Abstract
Genome editing is a promising tool in the era of modern biotechnology that
can alter the DNA of many organisms. It is now extensively used in various industries
to obtain the well-desired and enhanced characteristics to improve the yield and
nutritional quality of products. The positive health attributes of Bifidobacteria, such as
prevention of diarrhoea, reduction of ulcerative colitis, prevention of necrotizing
enterocolitis, etc., have shown promising reports in many clinical trials. The potential
use of Bifidobacteria as starter or adjunct cultures has become popular. Currently,
Bifidobacterium bifidum, B. adolescentis, B. breve, B. infantis, B. longum, and B. lactis
find a significant role in the development of probiotic fermented dairy products.
However, Bifidobacteria, one of the first colonizers of the human GI tract and an
indicator of the health status of an individual, has opened new avenues for research
and, thereby, its application. Besides this, the GRAS/QPS (Generally Regarded as
Safe/Qualified Presumption of Safety) status of Bifidobacteria makes it safe for use.
They belong to the subgroup (which are the fermentative types that are primarily found
in the natural cavities of humans and animals) of Actinomycetes. B. lactis has been used
industrially in fermented foods, such as yogurt, cheese, beverages, sausages, infant
formulas, and cereals. In the present book chapter, the authors tried to explore the
origin, health attributes, and various genetic engineering tools for genome editing of
Bifidobacteria for the development of starter culture for dairy and non-dairy industrial
applications as well as probiotics.
Keywords: Bifidobacteria, CRISPR-Cas, Genome editing, IPSD (Inducible Plasmid Self-Destruction), Probiotics.