Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Mini-Review Article

Neuroprotective Role of MiRNA-9 in Neurological Diseases: A Mini Review

Author(s): Shenglin Wang, Guohui Jiang* and Shunxian Wang*

Volume 23, Issue 10, 2023

Published on: 29 November, 2022

Page: [1007 - 1011] Pages: 5

DOI: 10.2174/1566524023666221025123132

Price: $65

conference banner
Abstract

MicroRNAs (miRNAs) are a class of non-coding small RNAs with about 22 nucleotides in eukaryotes. They regulate gene expression at the post-transcriptional level and play a key role in physiological and pathological processes. As one of the most abundant miRNAs in the human brain, miRNA-9 (miR-9) has attracted extensive attention due to its important role in the maintenance of normal function of the nervous system and the occurrence and development of nervous system diseases. Hence, we reviewed the neuroprotective effect of miR-9 in neurological diseases. MiR-9 may be a potential target of nervous system diseases.

Keywords: MiRNA-9, nervous system disease, neuroprotection, stroke, Alzheimer’s disease, spinal cord injury, neonatal hypoxic-ischemic encephalopathy, traumatic brain injury.

Next »
[1]
Blödorn EB, Domingues WB, Nunes LS, Komninou ER, Pinhal D, Campos VF. MicroRNA roles and their potential use as selection tool to cold tolerance of domesticated teleostean species: A systematic review. Aquaculture 2021; 540: 736747.
[http://dx.doi.org/10.1016/j.aquaculture.2021.736747]
[2]
Radhakrishnan B, Anand AAP. Role of miRNA-9 in Brain Development. J Exp Neurosci 2016. 10: JEN.S32843
[http://dx.doi.org/10.4137/JEN.S32843] [PMID: 27721656]
[3]
Brennan GP, Henshall DC. MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nat Rev Neurol 2020; 16(9): 506-19.
[http://dx.doi.org/10.1038/s41582-020-0369-8] [PMID: 32546757]
[4]
Eacker SM, Dawson TM, Dawson VL. Understanding microRNAs in neurodegeneration. Nat Rev Neurosci 2009; 10(12): 837-41.
[http://dx.doi.org/10.1038/nrn2726] [PMID: 19904280]
[5]
Saugstad JA. MicroRNAs as effectors of brain function with roles in ischemia and injury, neuroprotection, and neurodegeneration. J Cereb Blood Flow Metab 2010; 30(9): 1564-76.
[http://dx.doi.org/10.1038/jcbfm.2010.101] [PMID: 20606686]
[6]
Jimenez-Mateos EM, Engel T, Merino-Serrais P, et al. Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat Med 2012; 18(7): 1087-94.
[http://dx.doi.org/10.1038/nm.2834] [PMID: 22683779]
[7]
Tan CL, Plotkin JL, Venø MT, et al. MicroRNA-128 governs neuronal excitability and motor behavior in mice. Science 2013; 342(6163): 1254-8.
[http://dx.doi.org/10.1126/science.1244193] [PMID: 24311694]
[8]
Henshall DC, Hamer HM, Pasterkamp RJ, et al. MicroRNAs in epilepsy: Pathophysiology and clinical utility. Lancet Neurol 2016; 15(13): 1368-76.
[http://dx.doi.org/10.1016/S1474-4422(16)30246-0] [PMID: 27839653]
[9]
Auffinger B, Thaci B, Ahmed A, Ulasov I, Lesniak MS. MicroRNA targeting as a therapeutic strategy against glioma. Curr Mol Med 2013; 13(4): 535-42.
[http://dx.doi.org/10.2174/1566524011313040006] [PMID: 22934848]
[10]
Coolen M, Katz S, Bally-Cuif L. miR-9: A versatile regulator of neurogenesis. Front Cell Neurosci 2013; 7: 220.
[http://dx.doi.org/10.3389/fncel.2013.00220] [PMID: 24312010]
[11]
Mallah K, Couch C, Borucki DM, Toutonji A, Alshareef M, Tomlinson S. Anti-inflammatory and neuroprotective agents in clinical trials for CNS disease and injury: Where do we go from here? Front Immunol 2020; 11: 2021.
[http://dx.doi.org/10.3389/fimmu.2020.02021] [PMID: 33013859]
[12]
Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart Disease and Stroke Statistics—2017 Update: A Report From the American Heart Association. Circulation 2017; 135(10): e146-603.
[http://dx.doi.org/10.1161/CIR.0000000000000485] [PMID: 28122885]
[13]
Wei N, Xiao L, Xue R, et al. MicroRNA-9 mediates the cell apoptosis by targeting bcl2l11 in ischemic stroke. Mol Neurobiol 2016; 53(10): 6809-17.
[http://dx.doi.org/10.1007/s12035-015-9605-4] [PMID: 26660116]
[14]
Mattson MP, Culmsee C, Yu ZF. Apoptotic and antiapoptotic mechanisms in stroke. Cell Tissue Res 2000; 301(1): 173-87.
[http://dx.doi.org/10.1007/s004419900154] [PMID: 10928290]
[15]
Kalaria RN, Akinyemi R, Ihara M. Stroke injury, cognitive impairment and vascular dementia. Biochim Biophys Acta Mol Basis Dis 2016; 1862(5): 915-25.
[http://dx.doi.org/10.1016/j.bbadis.2016.01.015] [PMID: 26806700]
[16]
Yan Q, Sun S, Yuan S, Wang X, Zhang Z. Inhibition of microRNA ‐9‐5p and microRNA ‐128‐3p can inhibit ischemic stroke‐related cell death in vitro and in vivo. IUBMB Life 2020; 72(11): 2382-90.
[http://dx.doi.org/10.1002/iub.2357] [PMID: 32797712]
[17]
Chen S, Wang M, Yang H, et al. LncRNA TUG1 sponges microRNA-9 to promote neurons apoptosis by up-regulated Bcl2l11 under ischemia. Biochem Biophys Res Commun 2017; 485(1): 167-73.
[http://dx.doi.org/10.1016/j.bbrc.2017.02.043] [PMID: 28202414]
[18]
Otero-Ortega L, Gutiérrez-Fernández M, Díez-Tejedor E. Recovery After Stroke: New insight to promote brain plasticity. Front Neurol 2021; 12: 768958.
[http://dx.doi.org/10.3389/fneur.2021.768958] [PMID: 34867756]
[19]
Davila JL, Goff LA, Ricupero CL, et al. A positive feedback mechanism that regulates expression of miR-9 during neurogenesis. PLoS One 2014; 9(4): e94348.
[http://dx.doi.org/10.1371/journal.pone.0094348] [PMID: 24714615]
[20]
Nampoothiri SS, Rajanikant GK. miR-9 upregulation integrates post-ischemic neuronal survival and regeneration in vitro. Cell MolNeurobiol 2019; 39(2): 223-40.
[http://dx.doi.org/10.1007/s10571-018-0642-1] [PMID: 30539420]
[21]
Popa-Wagner A, Schröder E, Schmoll H, Walker LC, Kessler C. Upregulation of MAP1B and MAP2 in the rat brain after middle cerebral artery occlusion: Effect of age. J Cereb Blood Flow Metab 1999; 19(4): 425-34.
[http://dx.doi.org/10.1097/00004647-199904000-00008] [PMID: 10197512]
[22]
Dajas-Bailador F, Bonev B, Garcez P, Stanley P, Guillemot F, Papalopulu N. microRNA-9 regulates axon extension and branching by targeting Map1b in mouse cortical neurons. Nat Neurosci 2012; 15(5): 697-9.
[http://dx.doi.org/10.1038/nn.3082] [PMID: 22484572]
[23]
Abulafia DP, de Rivero Vaccari JP, Lozano JD, Lotocki G, Keane RW, Dietrich WD. Inhibition of the inflammasome complex reduces the inflammatory response after thromboembolic stroke in mice. J Cereb Blood Flow Metab 2009; 29(3): 534-44.
[http://dx.doi.org/10.1038/jcbfm.2008.143] [PMID: 19066616]
[24]
Wong R, Lénárt N, Hill L, et al. Interleukin-1 mediates ischaemic brain injury via distinct actions on endothelial cells and cho-linergic neurons. Brain Behav Immun 2019; 76: 126-38.
[http://dx.doi.org/10.1016/j.bbi.2018.11.012] [PMID: 30453020]
[25]
Cao Y, Zhang H, Lu X, et al. Overexpression of MicroRNA-9a-5p Ameliorates NLRP1 inflammasome-mediated ischemic injury in rats following ischemic stroke. Neuroscience 2020; 444: 106-17.
[http://dx.doi.org/10.1016/j.neuroscience.2020.01.008] [PMID: 31954830]
[26]
Liu W, Wang X, Zheng Y, et al. Electroacupuncture inhibits inflammatory injury by targeting the miR-9-mediated NF-κB signaling pathway following ischemic stroke. Mol Med Rep 2016; 13(2): 1618-26.
[http://dx.doi.org/10.3892/mmr.2015.4745] [PMID: 26718002]
[27]
Chi L, Jiao D, Nan G, Yuan H, Shen J, Gao Y. miR-9-5p attenuates ischemic stroke through targeting ERMP1-mediated endoplasmic reticulum stress. Acta Histochem 2019; 121(8): 151438.
[http://dx.doi.org/10.1016/j.acthis.2019.08.005] [PMID: 31500865]
[28]
Ou Z, Deng L, Lu Z, et al. Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer’s disease. Nutr Diabetes 2020; 10(1): 12.
[http://dx.doi.org/10.1038/s41387-020-0115-8] [PMID: 32321934]
[29]
Sun HQ, Zhang X, Huang WJ, Chen WW. The news advances on Alzheimer’s disease’s therapeutics. Eur Rev Med Pharmacol Sci 2016; 20(9): 1903-10.
[PMID: 27212186]
[30]
Cogswell JP, Ward J, Taylor IA, et al. Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 2008; 14(1): 27-41.
[http://dx.doi.org/10.3233/JAD-2008-14103] [PMID: 18525125]
[31]
Hébert SS, Horré K, Nicolaï L, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/β-secretase expression. Proc Natl Acad Sci 2008; 105(17): 6415-20.
[http://dx.doi.org/10.1073/pnas.0710263105] [PMID: 18434550]
[32]
Kennedy ME, Stamford AW, Chen X, et al. The BACE1 inhibitor verubecestat (MK-8931) reduces CNS β-amyloid in animal models and in Alzheimer’s disease patients. Sci Transl Med 2016; 8(363): 363ra150.
[http://dx.doi.org/10.1126/scitranslmed.aad9704] [PMID: 27807285]
[33]
Suh J, Romano DM, Nitschke L, et al. Loss of ataxin-1 potentiates Alzheimer’s pathogenesis by elevating cerebral BACE1 transcription. Cell 2019; 178(5): 1159-1175.e17.
[http://dx.doi.org/10.1016/j.cell.2019.07.043] [PMID: 31442405]
[34]
Crunkhorn S. Alzheimer disease: BACE1 inhibitor reduces β-amyloid production in humans. Nat Rev Drug Discov 2016; 16(1): 18.
[PMID: 28031572]
[35]
McDade E, Voytyuk I, Aisen P, et al. The case for low-level BACE1 inhibition for the prevention of Alzheimer disease. Nat Rev Neurol 2021; 17(11): 703-14.
[http://dx.doi.org/10.1038/s41582-021-00545-1] [PMID: 34548654]
[36]
Che H, Sun LH, Guo F, et al. Expression of amyloid-associated miRNAs in both the forebrain cortex and hippocampus of middle-aged rat. Cell Physiol Biochem 2014; 33(1): 11-22.
[http://dx.doi.org/10.1159/000356646] [PMID: 24401368]
[37]
Ou-Yang MH, Kurz JE, Nomura T, et al. Axonal organization defects in the hippocampus of adult conditional BACE1 knockout mice. Sci Transl Med 2018; 10(459): eaao5620.
[http://dx.doi.org/10.1126/scitranslmed.aao5620] [PMID: 30232227]
[38]
Subramanian M, Hyeon SJ, Das T, et al. UBE4B, a microRNA-9 target gene, promotes autophagy-mediated Tau degradation. Nat Commun 2021; 12(1): 3291.
[http://dx.doi.org/10.1038/s41467-021-23597-9] [PMID: 34078905]
[39]
Chen ML, Hong CG, Yue T, et al. Inhibition of miR-331-3p and miR-9-5p ameliorates Alzheimer’s disease by enhancing autophagy. Theranostics 2021; 11(5): 2395-409.
[http://dx.doi.org/10.7150/thno.47408] [PMID: 33500732]
[40]
Ramer LM, Ramer MS, Bradbury EJ. Restoring function after spinal cord injury: Towards clinical translation of experimental strategies. Lancet Neurol 2014; 13(12): 1241-56.
[http://dx.doi.org/10.1016/S1474-4422(14)70144-9] [PMID: 25453463]
[41]
Zhang YK, Liu JT, Peng ZW, et al. Different TLR4 expression and microglia/macrophage activation induced by hemorrhage in the rat spinal cord after compressive injury. J Neuroinflammation 2013; 10(1): 881.
[http://dx.doi.org/10.1186/1742-2094-10-112] [PMID: 24015844]
[42]
Hilton BJ, Moulson AJ, Tetzlaff W. Neuroprotection and secondary damage following spinal cord injury: Concepts and methods. Neurosci Lett 2017; 652: 3-10.
[http://dx.doi.org/10.1016/j.neulet.2016.12.004] [PMID: 27939975]
[43]
Xu Y, An BY, Xi XB, Li ZW, Li FY. MicroRNA-9 controls apoptosis of neurons by targeting monocyte chemotactic protein-induced protein 1 expression in rat acute spinal cord injury model. Brain Res Bull 2016; 121: 233-40.
[http://dx.doi.org/10.1016/j.brainresbull.2016.01.011] [PMID: 26812136]
[44]
Chen F, Han J, Li X, Zhang Z, Wang D. Identification of the biological function of miR-9 in spinal cord ischemia-reperfusion injury in rats. PeerJ 2021; 9: e11440.
[http://dx.doi.org/10.7717/peerj.11440] [PMID: 34035993]
[45]
Dumbuya JS, Chen L, Wu JY, Wang B. The role of G-CSF neuroprotective effects in neonatal Hypoxic-Ischemic Encephalopathy (HIE): current status. J Neuroinflammation 2021; 18(1): 55.
[http://dx.doi.org/10.1186/s12974-021-02084-4] [PMID: 33612099]
[46]
Yao K, Yang Q, Li Y, Lan T, Yu H, Yu Y. MicroRNA-9 mediated the protective effect of ferulic acid on hypoxic-ischemic brain damage in neonatal rats. PLoS One 2020; 15(5): e0228825.
[http://dx.doi.org/10.1371/journal.pone.0228825] [PMID: 32470970]
[47]
Cui H, Yang L, Cao T. Negative regulation of miRNA-9 on oligodendrocyte lineage gene 1 during hypoxic-ischemic brain damage. Neural Regen Res 2014; 9(5): 513-8.
[http://dx.doi.org/10.4103/1673-5374.130077] [PMID: 25206848]
[48]
Menon DK, Schwab K, Wright DW, Maas AI. Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil 2010; 91(11): 1637-40.
[http://dx.doi.org/10.1016/j.apmr.2010.05.017] [PMID: 21044706]
[49]
Maas AIR, Menon DK, Adelson PD, et al. Traumatic brain injury: Integrated approaches to improve prevention, clinical care, and research. Lancet Neurol 2017; 16(12): 987-1048.
[http://dx.doi.org/10.1016/S1474-4422(17)30371-X] [PMID: 29122524]
[50]
Wu J, He J, Tian X, et al. microRNA‐9‐5p alleviates blood–brain barrier damage and neuroinflammation after traumatic brain injury. J Neurochem 2020; 153(6): 710-26.
[http://dx.doi.org/10.1111/jnc.14963] [PMID: 31951014]
[51]
Wu J, He J, Tian X, et al. Upregulation of miRNA-9-5p promotes angiogenesis after traumatic brain injury by inhibiting Ptch-1. Neuroscience 2020; 440: 160-74.
[http://dx.doi.org/10.1016/j.neuroscience.2020.05.045] [PMID: 32502567]
[52]
O’Connell GC, Smothers CG, Winkelman C. Bioinformatic analysis of brain-specific miRNAs for identification of candidate traumatic brain injury blood biomarkers. Brain Inj 2020; 34(7): 965-74.
[http://dx.doi.org/10.1080/02699052.2020.1764102] [PMID: 32497449]
[53]
Das Gupta S, Ciszek R, Heiskanen M, et al. Plasma miR-9-3p and miR-136-3p as potential novel diagnostic biomarkers for experimental and human mild traumatic brain injury. Int J Mol Sci 2021; 22(4): 1563.
[http://dx.doi.org/10.3390/ijms22041563] [PMID: 33557217]
[54]
Wu J, Li H, He J, et al. Downregulation of microRNA-9-5p promotes synaptic remodeling in the chronic phase after traumatic brain injury. Cell Death Dis 2021; 12(1): 9.
[http://dx.doi.org/10.1038/s41419-020-03329-5] [PMID: 33414448]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy