Abstract
Graphene is a 2-dimensional allotropic structure and crystalline form of carbon in which atoms of carbons are supported by sigma bonds and arranged in a hexagonal-shaped lattice. These carbon allotropes contain unpaired electrons providing them with unique physiochemical properties and are further exploited in the formation of graphene derivatives. i.e., Graphene oxide and reduced graphene oxide. These graphene derivatives caused a huge revolution in nanotechnological research. The nanocomposites of graphene derivatives are employed in drug delivery, nucleic acid delivery, tissue engineering, imaging, and biosensing. This chapter is focused on discussing the physiochemical properties of graphene nanoparticles and their biomedical applications.
Keywords: Diagnostics, Drug Delivery, Graphene, Nanoparticles, Nucleic AcidDelivery, Physiochemical Properties, Tissue Engineering.