Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Recent Advances in Magnetic Upconversion Nanocomposites for Bioapplications

Author(s): Yadan Ding, Xia Hong, Yichun Liu and Hong Zhang*

Volume 25, Issue 17, 2019

Page: [2007 - 2015] Pages: 9

DOI: 10.2174/1381612825666190708202403

Price: $65

conference banner
Abstract

The combination of magnetism and upconversion luminescent property into one single nanostructure is fascinating for biological fields, such as multimodal bioimaging, targeted drug delivery, and imaging-guided therapy. In this review, we will provide the state-of-the-art advances on magnetic upconversion nanocomposites towards their bioapplications. Their structure design, synthesis methods, surface engineering and applications in bioimaging, drug delivery, therapy as well as biodetection will be covered.

Keywords: Magnetic optical nanocomposite, upconversion luminescence, structure design, synthesis, surface modification, bioimaging, drug delivery, therapy.

« Previous
[1]
Corr SA, Rakovich YP, Gun’ko YK. Multifunctional magnetic-fluorescent nanocomposites for biomedical applications. Nanoscale Res Lett 2008; 3: 87-104.
[http://dx.doi.org/10.1007/s11671-008-9122-8]
[2]
Veiseh O, Sun C, Gunn J, et al. Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett 2005; 5(6): 1003-8.
[http://dx.doi.org/10.1021/nl0502569] [PMID: 15943433]
[3]
Sahoo Y, Goodarzi A, Swihart MT, et al. Aqueous ferrofluid of magnetite nanoparticles: Fluorescence labeling and magnetophoretic control. J Phys Chem B 2005; 109(9): 3879-85.
[http://dx.doi.org/10.1021/jp045402y] [PMID: 16851439]
[4]
Pittet MJ, Swirski FK, Reynolds F, Josephson L, Weissleder R. Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles. Nat Protoc 2006; 1(1): 73-9.
[http://dx.doi.org/10.1038/nprot.2006.11] [PMID: 17406214]
[5]
Quarta A, Di Corato R, Manna L, et al. Multifunctional nanostructures based on inorganic nanoparticles and oligothiophenes and their exploitation for cellular studies. J Am Chem Soc 2008; 130(32): 10545-55.
[http://dx.doi.org/10.1021/ja800102v] [PMID: 18627147]
[6]
Yao X, Niu X, Ma K, et al. Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small 2017; 13(2)1602225
[http://dx.doi.org/10.1002/smll.201602225] [PMID: 27735129]
[7]
Zhu T, Ma X, Chen R, et al. Using fluorescently-labeled magnetic nanocomposites as a dual contrast agent for optical and magnetic resonance imaging. Biomater Sci 2017; 5(6): 1090-100.
[http://dx.doi.org/10.1039/C7BM00031F] [PMID: 28425537]
[8]
Bi H, Dai Y, Yang P, et al. Glutathione mediated size-tunable UCNPs-Pt(IV)-ZnFe2O4 nanocomposite for multiple bioimaging guided synergetic therapy. Small 2018; 14(13)1703809
[http://dx.doi.org/10.1002/smll.201703809]
[9]
Li X, Zhao D, Zhang F. Multifunctional upconversion-magnetic hybrid nanostructured materials: Synthesis and bioapplications. Theranostics 2013; 3(5): 292-305.
[http://dx.doi.org/10.7150/thno.5289] [PMID: 23650477]
[10]
Bigall NC, Parak WJ, Dorfs D. Fluorescent, magnetic and plasmonic-hybrid multifunctional colloidal nano objects. Nano Today 2012; 7(4): 282-96.
[http://dx.doi.org/10.1016/j.nantod.2012.06.007]
[11]
Lee JE, Lee N, Kim H, et al. Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. J Am Chem Soc 2010; 132(2): 552-7.
[http://dx.doi.org/10.1021/ja905793q] [PMID: 20017538]
[12]
Wang D, He J, Rosenzweig N, Rosenzweig Z. Superparamagnetic Fe2O3 beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Lett 2004; 4(3): 409-13.
[http://dx.doi.org/10.1021/nl035010n]
[13]
Ma Q, Nakane Y, Mori Y, et al. Multilayered, core/shell nanoprobes based on magnetic ferric oxide particles and quantum dots for multimodality imaging of breast cancer tumors. Biomaterials 2012; 33(33): 8486-94.
[http://dx.doi.org/10.1016/j.biomaterials.2012.07.051] [PMID: 22906608]
[14]
Bertorelle F, Wilhelm C, Roger J, Gazeau F, Ménager C, Cabuil V. Fluorescence-modified superparamagnetic nanoparticles: Intracellular uptake and use in cellular imaging. Langmuir 2006; 22(12): 5385-91.
[http://dx.doi.org/10.1021/la052710u] [PMID: 16732667]
[15]
Zhang M, Shi S, Meng J, et al. Preparation and characterization of near-infrared luminescent bifunctional core/shell nanocomposites. J Phys Chem C 2008; 112(8): 2825-30.
[http://dx.doi.org/10.1021/jp076079c]
[16]
Zhang Y, Pan S, Teng X, Luo Y, Li G. Bifunctional magnetic-luminescent nanocomposites: Y2O3/Tb nanorods on the surface of iron oxide/silica core-shell nanostructures. J Phys Chem C 2008; 112(26): 9623-6.
[http://dx.doi.org/10.1021/jp8015326]
[17]
Engel S, Möller N, Stricker L, Peterlechner M, Ravoo BJ. A modular system for the design of stimuli-responsive multifunctional nanoparticle aggregates by use of host-guest chemistry. Small 2018; 14(16)E1704287
[http://dx.doi.org/10.1002/smll.201704287] [PMID: 29573341]
[18]
Wang C, Ye M, Cheng L, et al. Simultaneous isolation and detection of circulating tumor cells with a microfluidic silicon-nanowire-array integrated with magnetic upconversion nanoprobes. Biomaterials 2015; 54: 55-62.
[http://dx.doi.org/10.1016/j.biomaterials.2015.03.004] [PMID: 25907039]
[19]
Zhou B, Shi B, Jin D, Liu X. Controlling upconversion nanocrystals for emerging applications. Nat Nanotechnol 2015; 10(11): 924-36.
[http://dx.doi.org/10.1038/nnano.2015.251] [PMID: 26530022]
[20]
Gnach A, Bednarkiewicz A. Lanthanide-doped up-converting nanoparticles: Merits and challenges. Nano Today 2012; 7(6): 532-63.
[http://dx.doi.org/10.1016/j.nantod.2012.10.006]
[21]
Mader HS, Kele P, Saleh SM, Wolfbeis OS. Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Curr Opin Chem Biol 2010; 14(5): 582-96.
[http://dx.doi.org/10.1016/j.cbpa.2010.08.014] [PMID: 20829098]
[22]
Park YI, Lee KT, Suh YD, Hyeon T. Upconverting nanoparticles: A versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chem Soc Rev 2015; 44(6): 1302-17.
[http://dx.doi.org/10.1039/C4CS00173G] [PMID: 25042637]
[23]
Li F, Du Y, Liu J, et al. Responsive assembly of upconversion nanoparticles for pH-activated and near-infrared-triggered photodynamic therapy of deep tumors. Adv Mater 2018; 30(35)E1802808
[http://dx.doi.org/10.1002/adma.201802808] [PMID: 29999559]
[24]
Chen S, Weitemier AZ, Zeng X, et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 2018; 359(6376): 679-84.
[http://dx.doi.org/10.1126/science.aaq1144] [PMID: 29439241]
[25]
Jayakumar MKG, Idris NM, Zhang Y. Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc Natl Acad Sci USA 2012; 109(22): 8483-8.
[http://dx.doi.org/10.1073/pnas.1114551109] [PMID: 22582171]
[26]
Wang C, Tao H, Cheng L, Liu Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 2011; 32(26): 6145-54.
[http://dx.doi.org/10.1016/j.biomaterials.2011.05.007] [PMID: 21616529]
[27]
Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med 2012; 18(10): 1580-5.
[http://dx.doi.org/10.1038/nm.2933] [PMID: 22983397]
[28]
Roychowdhury A, Pati SP, Kumar S, Das D. Effects of magnetite nanoparticles on optical properties of zinc sulfide in fluorescent-magnetic Fe3O4/ZnS nanocomposites. Powder Technol 2014; 254: 583-90.
[http://dx.doi.org/10.1016/j.powtec.2014.01.076]
[29]
Hong X, Li J, Wang M, et al. Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approach. Chem Mater 2004; 16(21): 4022-7.
[http://dx.doi.org/10.1021/cm049422o]
[30]
Mandal SK, Lequeux N, Rotenberg B, et al. Encapsulation of magnetic and fluorescent nanoparticles in emulsion droplets. Langmuir 2005; 21(9): 4175-9.
[http://dx.doi.org/10.1021/la047025m] [PMID: 15835991]
[31]
Cheng L, Yang K, Li Y, et al. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew Chem Int Ed Engl 2011; 50(32): 7385-90.
[http://dx.doi.org/10.1002/anie.201101447] [PMID: 21714049]
[32]
Xia A, Gao Y, Zhou J, et al. Core-shell NaYF4:Yb3+,Tm3+@FexOy nanocrystals for dual-modality T2-enhanced magnetic resonance and NIR-to-NIR upconversion luminescent imaging of small-animal lymphatic node. Biomaterials 2011; 32(29): 7200-8.
[http://dx.doi.org/10.1016/j.biomaterials.2011.05.094] [PMID: 21742376]
[33]
Shrivastava N, Rocha U, Muraca D, et al. Magnetic upconverting fluorescent NaGdF4:Ln3+ and iron-oxide@NaGdF4:Ln3+ nanoparticles. AIP Adv 2018; 8056710
[http://dx.doi.org/10.1063/1.5007748]
[34]
Liu B, Li C, Ma P, et al. Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery. Nanoscale 2015; 7(5): 1839-48.
[http://dx.doi.org/10.1039/C4NR05342G] [PMID: 25521795]
[35]
Challenor M, Gong P, Lorenser D, et al. The influence of NaYF4:Yb,Er size/phase on the multimodality of co-encapsulated magnetic photon-upconverting polymeric nanoparticles. Dalton Trans 2014; 43(44): 16780-7.
[http://dx.doi.org/10.1039/C4DT01597E] [PMID: 25283597]
[36]
Challenor M, Gong P, Lorenser D, et al. Iron oxide-induced thermal effects on solid-state upconversion emissions in NaYF4:Yb,Er nanocrystals. ACS Appl Mater Interfaces 2013; 5(16): 7875-80.
[http://dx.doi.org/10.1021/am401837h] [PMID: 23855820]
[37]
Chen F, Zhang S, Bu W, et al. A “neck-formation” strategy for an antiquenching magnetic/upconversion fluorescent bimodal cancer probe. Chem Eur J 2010; 16(37): 11254-60.
[http://dx.doi.org/10.1002/chem.201000525] [PMID: 20715197]
[38]
Jing P, Wang Q, Liu B, et al. Controlled fabrication of bi-functional Fe3O4@SiO2@Gd2O3:Yb,Er nanoparticles and their magnetic, up-conversion luminescent properties. RSC Advances 2014; 4: 44575-82.
[http://dx.doi.org/10.1039/C4RA06146B]
[39]
Yu X, Shan Y, Li G, Chen K. Synthesis and characterization of bifunctional magnetic-optical Fe3O4@SiO2@Y2O3: Yb3+, Er3+ near-infrared-to-visible up-conversion nanoparticles. J Mater Chem 2011; 21: 8104-9.
[http://dx.doi.org/10.1039/c1jm10622h]
[40]
Ding Y, Wu F, Zhang Y, et al. Interplay between static and dynamic energy transfer in biofunctional upconversion nanoplatforms. J Phys Chem Lett 2015; 6(13): 2518-23.
[http://dx.doi.org/10.1021/acs.jpclett.5b00999] [PMID: 26266728]
[41]
Chen C, Kang N, Xu T, Wang D, Ren L, Guo X. Core-shell hybrid upconversion nanoparticles carrying stable nitroxide radicals as potential multifunctional nanoprobes for upconversion luminescence and magnetic resonance dual-modality imaging. Nanoscale 2015; 7(12): 5249-61.
[http://dx.doi.org/10.1039/C4NR07591A] [PMID: 25716884]
[42]
Li Y, Tang J, He L, et al. Core-shell upconversion nanoparticle@metal-organic framework nanoprobes for luminescent/magnetic dual-mode targeted imaging. Adv Mater 2015; 27(27): 4075-80.
[http://dx.doi.org/10.1002/adma.201501779] [PMID: 26053933]
[43]
Zhu X, Zhou J, Chen M, Shi M, Feng W, Li F. Core-shell Fe3O4@NaLuF4:Yb,Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging. Biomaterials 2012; 33(18): 4618-27.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.007] [PMID: 22444645]
[44]
Zhang L, Wang YS, Yang Y, et al. Magnetic/upconversion luminescent mesoparticles of Fe3O4@LaF3:Yb3+, Er3+ for dual-modal bioimaging. Chem Commun (Camb) 2012; 48(91): 11238-40.
[http://dx.doi.org/10.1039/c2cc36059d] [PMID: 23059635]
[45]
Zhao P, Zhu Y, Yang X, et al. Multifunctional MnO2 nanosheet-modified Fe3O4@SiO2/NaYF4:Yb, Er nanocomposites as novel drug carriers. Dalton Trans 2014; 43(2): 451-7.
[http://dx.doi.org/10.1039/C3DT52066H] [PMID: 24065169]
[46]
Lv Y, Yue L, Li Q, et al. Recyclable (Fe3O4-NaYF4:Yb,Tm)@TiO2 nanocomposites with near-infrared enhanced photocatalytic activity. Dalton Trans 2018; 47(5): 1666-73.
[http://dx.doi.org/10.1039/C7DT04279E] [PMID: 29327753]
[47]
Liu Z, Sun L, Li F, et al. One-pot self-assembly of multifunctional mesoporous nanoprobes with magnetic nanoparticles and hydrophobic upconversion nanocrystals. J Mater Chem 2011; 21: 17615-8.
[http://dx.doi.org/10.1039/c1jm13871e]
[48]
Chen H, Qi B, Moore T, et al. Synthesis of brightly PEGylated luminescent magnetic upconversion nanophosphors for deep tissue and dual MRI imaging. Small 2014; 10(1): 160-8.
[http://dx.doi.org/10.1002/smll.201300828] [PMID: 23828629]
[49]
Zhang G, Yang Z, Lu W, et al. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials 2009; 30(10): 1928-36.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.038] [PMID: 19131103]
[50]
Duan X, Li Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 2013; 9(9-10): 1521-32.
[http://dx.doi.org/10.1002/smll.201201390] [PMID: 23019091]
[51]
Jo DH, Kim JH, Lee TG, Kim JH. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine (Lond) 2015; 11(7): 1603-11.
[http://dx.doi.org/10.1016/j.nano.2015.04.015] [PMID: 25989200]
[52]
Zeng LY, Xiang LC, Ren WZ, et al. Multifunctional photosensitizer-conjugated core-shell Fe3O4@NaYF4:Yb/Er nanocomplexes and their applications in T2-weighted magnetic resonance/upconversion luminescence imaging and photodynamic therapy of cancer cells. RSC Advances 2013; 3: 13915-25.
[http://dx.doi.org/10.1039/c3ra41916a]
[53]
Ding Y, Hong X, Zou P, et al. Magnetic upconversion luminescent nanocomposites with small size and strong super-paramagnetism: Polyelectrolyte-mediated multimagnetic-beads embedding. ACS Appl Nano Mater 2018; 1(1): 145-51.
[http://dx.doi.org/10.1021/acsanm.7b00059]
[54]
Chamé KF, Ojeda MM, González FG, Rentería VMT, Ojeda MLM, Velásquez CO. Green and red upconversion luminescence in multifunctional Ag@Fe3O4@Gd2O3:Er3+ composites. J Alloys Compd 2018; 744: 683-90.
[http://dx.doi.org/10.1016/j.jallcom.2018.02.038]
[55]
Campos-Goncalves I, Costa BFO, Santos RF, Durães L. Superparamagnetic core-shell nanocomplexes doped with Yb3+:Er3+/Ho3+ rare-earths for upconversion fluorescence. Mater Des 2017; 130: 263-74.
[http://dx.doi.org/10.1016/j.matdes.2017.05.064]
[56]
Zhong C, Yang P, Li X, et al. Monodisperse bifunctional Fe3O4@NaGdF4:Yb/Er@NaGdF4:Yb/Er core-shell nanoparticles. RSC Advances 2012; 2: 3194-7.
[http://dx.doi.org/10.1039/c2ra20070h]
[57]
Cui X, Mathe D, Kovács N, et al. Synthesis, characterization, and application of core shell Co0.16Fe2.84O4@NaYF4(Yb, Er) and Fe3O4@NaYF4(Yb, Tm) nanoparticle as trimodal (MRI, PET/SPECT, and optical) imaging agents. Bioconjug Chem 2016; 27(2): 319-28.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00338] [PMID: 26172432]
[58]
Cheng Q, Guo H, Li Y, Liu S, Sui J, Cai W. A facile one-pot method to synthesize ultrasmall core-shell superparamagnetic and upconversion nanoparticles. J Colloid Interface Sci 2016; 475: 1-7.
[http://dx.doi.org/10.1016/j.jcis.2016.04.040] [PMID: 27135942]
[59]
Qin Z, Du S, Luo Y, et al. Hydrothermal synthesis of superparamagnetic and red luminescent bifunctional Fe3O4@Mn2+-doped NaYF4:Yb/Er core@shell monodisperse nanoparticles and their subsequent ligand exchange in water. Appl Surf Sci 2016; 378: 174-80.
[http://dx.doi.org/10.1016/j.apsusc.2016.03.219]
[60]
Wu Q, Lin Y, Wo F, et al. Novel magnetic-luminescent janus nanoparticles for cell labeling and tumor photothermal therapy. Small 2017; 13(39)1701129
[http://dx.doi.org/10.1002/smll.201701129] [PMID: 28834345]
[61]
Luo Y, Zhang W, Liao Z, et al. Role of Mn2+ doping in the preparation of core-shell structured Fe3O4@upconversion nanoparticles and their applications in T1/T2-weighted magnetic resonance imaging, upconversion luminescent imaging and near-infrared activated photodynamic therapy. Nanomaterials (Basel) 2018; 8(7): 466.
[http://dx.doi.org/10.3390/nano8070466] [PMID: 29949933]
[62]
Zhang F, Braun GB, Pallaoro A, et al. Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy. Nano Lett 2012; 12(1): 61-7.
[http://dx.doi.org/10.1021/nl202949y] [PMID: 22133237]
[63]
Huang S, Chen Y, Liu B, et al. Synthesis of magnetic and upconversion nanocapsules as multifunctional drug delivery system. J Solid State Chem 2015; 229: 322-9.
[http://dx.doi.org/10.1016/j.jssc.2015.06.024]
[64]
Barbe C, Bartlett J, Kong LG, et al. Silica particles: A novel drug-delivery system. Adv Mater 2004; 16(21): 1959-66.
[http://dx.doi.org/10.1002/adma.200400771]
[65]
Ding Y, Chu X, Hong X, Zou P, Liu Y. The infrared fingerprint signals of silica nanoparticles and its application in immunoassay. Appl Phys Lett 2012; 100013701
[http://dx.doi.org/10.1063/1.3673549]
[66]
Abdul Jalil R, Zhang Y. Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials 2008; 29(30): 4122-8.
[http://dx.doi.org/10.1016/j.biomaterials.2008.07.012] [PMID: 18675453]
[67]
Zhang W, Liu M, Liu A, Zhai G. Advances in functionalized mesoporous silica nanoparticles for tumor targeted drug delivery and theranostics. Curr Pharm Des 2017; 23(23): 3367-82.
[http://dx.doi.org/10.2174/1381612822666161025153619] [PMID: 27784244]
[68]
Gai S, Yang P, Li C, et al. Synthesis of magnetic, up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers. Adv Funct Mater 2010; 20(7): 1166-72.
[http://dx.doi.org/10.1002/adfm.200902274]
[69]
Xu H, Cheng L, Wang C, Ma X, Li Y, Liu Z. Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials 2011; 32(35): 9364-73.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.053] [PMID: 21880364]
[70]
Yu S, Gao X, Jing H, Zhang R, Gao X, Su H. Fabrication and characterization of novel magnetic/luminescent multifunctional nanocomposites for controlled drug release. CrystEngComm 2014; 16: 6645-53.
[http://dx.doi.org/10.1039/c4ce00582a]
[71]
Shen S, Guo X, Wu L, et al. Dual-core@shell-structured Fe3O4-NaYF4@TiO2 nanocomposites as a magnetic targeting drug carrier for bioimaging and combined chemo-sonodynamic therapy. J Mater Chem B Mater Biol Med 2014; 2: 5775-84.
[http://dx.doi.org/10.1039/C4TB00841C]
[72]
Du B, Han S, Zhao F, et al. A smart upconversion-based lighttriggered polymer for synergetic chemo-photodynamic therapy and dual-modal MR/UCL imaging. Nanomed -Nanotechnol 2016; 12: 2071-80.
[73]
Liu Z, Yi G, Zhang H, Ding J, Zhang Y, Xue J. Monodisperse silica nanoparticles encapsulating upconversion fluorescent and superparamagnetic nanocrystals. Chem Commun (Camb) 2008; (6): 694-6.
[http://dx.doi.org/10.1039/B715402J] [PMID: 18478693]
[74]
Mi C, Zhang J, Gao H, et al. Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4: Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells. Nanoscale 2010; 2(7): 1141-8.
[http://dx.doi.org/10.1039/c0nr00102c] [PMID: 20648340]
[75]
Du B, Cao X, Zhao F, et al. Multimodal imaging-guided, dual-targeted photothermal therapy for cancer. J Mater Chem B Mater Biol Med 2016; 4: 2038-50.
[http://dx.doi.org/10.1039/C6TB00215C]
[76]
Li N, Zhao Y, Cheng C, Yang Y, Yuan H, Carlini R. Preparation of core-shell magnetic nano-upconversion materials and its targeting effect. Mater Lett 2018; 227: 44-6.
[http://dx.doi.org/10.1016/j.matlet.2018.05.003]
[77]
Shen J, Sun LD, Zhang YW, Yan CH. Superparamagnetic and upconversion emitting Fe3O4/NaYF4:Yb,Er hetero-nanoparticles via a crosslinker anchoring strategy. Chem Commun (Camb) 2010; 46(31): 5731-3.
[http://dx.doi.org/10.1039/c0cc00814a] [PMID: 20585692]
[78]
Cheng L, Yang K, Li Y, et al. Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials 2012; 33(7): 2215-22.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.069] [PMID: 22169825]
[79]
Cheng L, Wang C, Ma X, et al. Multifunctional upconversion nanoparticles for dual-modal imaging-guided stem cell therapy under remote magnetic control. Adv Funct Mater 2013; 23: 272-80.
[http://dx.doi.org/10.1002/adfm.201201733]
[80]
Ma Q, Wang J, Dong X, Yu W, Liu G. Electrospinning fabrication and characterization of magnetic-upconversion fluorescent bifunctional core-shell nanofibers. J Nanopart Res 2014; 16: 2239.
[http://dx.doi.org/10.1007/s11051-013-2239-4]
[81]
Xi X, Ma Q, Dong X, Wang J, Yu W, Liu G. Flexible Janus nanofiber to help achieve simultaneous enhanced magnetism-upconversion luminescence bifunction. IEEE Trans NanoTechnol 2015; 14: 243-9.
[http://dx.doi.org/10.1109/TNANO.2014.2385085]
[82]
Ma Q, Wang J, Dong X, Yu W, Liu G. Magnetic-upconversion luminescent bifunctional flexible coaxial nanoribbon and Janus nanoribbon: One-pot electrospinning preparation, structure and enhanced upconversion luminescent characteristics. Chem Eng J 2015; 260: 222-30.
[http://dx.doi.org/10.1016/j.cej.2014.09.033]
[83]
Li J, Ma Q, Dong X, et al. Novel electrospun bilayered composite fibrous membrane endowed with tunable and simultaneous quadrifunctionality of electricity-magnetism at one layer and upconversion luminescence-photocatalysis at the other layer. RSC Advances 2016; 6: 96084-92.
[http://dx.doi.org/10.1039/C6RA20591G]
[84]
Yan L, Chang YN, Yin W, et al. Enhanced multifunctional properties of graphene nanocomposites with nacre-like structures. Adv Eng Mater 2015; 17: 523-31.
[http://dx.doi.org/10.1002/adem.201400237]
[85]
Bi H, He F, Dai Y, et al. Quad-model imaging-guided high-efficiency phototherapy based on upconversion nanoparticles and ZnFe2O4 integrated graphene oxide. Inorg Chem 2018; 57(16): 9988-98.
[http://dx.doi.org/10.1021/acs.inorgchem.8b01159] [PMID: 30070830]
[86]
Hu D, Chen M, Gao Y, Li F, Wu L. A facile method to synthesize superparamagnetic and up-conversion luminescent NaYF4: Yb, Er/Tm@SiO2@Fe3O4 nanocomposite particles and their bioapplication. J Mater Chem 2011; 21: 11276-82.
[http://dx.doi.org/10.1039/c1jm11172h]
[87]
Lu H, Yi G, Zhao S, Chen D, Guo LH, Cheng J. Synthesis and characterization of multi-functional nanoparticles possessing magnetic, up-conversion fluorescence and bio-affinity properties. J Mater Chem 2004; 14: 1336-41.
[http://dx.doi.org/10.1039/b315103d]
[88]
Zhou J, Liu Z, Li F. Upconversion nanophosphors for small-animal imaging. Chem Soc Rev 2012; 41(3): 1323-49.
[http://dx.doi.org/10.1039/C1CS15187H] [PMID: 22008740]
[89]
Chen G, Shen J, Ohulchanskyy TY, et al. (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 2012; 6(9): 8280-7.
[http://dx.doi.org/10.1021/nn302972r] [PMID: 22928629]
[90]
Peng H, Cui B, Zhao W, Wang Y, Chang Z, Wang Y. Glycine-functionalized Fe3O4@TiO2:Er3+,Yb3+ nanocarrier for microwave-triggered controllable drug release and study on mechanism of loading/release process using microcalorimetry. Expert Opin Drug Deliv 2015; 12(9): 1397-409.
[http://dx.doi.org/10.1517/17425247.2015.1031652] [PMID: 25824126]
[91]
Zeng L, Luo L, Pan Y, Luo S, Lu G, Wu A. In vivo targeted magnetic resonance imaging and visualized photodynamic therapy in deep-tissue cancers using folic acid-functionalized superparamagnetic-upconversion nanocomposites. Nanoscale 2015; 7(19): 8946-54.
[http://dx.doi.org/10.1039/C5NR01932J] [PMID: 25920333]
[92]
Zhang Y, Dong C, Su L, et al. Multifunctional microspheres encoded with upconverting nanocrystals and magnetic nanoparticles for rapid separation and immunoassays. ACS Appl Mater Interfaces 2016; 8(1): 745-53.
[http://dx.doi.org/10.1021/acsami.5b09913] [PMID: 26653130]
[93]
Tang Y, Liu H, Gao J, et al. Upconversion particle@Fe3O4@ molecularly imprinted polymer with controllable shell thickness as high-performance fluorescent probe for sensing quinolones. Talanta 2018; 181: 95-103.
[http://dx.doi.org/10.1016/j.talanta.2018.01.006] [PMID: 29426547]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy