 20385544]
[86]
Traussnigg S, Kienbacher C, Halilbasic E, et al. Challenges and management of liver cirrhosis: Practical issues in the therapy of patients with cirrhosis due to NAFLD and NASH. Dig Dis 2015; 33(4): 598-607.
[http://dx.doi.org/10.1159/000375353] [PMID: 26159280]
[http://dx.doi.org/10.1159/000375353] [PMID: 26159280]
[87]
Collins AR, Oscoz AA, Brunborg G, et al. The comet assay: Topical issues. Mutagenesis 2008; 23(3): 143-51.
[http://dx.doi.org/10.1093/mutage/gem051] [PMID: 18283046]
[http://dx.doi.org/10.1093/mutage/gem051] [PMID: 18283046]
[88]
Colombo ML. An update on vitamin E, tocopherol and tocotrienol-perspectives. Molecules 2010; 15(4): 2103-13.
[http://dx.doi.org/10.3390/molecules15042103] [PMID: 20428030]
[http://dx.doi.org/10.3390/molecules15042103] [PMID: 20428030]
[89]
Mocchegiani E, Costarelli L, Giacconi R, et al. Vitamin E–gene interactions in aging and inflammatory age-related diseases: Implications for treatment. A systematic review. Ageing Res Rev 2014; 14: 81-101.
[http://dx.doi.org/10.1016/j.arr.2014.01.001] [PMID: 24418256]
[http://dx.doi.org/10.1016/j.arr.2014.01.001] [PMID: 24418256]
[90]
Remely M, et al. EGCG prevents high fat diet-induced changes in gut microbiota, decreases of DNA strand breaks, and changes in expression and DNA methylation of DNMT1 and MLH1 in C57BL/6J male mice. Oxidative medicine and
cellular longevity 2017; 2017: 3079148.
[91]
Nogueira AF, Pinto G, Correia B, Nunes B. Embryonic development, locomotor behavior, biochemical, and epigenetic effects of the pharmaceutical drugs paracetamol and ciprofloxacin in larvae and embryos of Danio rerio when exposed to environmental realistic levels of both drugs. Environ Toxicol 2019; 34(11): 1177-90.
[http://dx.doi.org/10.1002/tox.22819] [PMID: 31322327]
[http://dx.doi.org/10.1002/tox.22819] [PMID: 31322327]
[92]
Manev H, Dzitoyeva S, Chen H. Mitochondrial DNA: A blind spot in neuroepigenetics. Biomol Concepts 2012; 3(2): 107-15.
[http://dx.doi.org/10.1515/bmc-2011-0058] [PMID: 22639700]
[http://dx.doi.org/10.1515/bmc-2011-0058] [PMID: 22639700]
[93]
Soberanes S, Gonzalez A, Urich D, et al. Particulate matter Air Pollution induces hypermethylation of the p16 promoter via a mitochondrial ROS-JNK-DNMT1 pathway. Sci Rep 2012; 2(1): 275.
[http://dx.doi.org/10.1038/srep00275] [PMID: 22355787]
[http://dx.doi.org/10.1038/srep00275] [PMID: 22355787]
[94]
Li Y, Tollefsbol TO. Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components. Curr Med Chem 2010; 17(20): 2141-51.
[http://dx.doi.org/10.2174/092986710791299966] [PMID: 20423306]
[http://dx.doi.org/10.2174/092986710791299966] [PMID: 20423306]
[95]
Hossain N, Kanwar P, Mohanty SR. A comprehensive updated review of pharmaceutical and nonpharmaceutical treatment for NAFLD. Gastroenterol Res Pract 2016; 2016: 1-17.
[http://dx.doi.org/10.1155/2016/7109270]
[http://dx.doi.org/10.1155/2016/7109270]
[96]
Booth SL. Roles for vitamin K beyond coagulation. Annu Rev Nutr 2009; 29(1): 89-110.
[http://dx.doi.org/10.1146/annurev-nutr-080508-141217] [PMID: 19400704]
[http://dx.doi.org/10.1146/annurev-nutr-080508-141217] [PMID: 19400704]
[97]
Harshman SG, Shea MK. The role of vitamin K in chronic aging diseases: Inflammation, cardiovascular disease, and osteoarthritis. Curr Nutr Rep 2016; 5(2): 90-8.
[http://dx.doi.org/10.1007/s13668-016-0162-x] [PMID: 27648390]
[http://dx.doi.org/10.1007/s13668-016-0162-x] [PMID: 27648390]
[98]
Almquist HJ, Vitamin K. Physiol Rev 1941; 21(1): 194-216.
[http://dx.doi.org/10.1152/physrev.1941.21.1.194]
[http://dx.doi.org/10.1152/physrev.1941.21.1.194]
[99]
Dam H. Historical survey and introduction. In: Vitamins & Hormones. Elsevier 1967; pp. 295-306.
[100]
Borel P, Desmarchelier C. Bioavailability of fat-soluble vitamins and phytochemicals in humans: Effects of genetic variation. Annu Rev Nutr 2018; 38(1): 69-96.
[http://dx.doi.org/10.1146/annurev-nutr-082117-051628] [PMID: 30130464]
[http://dx.doi.org/10.1146/annurev-nutr-082117-051628] [PMID: 30130464]
[101]
Feinberg AP, Rafael AI, Delphine F, et al. Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci Trans Med 2010; 2(49): 49ra67-7.
[http://dx.doi.org/10.1126/scitranslmed.3001262]
[http://dx.doi.org/10.1126/scitranslmed.3001262]
[102]
Amatu A, Sartore-Bianchi A, Moutinho C, et al. Promoter CpG island hypermethylation of the DNA repair enzyme MGMT predicts clinical response to dacarbazine in a phase II study for metastatic colorectal cancer. Clin Cancer Res 2013; 19(8): 2265-72.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3518] [PMID: 23422094]
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3518] [PMID: 23422094]
[103]
Campión J, Milagro FI, Goyenechea E, Martínez JA. TNF-α promoter methylation as a predictive biomarker for weight-loss response. Obesity (Silver Spring) 2009; 17(6): 1293-7.
[http://dx.doi.org/10.1038/oby.2008.679] [PMID: 19584886]
[http://dx.doi.org/10.1038/oby.2008.679] [PMID: 19584886]
[104]
Ellis JL, Fu X, Al Rajabi A, et al. Plasma response to deuterium-labeled vitamin K intake varies by TG response, but not age or vitamin k status, in older and younger adults. J Nutr 2019; 149(1): 18-25.
[http://dx.doi.org/10.1093/jn/nxy216] [PMID: 30590596]
[http://dx.doi.org/10.1093/jn/nxy216] [PMID: 30590596]
[105]
Westerman K, Kelly JM, Ordovás JM, Booth SL, DeMeo DL. Epigenome-wide association study reveals a molecular signature of response to phylloquinone (vitamin K1) supplementation. Epigenetics 2020; 15(8): 859-70.
[http://dx.doi.org/10.1080/15592294.2020.1734714] [PMID: 32090699]
[http://dx.doi.org/10.1080/15592294.2020.1734714] [PMID: 32090699]
[106]
Shea M, Booth S. Concepts and controversies in evaluating vitamin K status in population-based studies. Nutrients 2016; 8(1): 8.
[http://dx.doi.org/10.3390/nu8010008] [PMID: 26729160]
[http://dx.doi.org/10.3390/nu8010008] [PMID: 26729160]
[107]
Shearer MJ, Okano T. Key pathways and regulators of vitamin K function and intermediary metabolism. Annu Rev Nutr 2018; 38(1): 127-51.
[http://dx.doi.org/10.1146/annurev-nutr-082117-051741] [PMID: 29856932]
[http://dx.doi.org/10.1146/annurev-nutr-082117-051741] [PMID: 29856932]
[108]
Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. Science 2010; 330(6004): 612-6.
[http://dx.doi.org/10.1126/science.1191078]
[http://dx.doi.org/10.1126/science.1191078]
[109]
O’Connor EM, Durack E. Osteocalcin: The extra-skeletal role of a vitamin K-dependent protein in glucose metabolism. J Nutr Intermed Metab 2017; 7: 8-13.
[http://dx.doi.org/10.1016/j.jnim.2017.01.001]
[http://dx.doi.org/10.1016/j.jnim.2017.01.001]
[110]
Tsugawa N, Shiraki M. Vitamin K nutrition and bone health. Nutrients 2020; 12(7): 1909.
[http://dx.doi.org/10.3390/nu12071909] [PMID: 32605143]
[http://dx.doi.org/10.3390/nu12071909] [PMID: 32605143]
[111]
Heer M, Jens T, Scott MS, Natalie B, et al. Nutrition Physiology and Metabolism in Spaceflight and Analog Studies. Springer 2015.
[http://dx.doi.org/10.1007/978-3-319-18521-7]
[http://dx.doi.org/10.1007/978-3-319-18521-7]
49
2