Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Intercellular Crosstalk Via Extracellular Vesicles in Tumor Milieu as Emerging Therapies for Cancer Progression

Author(s): Laura Patras and Manuela Banciu*

Volume 25, Issue 17, 2019

Page: [1980 - 2006] Pages: 27

DOI: 10.2174/1381612825666190701143845

Price: $65

conference banner
Abstract

Increasing evidence has suggested that extracellular vesicles (EV) mediated bidirectional transfer of functional molecules (such as proteins, different types of RNA, and lipids) between cancer cells and tumor stromal cells (immune cells, endothelial cells, fibroblasts, stem cells) and strongly contributed to the reinforcement of cancer progression. Thus, intercellular EV-mediated signaling in tumor microenvironment (TME) is essential in the modulation of all processes that support and promote tumor development like immune suppression, angiogenesis, invasion and metastasis, and resistance of tumor cells to anticancer treatments.

Besides EV potential to revolutionize our understanding of the cancer cell-stromal cells crosstalk in TME, their ability to selectively transfer different cargos to recipient cells has created excitement in the field of tumortargeted delivery of specific molecules for anticancer treatments. Therefore, in tight connection with previous findings, this review brought insight into the dual role of EV in modulation of TME. Thus, on one side EV create a favorable phenotype of tumor stromal cells for tumor progression; however, as a future new class of anticancer drug delivery systems EV could re-educate the TME to overcome main supportive processes for malignancy progression.

Keywords: Extracellular vesicles, exosomes, tumor cells, tumor microenvironment, drug delivery systems, bioengineering.

[1]
Yuana Y, Sturk A, Nieuwland R. Extracellular vesicles in physiological and pathological conditions. Blood Rev 2013; 27(1): 31-9.
[http://dx.doi.org/10.1016/j.blre.2012.12.002] [PMID: 23261067]
[2]
Bayraktar E. G KH, Abd-Ellah MF, Amero P, Chavez-Reyes A, Rodriguez-Aguayo C. Exosomes: From Garbage Bins to Promising Therapeutic Targets. Int J Mol Sci 2017; 18(3)E538
[3]
EL Andaloussi S. Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat Rev Drug Discov 2013; 12(5): 347-57.
[http://dx.doi.org/10.1038/nrd3978] [PMID: 23584393]
[4]
de Jong OG, Verhaar MC, Chen Y, et al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles 2012; 1: 1.
[http://dx.doi.org/10.3402/jev.v1i0.18396] [PMID: 24009886]
[5]
Ailawadi S, Wang X, Gu H, Fan GC. Pathologic function and therapeutic potential of exosomes in cardiovascular disease. Biochim Biophys Acta 2015; 1852(1): 1-11.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.008] [PMID: 25463630]
[6]
Parolini I, Federici C, Raggi C, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 2009; 284(49): 34211-22.
[http://dx.doi.org/10.1074/jbc.M109.041152] [PMID: 19801663]
[7]
Park JE, Tan HS, Datta A, et al. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics 2010; 9(6): 1085-99.
[http://dx.doi.org/10.1074/mcp.M900381-MCP200] [PMID: 20124223]
[8]
Shao C, Yang F, Miao S, et al. Role of hypoxia-induced exosomes in tumor biology. Mol Cancer 2018; 17(1): 120.
[http://dx.doi.org/10.1186/s12943-018-0869-y] [PMID: 30098600]
[9]
Ciregia F, Urbani A, Palmisano G. Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases. Front Mol Neurosci 2017; 10: 276.
[http://dx.doi.org/10.3389/fnmol.2017.00276] [PMID: 28912682]
[10]
Bandari SK, Purushothaman A, Ramani VC, et al. Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Matrix Biol 2018; 65: 104-18.
[http://dx.doi.org/10.1016/j.matbio.2017.09.001] [PMID: 28888912]
[11]
Bovy N, Blomme B, Frères P, et al. Endothelial exosomes contribute to the antitumor response during breast cancer neoadjuvant chemotherapy via microRNA transfer. Oncotarget 2015; 6(12): 10253-66.
[http://dx.doi.org/10.18632/oncotarget.3520] [PMID: 25860935]
[12]
Thompson CA, Purushothaman A, Ramani VC, Vlodavsky I, Sanderson RD. Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. J Biol Chem 2013; 288(14): 10093-9.
[http://dx.doi.org/10.1074/jbc.C112.444562] [PMID: 23430739]
[13]
Gangoda L, Mathivanan S. Cortactin enhances exosome secretion without altering cargo. J Cell Biol 2016; 214(2): 129-31.
[http://dx.doi.org/10.1083/jcb.201606131] [PMID: 27432895]
[14]
Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ, Whiteside TL. Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J Immunol 2009; 183(6): 3720-30.
[http://dx.doi.org/10.4049/jimmunol.0900970] [PMID: 19692638]
[15]
Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M, Whiteside TL. Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoS One 2010; 5(7)e11469
[http://dx.doi.org/10.1371/journal.pone.0011469] [PMID: 0661468]
[16]
Ashiru O, Boutet P, Fernández-Messina L, et al. Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res 2010; 70(2): 481-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1688] [PMID: 20068167]
[17]
Klibi J, Niki T, Riedel A, et al. Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells. Blood 2009; 113(9): 1957-66.
[http://dx.doi.org/10.1182/blood-2008-02-142596] [PMID: 19005181]
[18]
Huber V, Fais S, Iero M, et al. Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: Role in immune escape. Gastroenterology 2005; 128(7): 1796-804.
[http://dx.doi.org/10.1053/j.gastro.2005.03.045] [PMID: 15940614]
[19]
Andreola G, Rivoltini L, Castelli C, et al. Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J Exp Med 2002; 195(10): 1303-16.
[http://dx.doi.org/10.1084/jem.20011624] [PMID: 12021310]
[20]
Barros FM, Carneiro F, Machado JC, Melo SA. Exosomes and Immune Response in Cancer: Friends or Foes? Front Immunol 2018; 9: 730.
[http://dx.doi.org/10.3389/fimmu.2018.00730] [PMID: 29696022]
[21]
Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. Extracellular Vesicles in Cancer: Cell-to-Cell Mediators of Metastasis. Cancer Cell 2016; 30(6): 836-48.
[http://dx.doi.org/10.1016/j.ccell.2016.10.009] [PMID: 27960084]
[22]
Vader P, Breakefield XO, Wood MJ. Extracellular vesicles: Emerging targets for cancer therapy. Trends Mol Med 2014; 20(7): 385-93.
[http://dx.doi.org/10.1016/j.molmed.2014.03.002] [PMID: 24703619]
[23]
Henderson MC, Azorsa DO. The genomic and proteomic content of cancer cell-derived exosomes. Front Oncol 2012; 2: 38.
[http://dx.doi.org/10.3389/fonc.2012.00038] [PMID: 22649786]
[24]
Fontana S, Saieva L, Taverna S, Alessandro R. Contribution of proteomics to understanding the role of tumor-derived exosomes in cancer progression: State of the art and new perspectives. Proteomics 2013; 13(10-11): 1581-94.
[http://dx.doi.org/10.1002/pmic.201200398] [PMID: 23401131]
[25]
Tkach M, Théry C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell 2016; 164(6): 1226-32.
[http://dx.doi.org/10.1016/j.cell.2016.01.043] [PMID: 26967288]
[26]
Kanada M, Bachmann MH, Contag CH. Signaling by Extracellular Vesicles Advances Cancer Hallmarks. Trends Cancer 2016; 2(2): 84-94.
[http://dx.doi.org/10.1016/j.trecan.2015.12.005] [PMID: 28741553]
[27]
Castellana D, Kunzelmann C, Freyssinet JM. Pathophysiologic significance of procoagulant microvesicles in cancer disease and progression. Hamostaseologie 2009; 29(1): 51-7.
[http://dx.doi.org/10.1055/s-0037-1616940] [PMID: 19151847]
[28]
Maybruck BT, Pfannenstiel LW, Diaz-Montero M, Gastman BR. Tumor-derived exosomes induce CD8+ T cell suppressors. J Immunother Cancer 2017; 5(1): 65.
[http://dx.doi.org/10.1186/s40425-017-0269-7] [PMID: 28806909]
[29]
Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. Exosomes in cancer: Small particle, big player. J Hematol Oncol 2015; 8: 83.
[http://dx.doi.org/10.1186/s13045-015-0181-x] [PMID: 26156517]
[30]
Boelens MC, Wu TJ, Nabet BY, et al. Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 2014; 159(3): 499-513.
[http://dx.doi.org/10.1016/j.cell.2014.09.051] [PMID: 25417103]
[31]
Demory Beckler M, Higginbotham JN, Franklin JL, et al. Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Mol Cell Proteomics 2013; 12(2): 343-55.
[http://dx.doi.org/10.1074/mcp.M112.022806] [PMID: 23161513]
[32]
Smyth T, Kullberg M, Malik N, Smith-Jones P, Graner MW, Anchordoquy TJ. Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. J Control Release 2015; 199: 145-55.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.013] [PMID: 25523519]
[33]
Kotmakçı M, Bozok Çetintaş V. Extracellular Vesicles as Natural Nanosized Delivery Systems for Small-Molecule Drugs and Genetic Material: Steps towards the Future Nanomedicines. J Pharm Pharm Sci 2015; 18(3): 396-413.
[http://dx.doi.org/10.18433/J36W3X] [PMID: 26517135]
[34]
Kooijmans SAA, Fliervoet LAL, van der Meel R, et al. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time. J Control Release 2016; 224: 77-85.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.009] [PMID: 26773767]
[35]
Peinado H, Alečković M, Lavotshkin S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012; 18(6): 883-91.
[http://dx.doi.org/10.1038/nm.2753] [PMID: 22635005]
[36]
Atai NA, Balaj L, van Veen H, et al. Heparin blocks transfer of extracellular vesicles between donor and recipient cells. J Neurooncol 2013; 115(3): 343-51.
[http://dx.doi.org/10.1007/s11060-013-1235-y] [PMID: 24002181]
[37]
Marleau AM, Chen CS, Joyce JA, Tullis RH. Exosome removal as a therapeutic adjuvant in cancer. J Transl Med 2012; 10: 134.
[http://dx.doi.org/10.1186/1479-5876-10-134] [PMID: 22738135]
[38]
Gamperl H, Plattfaut C, Freund A, Quecke T, Theophil F, Gieseler F. Extracellular vesicles from malignant effusions induce tumor cell migration: Inhibitory effect of LMWH tinzaparin. Cell Biol Int 2016; 40(10): 1050-61.
[http://dx.doi.org/10.1002/cbin.10645] [PMID: 27435911]
[39]
Koch R, Aung T, Vogel D, et al. Nuclear Trapping through Inhibition of Exosomal Export by Indomethacin Increases Cytostatic Efficacy of Doxorubicin and Pixantrone. Clin Cancer Res 2016; 22(2): 395-404.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0577] [PMID: 26369630]
[40]
Nishida-Aoki N, Tominaga N, Takeshita F, Sonoda H, Yoshioka Y, Ochiya T. Disruption of Circulating Extracellular Vesicles as a Novel Therapeutic Strategy against Cancer Metastasis. Mol Ther 2017; 25(1): 181-91.
[http://dx.doi.org/10.1016/j.ymthe.2016.10.009] [PMID: 28129113]
[41]
Ringuette Goulet C, Bernard G, Tremblay S, Chabaud S, Bolduc S, Pouliot F. Exosomes Induce Fibroblast Differentiation into Cancer-Associated Fibroblasts through TGFβ Signaling. Mol Cancer Res 2018; 16(7): 1196-204.
[http://dx.doi.org/10.1158/1541-7786.MCR-17-0784] [PMID: 29636362]
[42]
Lunavat TR, Cheng L, Einarsdottir BO, et al. BRAFV600 inhibition alters the microRNA cargo in the vesicular secretome of malignant melanoma cells. Proc Natl Acad Sci USA 2017; 114(29): E5930-9.
[http://dx.doi.org/10.1073/pnas.1705206114] [PMID: 28684402]
[43]
Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol 2013; 200(4): 373-83.
[http://dx.doi.org/10.1083/jcb.201211138] [PMID: 23420871]
[44]
van Dommelen SM, Vader P, Lakhal S, et al. Microvesicles and exosomes: Opportunities for cell-derived membrane vesicles in drug delivery. J Control Release 2012; 161(2): 635-44.
[http://dx.doi.org/10.1016/j.jconrel.2011.11.021] [PMID: 22138068]
[45]
Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery Adv Drug Deliv Rev 2016; 106(Pt A): 148-56.
[http://dx.doi.org/10.1016/j.addr.2016.02.006] [PMID: 26928656]
[46]
Xie Y, Zhang X, Zhao T, Li W, Xiang J. Natural CD8+25+ regulatory T cell-secreted exosomes capable of suppressing cytotoxic T lymphocyte-mediated immunity against B16 melanoma. Biochem Biophys Res Commun 2013; 438(1): 152-5.
[http://dx.doi.org/10.1016/j.bbrc.2013.07.044] [PMID: 23876314]
[47]
Abak A, Abhari A, Rahimzadeh S. Exosomes in cancer: Small vesicular transporters for cancer progression and metastasis, biomarkers in cancer therapeutics. PeerJ 2018; 6e4763
[http://dx.doi.org/10.7717/peerj.4763] [PMID: 9868251]
[48]
Leca J, Martinez S, Lac S, et al. Cancer-associated fibroblast-derived annexin A6+ extracellular vesicles support pancreatic cancer aggressiveness. J Clin Invest 2016; 126(11): 4140-56.
[http://dx.doi.org/10.1172/JCI87734] [PMID: 27701147]
[49]
Theodoraki MN, Yerneni SS, Brunner C, Theodorakis J, Hoffmann TK, Whiteside TL. Plasma-derived Exosomes Reverse Epithelial-to-Mesenchymal Transition after Photodynamic Therapy of Patients with Head and Neck Cancer. Oncoscience 2018; 5(3-4): 75-87.
[PMID: 29854876]
[50]
Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013; 19(11): 1423-37.
[http://dx.doi.org/10.1038/nm.3394] [PMID: 24202395]
[51]
Balkwill F, Mantovani A. Inflammation and cancer: Back to Virchow? Lancet 2001; 357(9255): 539-45.
[http://dx.doi.org/10.1016/S0140-6736(00)04046-0] [PMID: 11229684]
[52]
Hanahan D, Coussens LM. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell 2012; 21(3): 309-22.
[http://dx.doi.org/10.1016/j.ccr.2012.02.022] [PMID: 22439926]
[53]
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[54]
Liu C, Yu S, Zinn K, et al. Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. J Immunol 2006; 176(3): 1375-85.
[http://dx.doi.org/10.4049/jimmunol.176.3.1375] [PMID: 16424164]
[55]
Kim SH, Bianco N, Menon R, et al. Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive. Mol Ther 2006; 13(2): 289-300.
[http://dx.doi.org/10.1016/j.ymthe.2005.09.015] [PMID: 16275099]
[56]
Taylor DD, Gerçel-Taylor C, Lyons KS, Stanson J, Whiteside TL. T-cell apoptosis and suppression of T-cell receptor/CD3-zeta by Fas ligand-containing membrane vesicles shed from ovarian tumors. Clin Cancer Res 2003; 9(14): 5113-9.
[PMID: 14613988]
[57]
Zhang X, Pei Z, Chen J, et al. Exosomes for Immunoregulation and Therapeutic Intervention in Cancer. J Cancer 2016; 7(9): 1081-7.
[http://dx.doi.org/10.7150/jca.14866] [PMID: 27326251]
[58]
Lundholm J, Heim A, Tran S, Smith T. Leaf and life history traits predict plant growth in a green roof ecosystem. PLoS One 2014; 9(6)e101395
[http://dx.doi.org/10.1371/journal.pone.0101395] [PMID: 4978031]
[59]
Clayton A, Mitchell JP, Court J, Linnane S, Mason MD, Tabi Z. Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol 2008; 180(11): 7249-58.
[http://dx.doi.org/10.4049/jimmunol.180.11.7249] [PMID: 18490724]
[60]
Espinoza JL, Takami A, Yoshioka K, et al. Human microRNA-1245 down-regulates the NKG2D receptor in natural killer cells and impairs NKG2D-mediated functions. Haematologica 2012; 97(9): 1295-303.
[http://dx.doi.org/10.3324/haematol.2011.058529] [PMID: 22491735]
[61]
Zhou M, Chen J, Zhou L, Chen W, Ding G, Cao L. Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203. Cell Immunol 2014; 292(1-2): 65-9.
[http://dx.doi.org/10.1016/j.cellimm.2014.09.004] [PMID: 25290620]
[62]
Ding G, Zhou L, Qian Y, et al. Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p. Oncotarget 2015; 6(30): 29877-88.
[http://dx.doi.org/10.18632/oncotarget.4924] [PMID: 26337469]
[63]
Chow A, Zhou W, Liu L, et al. Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-κB. Sci Rep 2014; 4: 5750.
[http://dx.doi.org/10.1038/srep05750] [PMID: 25034888]
[64]
Ying X, Wu Q, Wu X, et al. Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget 2016; 7(28): 43076-87.
[http://dx.doi.org/10.18632/oncotarget.9246] [PMID: 27172798]
[65]
Chen G, Huang AC, Zhang W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 2018; 560(7718): 382-6.
[http://dx.doi.org/10.1038/s41586-018-0392-8] [PMID: 30089911]
[66]
Ruffell B, Affara NI, Coussens LM. Differential macrophage programming in the tumor microenvironment. Trends Immunol 2012; 33(3): 119-26.
[http://dx.doi.org/10.1016/j.it.2011.12.001] [PMID: 22277903]
[67]
Facciabene A, Motz GT, Coukos G. T-regulatory cells: Key players in tumor immune escape and angiogenesis. Cancer Res 2012; 72(9): 2162-71.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3687] [PMID: 22549946]
[68]
Mrizak D, Martin N, Barjon C, et al. Effect of nasopharyngeal carcinoma-derived exosomes on human regulatory T cells. J Natl Cancer Inst 2014; 107(1): 363.
[PMID: 25505237]
[69]
Ye SB, Li ZL, Luo DH, et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget 2014; 5(14): 5439-52.
[http://dx.doi.org/10.18632/oncotarget.2118] [PMID: 24978137]
[70]
Chen W, Jiang J, Xia W, Huang J. Tumor-Related Exosomes Contribute to Tumor-Promoting Microenvironment: An Immunological Perspective. J Immunol Res 2017; 20171073947
[http://dx.doi.org/10.1155/2017/1073947] [PMID: 8642882]
[71]
Li Y, An J, Huang S, He J, Zhang J. Esophageal cancer-derived microvesicles induce regulatory B cells. Cell Biochem Funct 2015; 33(5): 308-13.
[http://dx.doi.org/10.1002/cbf.3115] [PMID: 26009869]
[72]
Yu S, Liu C, Su K, et al. Tumor exosomes inhibit differentiation of bone marrow dendritic cells. J Immunol 2007; 178(11): 6867-75.
[http://dx.doi.org/10.4049/jimmunol.178.11.6867] [PMID: 17513735]
[73]
Gu J, Qian H, Shen L, et al. Gastric cancer exosomes trigger differentiation of umbilical cord derived mesenchymal stem cells to carcinoma-associated fibroblasts through TGF-β/Smad pathway. PLoS One 2012; 7(12)e52465
[http://dx.doi.org/10.1371/journal.pone.0052465] [PMID: 3285052]
[74]
Chalmin F, Ladoire S, Mignot G, et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 2010; 120(2): 457-71.
[http://dx.doi.org/10.1172/JCI40483] [PMID: 20093776]
[75]
He C, Zheng S, Luo Y, Wang B. Exosome Theranostics: Biology and Translational Medicine. Theranostics 2018; 8(1): 237-55.
[http://dx.doi.org/10.7150/thno.21945] [PMID: 29290805]
[76]
Tomasetti M, Lee W, Santarelli L, Neuzil J. Exosome-derived microRNAs in cancer metabolism: Possible implications in cancer diagnostics and therapy. Exp Mol Med 2017; 49(1)e285
[http://dx.doi.org/10.1038/emm.2016.153] [PMID: 8104913]
[77]
Liu Y, Xiang X, Zhuang X, et al. Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells. Am J Pathol 2010; 176(5): 2490-9.
[http://dx.doi.org/10.2353/ajpath.2010.090777] [PMID: 20348242]
[78]
Zhang HG, Grizzle WE. Exosomes and cancer: A newly described pathway of immune suppression. Clin Cancer Res 2011; 17(5): 959-64.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1489] [PMID: 21224375]
[79]
Alfonsi R, Grassi L, Signore M, Bonci D. The Double Face of Exosome-Carried MicroRNAs in Cancer Immunomodulation. Int J Mol Sci 2018; 19(4): 19.
[http://dx.doi.org/10.3390/ijms19041183] [PMID: 29652798]
[80]
Qiu J, Yang G, Feng M, et al. Extracellular vesicles as mediators of the progression and chemoresistance of pancreatic cancer and their potential clinical applications. Mol Cancer 2018; 17(1): 2.
[http://dx.doi.org/10.1186/s12943-017-0755-z] [PMID: 29304816]
[81]
Shen M, Ren X. New insights into the biological impacts of immune cell-derived exosomes within the tumor environment. Cancer Lett 2018; 431: 115-22.
[http://dx.doi.org/10.1016/j.canlet.2018.05.040] [PMID: 29857125]
[82]
Geis-Asteggiante L, Dhabaria A, Edwards N, Ostrand-Rosenberg S, Fenselau C. Top-down analysis of low mass proteins in exosomes shed by murine myeloid-derived suppressor cells. Int J Mass Spectrom 2015; 378: 264-9.
[http://dx.doi.org/10.1016/j.ijms.2014.08.035] [PMID: 25937807]
[83]
Burke M, Choksawangkarn W, Edwards N, Ostrand-Rosenberg S, Fenselau C. Exosomes from myeloid-derived suppressor cells carry biologically active proteins. J Proteome Res 2014; 13(2): 836-43.
[http://dx.doi.org/10.1021/pr400879c] [PMID: 24295599]
[84]
Nazarenko I, Rana S, Baumann A, et al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res 2010; 70(4): 1668-78.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2470] [PMID: 20124479]
[85]
Umezu T, Ohyashiki K, Kuroda M, Ohyashiki JH. Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene 2013; 32(22): 2747-55.
[http://dx.doi.org/10.1038/onc.2012.295] [PMID: 22797057]
[86]
Zhou W, Fong MY, Min Y, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 2014; 25(4): 501-15.
[http://dx.doi.org/10.1016/j.ccr.2014.03.007] [PMID: 24735924]
[87]
Tadokoro H, Umezu T, Ohyashiki K, Hirano T, Ohyashiki JH. Exosomes derived from hypoxic leukemia cells enhance tube formation in endothelial cells. J Biol Chem 2013; 288(48): 34343-51.
[http://dx.doi.org/10.1074/jbc.M113.480822] [PMID: 24133215]
[88]
Umezu T, Tadokoro H, Azuma K, Yoshizawa S, Ohyashiki K, Ohyashiki JH. Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood 2014; 124(25): 3748-57.
[http://dx.doi.org/10.1182/blood-2014-05-576116] [PMID: 25320245]
[89]
Gajos-Michniewicz A, Duechler M, Czyz M. MiRNA in melanoma-derived exosomes. Cancer Lett 2014; 347(1): 29-37.
[http://dx.doi.org/10.1016/j.canlet.2014.02.004] [PMID: 24513178]
[90]
Hood JL, Pan H, Lanza GM, Wickline SA. Paracrine induction of endothelium by tumor exosomes. Lab Invest 2009; 89(11): 1317-28.
[http://dx.doi.org/10.1038/labinvest.2009.94] [PMID: 19786948]
[91]
Huang MB, Gonzalez RR, Lillard J, Bond VC. Secretion modification region-derived peptide blocks exosome release and mediates cell cycle arrest in breast cancer cells. Oncotarget 2017; 8(7): 11302-15.
[http://dx.doi.org/10.18632/oncotarget.14513] [PMID: 28076321]
[92]
Liao J, Liu R, Shi YJ, Yin LH, Pu YP. Exosome-shuttling microRNA-21 promotes cell migration and invasion-targeting PDCD4 in esophageal cancer. Int J Oncol 2016; 48(6): 2567-79.
[http://dx.doi.org/10.3892/ijo.2016.3453] [PMID: 27035745]
[93]
Grange C, Tapparo M, Collino F, et al. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res 2011; 71(15): 5346-56.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-0241] [PMID: 21670082]
[94]
Kucharzewska P, Christianson HC, Welch JE, et al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci USA 2013; 110(18): 7312-7.
[http://dx.doi.org/10.1073/pnas.1220998110] [PMID: 23589885]
[95]
Al-Nedawi K, Meehan B, Kerbel RS, Allison AC, Rak J. Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci USA 2009; 106(10): 3794-9.
[http://dx.doi.org/10.1073/pnas.0804543106] [PMID: 19234131]
[96]
Tang MKS, Yue PYK, Ip PP, et al. Soluble E-cadherin promotes tumor angiogenesis and localizes to exosome surface. Nat Commun 2018; 9(1): 2270.
[http://dx.doi.org/10.1038/s41467-018-04695-7] [PMID: 29891938]
[97]
Zhong X, Chen B, Yang Z. The Role of Tumor-Associated Macrophages in Colorectal Carcinoma Progression. Cell Physiol Biochem 2018; 45(1): 356-65.
[http://dx.doi.org/10.1159/000486816] [PMID: 29402795]
[98]
Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development 2005; 132(21): 4653-62.
[http://dx.doi.org/10.1242/dev.02073] [PMID: 16224045]
[99]
Diaz-Montero CM, Finke J, Montero AJ. Myeloid-derived suppressor cells in cancer: Therapeutic, predictive, and prognostic implications. Semin Oncol 2014; 41(2): 174-84.
[http://dx.doi.org/10.1053/j.seminoncol.2014.02.003] [PMID: 24787291]
[100]
Alderton GK. Metastasis. Exosomes drive premetastatic niche formation. Nat Rev Cancer 2012; 12(7): 447.
[http://dx.doi.org/10.1038/nrc3304] [PMID: 22722393]
[101]
Jung T, Castellana D, Klingbeil P, et al. CD44v6 dependence of premetastatic niche preparation by exosomes. Neoplasia 2009; 11(10): 1093-105.
[http://dx.doi.org/10.1593/neo.09822] [PMID: 19794968]
[102]
Ostenfeld MS, Jeppesen DK, Laurberg JR, et al. Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties. Cancer Res 2014; 74(20): 5758-71.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3512] [PMID: 25261234]
[103]
Rana S, Malinowska K, Zöller M. Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia 2013; 15(3): 281-95.
[http://dx.doi.org/10.1593/neo.122010] [PMID: 23479506]
[104]
Liu K, Liu S, Zhang W, et al. miR-494 promotes cell proliferation, migration and invasion, and increased sorafenib resistance in hepatocellular carcinoma by targeting PTEN. Oncol Rep 2015; 34(2): 1003-10.
[http://dx.doi.org/10.3892/or.2015.4030] [PMID: 26045065]
[105]
Aga M, Bentz GL, Raffa S, et al. Exosomal HIF1α supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes. Oncogene 2014; 33(37): 4613-22.
[http://dx.doi.org/10.1038/onc.2014.66] [PMID: 24662828]
[106]
Logozzi M, De Milito A, Lugini L, et al. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One 2009; 4(4)e5219
[http://dx.doi.org/10.1371/journal.pone.0005219] [PMID: 9381331]
[107]
Costa-Silva B, Aiello NM, Ocean AJ, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 2015; 17(6): 816-26.
[http://dx.doi.org/10.1038/ncb3169] [PMID: 25985394]
[108]
Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance: A comprehensive review. Cancer Metastasis Rev 2013; 32(3-4): 623-42.
[http://dx.doi.org/10.1007/s10555-013-9441-9] [PMID: 23709120]
[109]
Higginbotham JN, Demory Beckler M, Gephart JD, et al. Amphiregulin exosomes increase cancer cell invasion. Curr Biol 2011; 21(9): 779-86.
[http://dx.doi.org/10.1016/j.cub.2011.03.043] [PMID: 21514161]
[110]
Atay S, Banskota S, Crow J, Sethi G, Rink L, Godwin AK. Oncogenic KIT-containing exosomes increase gastrointestinal stromal tumor cell invasion. Proc Natl Acad Sci USA 2014; 111(2): 711-6.
[http://dx.doi.org/10.1073/pnas.1310501111] [PMID: 24379393]
[111]
Ramteke A, Ting H, Agarwal C, et al. Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Mol Carcinog 2015; 54(7): 554-65.
[http://dx.doi.org/10.1002/mc.22124] [PMID: 24347249]
[112]
Wang M, Zhao C, Shi H, et al. Deregulated microRNAs in gastric cancer tissue-derived mesenchymal stem cells: Novel biomarkers and a mechanism for gastric cancer. Br J Cancer 2014; 110(5): 1199-210.
[http://dx.doi.org/10.1038/bjc.2014.14] [PMID: 24473397]
[113]
Luga V, Zhang L, Viloria-Petit AM, et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 2012; 151(7): 1542-56.
[http://dx.doi.org/10.1016/j.cell.2012.11.024] [PMID: 23260141]
[114]
Cai Z, Yang F, Yu L, et al. Activated T cell exosomes promote tumor invasion via Fas signaling pathway. J Immunol 2012; 188(12): 5954-61.
[http://dx.doi.org/10.4049/jimmunol.1103466] [PMID: 22573809]
[115]
Yang M, Chen J, Su F, et al. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer 2011; 10: 117.
[http://dx.doi.org/10.1186/1476-4598-10-117] [PMID: 21939504]
[116]
Takikawa T, Masamune A, Yoshida N, Hamada S, Kogure T, Shimosegawa T. Exosomes Derived From Pancreatic Stellate Cells: MicroRNA Signature and Effects on Pancreatic Cancer Cells. Pancreas 2017; 46(1): 19-27.
[http://dx.doi.org/10.1097/MPA.0000000000000722] [PMID: 27841793]
[117]
Janowska-Wieczorek A, Wysoczynski M, Kijowski J, et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 2005; 113(5): 752-60.
[http://dx.doi.org/10.1002/ijc.20657] [PMID: 15499615]
[118]
Meads MB, Gatenby RA, Dalton WS. Environment-mediated drug resistance: A major contributor to minimal residual disease. Nat Rev Cancer 2009; 9(9): 665-74.
[http://dx.doi.org/10.1038/nrc2714] [PMID: 19693095]
[119]
Sharma A. Chemoresistance in cancer cells: Exosomes as potential regulators of therapeutic tumor heterogeneity. Nanomedicine (Lond) 2017; 12(17): 2137-48.
[http://dx.doi.org/10.2217/nnm-2017-0184] [PMID: 28805111]
[120]
Shain KH, Landowski TH, Dalton WS. The tumor microenvironment as a determinant of cancer cell survival: A possible mechanism for de novo drug resistance. Curr Opin Oncol 2000; 12(6): 557-63.
[http://dx.doi.org/10.1097/00001622-200011000-00008] [PMID: 11085455]
[121]
Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv Pharm Bull 2017; 7(3): 339-48.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[122]
Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: An overview. Cancers (Basel) 2014; 6(3): 1769-92.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[123]
Li H, Yang BB. Friend or foe: The role of microRNA in chemotherapy resistance. Acta Pharmacol Sin 2013; 34(7): 870-9.
[http://dx.doi.org/10.1038/aps.2013.35] [PMID: 23624759]
[124]
Hölzel M, Bovier A, Tüting T. Plasticity of tumour and immune cells: A source of heterogeneity and a cause for therapy resistance? Nat Rev Cancer 2013; 13(5): 365-76.
[http://dx.doi.org/10.1038/nrc3498] [PMID: 23535846]
[125]
McMillin DW, Negri JM, Mitsiades CS. The role of tumour-stromal interactions in modifying drug response: Challenges and opportunities. Nat Rev Drug Discov 2013; 12(3): 217-28.
[http://dx.doi.org/10.1038/nrd3870] [PMID: 23449307]
[126]
Safaei R, Larson BJ, Cheng TC, et al. Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther 2005; 4(10): 1595-604.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0102] [PMID: 16227410]
[127]
Corcoran C, Rani S, O’Brien K, et al. Docetaxel-resistance in prostate cancer: Evaluating associated phenotypic changes and potential for resistance transfer via exosomes. PLoS One 2012; 7(12)e50999
[http://dx.doi.org/10.1371/journal.pone.0050999] [PMID: 3251413]
[128]
Shedden K, Xie XT, Chandaroy P, Chang YT, Rosania GR. Expulsion of small molecules in vesicles shed by cancer cells: Association with gene expression and chemosensitivity profiles. Cancer Res 2003; 63(15): 4331-7.
[PMID: 12907600]
[129]
Wei Y, Lai X, Yu S, et al. Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells. Breast Cancer Res Treat 2014; 147(2): 423-31.
[http://dx.doi.org/10.1007/s10549-014-3037-0] [PMID: 25007959]
[130]
Vader P, Fens MH, Sachini N, et al. Taxol(®)-induced phosphatidylserine exposure and microvesicle formation in red blood cells is mediated by its vehicle Cremophor(®) EL. Nanomedicine (Lond) 2013; 8(7): 1127-35.
[http://dx.doi.org/10.2217/nnm.12.163] [PMID: 23384701]
[131]
Bebawy M, Combes V, Lee E, et al. Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells. Leukemia 2009; 23(9): 1643-9.
[http://dx.doi.org/10.1038/leu.2009.76] [PMID: 19369960]
[132]
Ciravolo V, Huber V, Ghedini GC, et al. Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J Cell Physiol 2012; 227(2): 658-67.
[http://dx.doi.org/10.1002/jcp.22773] [PMID: 21465472]
[133]
Gong J, Jaiswal R, Mathys JM, Combes V, Grau GE, Bebawy M. Microparticles and their emerging role in cancer multidrug resistance. Cancer Treat Rev 2012; 38(3): 226-34.
[http://dx.doi.org/10.1016/j.ctrv.2011.06.005] [PMID: 21757296]
[134]
Aung T, Chapuy B, Vogel D, et al. Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3. Proc Natl Acad Sci USA 2011; 108(37): 15336-41.
[http://dx.doi.org/10.1073/pnas.1102855108] [PMID: 21873242]
[135]
Ning K, Wang T, Sun X, et al. UCH-L1-containing exosomes mediate chemotherapeutic resistance transfer in breast cancer. J Surg Oncol 2017; 115(8): 932-40.
[http://dx.doi.org/10.1002/jso.24614] [PMID: 28334432]
[136]
Wang X, Xu C, Hua Y, et al. Exosomes play an important role in the process of psoralen reverse multidrug resistance of breast cancer. J Exp Clin Cancer Res 2016; 35(1): 186.
[http://dx.doi.org/10.1186/s13046-016-0468-y] [PMID: 27906043]
[137]
Kreger BT, Johansen ER, Cerione RA, Antonyak MA. The Enrichment of Survivin in Exosomes from Breast Cancer Cells Treated with Paclitaxel Promotes Cell Survival and Chemoresistance. Cancers (Basel) 2016; 8(12): 8.
[http://dx.doi.org/10.3390/cancers8120111] [PMID: 27941677]
[138]
Crompot E, Van Damme M, Pieters K, et al. Extracellular vesicles of bone marrow stromal cells rescue chronic lymphocytic leukemia B cells from apoptosis, enhance their migration and induce gene expression modifications. Haematologica 2017; 102(9): 1594-604.
[http://dx.doi.org/10.3324/haematol.2016.163337] [PMID: 28596280]
[139]
Zeng AL, Yan W, Liu YW, et al. Tumour exosomes from cells harbouring PTPRZ1-MET fusion contribute to a malignant phenotype and temozolomide chemoresistance in glioblastoma. Oncogene 2017; 36(38): 5369-81.
[http://dx.doi.org/10.1038/onc.2017.134] [PMID: 28504721]
[140]
Lobb RJ, van Amerongen R, Wiegmans A, Ham S, Larsen JE, Möller A. Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance. Int J Cancer 2017; 141(3): 614-20.
[http://dx.doi.org/10.1002/ijc.30752] [PMID: 28445609]
[141]
Zheng P, Chen L, Yuan X, et al. Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells. J Exp Clin Cancer Res 2017; 36(1): 53.
[http://dx.doi.org/10.1186/s13046-017-0528-y] [PMID: 28407783]
[142]
Li J, Yang X, Guan H, et al. Exosome-derived microRNAs contribute to prostate cancer chemoresistance. Int J Oncol 2016; 49(2): 838-46.
[http://dx.doi.org/10.3892/ijo.2016.3560] [PMID: 27278879]
[143]
Au Yeung CL, Co NN, Tsuruga T, et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun 2016; 7: 11150.
[http://dx.doi.org/10.1038/ncomms11150] [PMID: 27021436]
[144]
Mikamori M, Yamada D, Eguchi H, et al. MicroRNA-155 Controls Exosome Synthesis and Promotes Gemcitabine Resistance in Pancreatic Ductal Adenocarcinoma. Sci Rep 2017; 7: 42339.
[http://dx.doi.org/10.1038/srep42339] [PMID: 28198398]
[145]
Khan S, Aspe JR, Asumen MG, et al. Extracellular, cell-permeable survivin inhibits apoptosis while promoting proliferative and metastatic potential. Br J Cancer 2009; 100(7): 1073-86.
[http://dx.doi.org/10.1038/sj.bjc.6604978] [PMID: 19293795]
[146]
Pilzer D, Gasser O, Moskovich O, Schifferli JA, Fishelson Z. Emission of membrane vesicles: Roles in complement resistance, immunity and cancer. Springer Semin Immunopathol 2005; 27(3): 375-87.
[http://dx.doi.org/10.1007/s00281-005-0004-1] [PMID: 16189651]
[147]
Chen WX, Cai YQ, Lv MM, et al. Exosomes from docetaxel-resistant breast cancer cells alter chemosensitivity by delivering microRNAs. Tumour Biol 2014; 35(10): 9649-59.
[http://dx.doi.org/10.1007/s13277-014-2242-0] [PMID: 24969560]
[148]
Steelman LS, Navolanic PM, Sokolosky ML, et al. Suppression of PTEN function increases breast cancer chemotherapeutic drug resistance while conferring sensitivity to mTOR inhibitors. Oncogene 2008; 27(29): 4086-95.
[http://dx.doi.org/10.1038/onc.2008.49] [PMID: 18332865]
[149]
Patel GK, Khan MA, Bhardwaj A, et al. Exosomes confer chemoresistance to pancreatic cancer cells by promoting ROS detoxification and miR-155-mediated suppression of key gemcitabine-metabolising enzyme, DCK. Br J Cancer 2017; 116(5): 609-19.
[http://dx.doi.org/10.1038/bjc.2017.18] [PMID: 28152544]
[150]
Pilzer D, Fishelson Z. Mortalin/GRP75 promotes release of membrane vesicles from immune attacked cells and protection from complement-mediated lysis. Int Immunol 2005; 17(9): 1239-48.
[http://dx.doi.org/10.1093/intimm/dxh300] [PMID: 16091382]
[151]
Zhang HG, Liu C, Su K, et al. A membrane form of TNF-alpha presented by exosomes delays T cell activation-induced cell death. J Immunol 2006; 176(12): 7385-93.
[http://dx.doi.org/10.4049/jimmunol.176.12.7385] [PMID: 16751383]
[152]
Richards KE, Zeleniak AE, Fishel ML, Wu J, Littlepage LE, Hill R. Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene 2017; 36(13): 1770-8.
[http://dx.doi.org/10.1038/onc.2016.353] [PMID: 27669441]
[153]
Namba T, Kodama R, Moritomo S, Hoshino T, Mizushima T. Zidovudine, an anti-viral drug, resensitizes gemcitabine-resistant pancreatic cancer cells to gemcitabine by inhibition of the Akt-GSK3β-Snail pathway. Cell Death Dis 2015; 6e1795
[http://dx.doi.org/10.1038/cddis.2015.172] [PMID: 6111057]
[154]
Kim MS, Haney MJ, Zhao Y, et al. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: In vitro and in vivo evaluations. Nanomedicine (Lond) 2018; 14(1): 195-204.
[http://dx.doi.org/10.1016/j.nano.2017.09.011] [PMID: 28982587]
[155]
Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010; 9(8): 615-27.
[http://dx.doi.org/10.1038/nrd2591] [PMID: 20616808]
[156]
Fischer UM, Harting MT, Jimenez F, et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: The pulmonary first-pass effect. Stem Cells Dev 2009; 18(5): 683-92.
[http://dx.doi.org/10.1089/scd.2008.0253] [PMID: 19099374]
[157]
El Andaloussi S, Lakhal S, Mäger I, Wood MJ. Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev 2013; 65(3): 391-7.
[http://dx.doi.org/10.1016/j.addr.2012.08.008] [PMID: 22921840]
[158]
Yang T, Martin P, Fogarty B, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res 2015; 32(6): 2003-14.
[http://dx.doi.org/10.1007/s11095-014-1593-y] [PMID: 25609010]
[159]
Kim MS, Haney MJ, Zhao Y, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine (Lond) 2016; 12(3): 655-64.
[http://dx.doi.org/10.1016/j.nano.2015.10.012] [PMID: 26586551]
[160]
Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 2014; 3: 3.
[http://dx.doi.org/10.3402/jev.v3.24641] [PMID: 25143819]
[161]
Record M, Silvente-Poirot S, Poirot M, Wakelam MJO. Extracellular vesicles: Lipids as key components of their biogenesis and functions. J Lipid Res 2018; 59(8): 1316-24.
[http://dx.doi.org/10.1194/jlr.E086173] [PMID: 29764923]
[162]
McKelvey KJ, Powell KL, Ashton AW, Morris JM, McCracken SA. Exosomes: Mechanisms of Uptake. J Circ Biomark 2015; 4: 7.
[http://dx.doi.org/10.5772/61186] [PMID: 28936243]
[163]
Saari H, Lisitsyna E, Rautaniemi K, et al. FLIM reveals alternative EV-mediated cellular up-take pathways of paclitaxel. J Control Release 2018; 284: 133-43.
[http://dx.doi.org/10.1016/j.jconrel.2018.06.015] [PMID: 29906554]
[164]
Sharma A, Khatun Z, Shiras A. Tumor exosomes: Cellular postmen of cancer diagnosis and personalized therapy. Nanomedicine (Lond) 2016; 11(4): 421-37.
[http://dx.doi.org/10.2217/nnm.15.210] [PMID: 26784674]
[165]
Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014; 35(7): 2383-90.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.083] [PMID: 24345736]
[166]
Kooijmans SA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM. Exosome mimetics: A novel class of drug delivery systems. Int J Nanomedicine 2012; 7: 1525-41.
[PMID: 22619510]
[167]
Kooijmans SAA, Gitz-Francois JJJM, Schiffelers RM, Vader P. Recombinant phosphatidylserine-binding nanobodies for targeting of extracellular vesicles to tumor cells: A plug-and-play approach. Nanoscale 2018; 10(5): 2413-26.
[http://dx.doi.org/10.1039/C7NR06966A] [PMID: 29334397]
[168]
György B, Hung ME, Breakefield XO, Leonard JN. Therapeutic applications of extracellular vesicles: Clinical promise and open questions. Annu Rev Pharmacol Toxicol 2015; 55: 439-64.
[http://dx.doi.org/10.1146/annurev-pharmtox-010814-124630] [PMID: 25292428]
[169]
Lener T, Gimona M, Aigner L, et al. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. J Extracell Vesicles 2015; 4: 30087.
[http://dx.doi.org/10.3402/jev.v4.30087] [PMID: 26725829]
[170]
Kirouac DC, Zandstra PW. The systematic production of cells for cell therapies. Cell Stem Cell 2008; 3(4): 369-81.
[http://dx.doi.org/10.1016/j.stem.2008.09.001] [PMID: 18940729]
[171]
Ahrlund-Richter L, De Luca M, Marshak DR, Munsie M, Veiga A, Rao M. Isolation and production of cells suitable for human therapy: Challenges ahead. Cell Stem Cell 2009; 4(1): 20-6.
[http://dx.doi.org/10.1016/j.stem.2008.11.012] [PMID: 19058776]
[172]
Lau D, Ogbogu U, Taylor B, Stafinski T, Menon D, Caulfield T. Stem cell clinics online: The direct-to-consumer portrayal of stem cell medicine. Cell Stem Cell 2008; 3(6): 591-4.
[http://dx.doi.org/10.1016/j.stem.2008.11.001] [PMID: 19041775]
[173]
Bergman K, Graff GD. The global stem cell patent landscape: Implications for efficient technology transfer and commercial development. Nat Biotechnol 2007; 25(4): 419-24.
[http://dx.doi.org/10.1038/nbt0407-419] [PMID: 17420745]
[174]
Isasi R, Rahimzadeh V, Charlebois K. Uncertainty and innovation: Understanding the role of cell-based manufacturing facilities in shaping regulatory and commercialization environments. Appl Transl Genomics 2016; 11: 27-39.
[http://dx.doi.org/10.1016/j.atg.2016.11.001] [PMID: 28018847]
[175]
Li MD, Atkins H, Bubela T. The global landscape of stem cell clinical trials. Regen Med 2014; 9(1): 27-39.
[http://dx.doi.org/10.2217/rme.13.80] [PMID: 24236476]
[176]
Colao IL, Corteling R, Bracewell D, Wall I. Manufacturing Exosomes: A Promising Therapeutic Platform. Trends Mol Med 2018; 24(3): 242-56.
[http://dx.doi.org/10.1016/j.molmed.2018.01.006] [PMID: 29449149]
[177]
Chen AK, Chen X, Choo AB, Reuveny S, Oh SK. Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Res (Amst) 2011; 7(2): 97-111.
[http://dx.doi.org/10.1016/j.scr.2011.04.007] [PMID: 21763618]
[178]
Fernandes AM, Fernandes TG, Diogo MM, da Silva CL, Henrique D, Cabral JM. Mouse embryonic stem cell expansion in a microcarrier-based stirred culture system. J Biotechnol 2007; 132(2): 227-36.
[http://dx.doi.org/10.1016/j.jbiotec.2007.05.031] [PMID: 17644203]
[179]
Gerlach JCLY, Brayfield CA, Minteer DM, Li H, Rubin JP, Marra KG. Adipogenesis of Human Adipose-Derived Stem Cells Within Three-Dimensional Hollow Fiber-Based Bioreactors.In: Ed, Tissue Eng. Mary Ann Liebert, Inc. 2012; pp. 54-61.
[http://dx.doi.org/10.1089/ten.tec.2011.0216]
[180]
Wen YTCY, Chang YC, Lin LC, Liao PC. Collection of in vivo-like liver cell secretome with alternative sample enrichment method using a hollow fiber bioreactor culture system combined with tangential flow filtration for secretomics analysis. Anal Chim Acta 2011; 684(1-2): 72-9.
[http://dx.doi.org/10.1016/j.aca.2010.10.040] [PMID: 21167988]
[181]
Carswell KS, Papoutsakis ET. Culture of human T cells in stirred bioreactors for cellular immunotherapy applications: Shear, proliferation, and the IL-2 receptor. Biotechnol Bioeng 2000; 68(3): 328-38.
[http://dx.doi.org/10.1002/(SICI)1097-0290(20000505)68:3<328:AID-BIT11>3.0.CO;2-V] [PMID: 10745201]
[182]
Brindley D, Moorthy K, Lee JH, Mason C, Kim HW, Wall I. Bioprocess forces and their impact on cell behavior: Implications for bone regeneration therapy. J Tissue Eng 2011; 2011620247
[http://dx.doi.org/10.4061/2011/620247] [PMID: 21904661]
[183]
Yamashita T, Takahashi Y, Takakura Y. Possibility of Exosome-Based Therapeutics and Challenges in Production of Exosomes Eligible for Therapeutic Application. Biol Pharm Bull 2018; 41(6): 835-42.
[http://dx.doi.org/10.1248/bpb.b18-00133] [PMID: 29863072]
[184]
Cha JM, Shin EK, Sung JH, et al. Efficient scalable production of therapeutic microvesicles derived from human mesenchymal stem cells. Sci Rep 2018; 8(1): 1171.
[http://dx.doi.org/10.1038/s41598-018-19211-6] [PMID: 29352188]
[185]
Bollini S, Gentili C, Tasso R, Cancedda R. The Regenerative Role of the Fetal and Adult Stem Cell Secretome. J Clin Med 2013; 2(4): 302-27.
[http://dx.doi.org/10.3390/jcm2040302] [PMID: 26237150]
[186]
Crescitelli R, Lässer C, Szabó TG, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: Apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles 2013; 2: 2.
[http://dx.doi.org/10.3402/jev.v2i0.20677] [PMID: 24223256]
[187]
Théry C, Boussac M, Véron P, et al. Proteomic analysis of dendritic cell-derived exosomes: A secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 2001; 166(12): 7309-18.
[http://dx.doi.org/10.4049/jimmunol.166.12.7309] [PMID: 11390481]
[188]
Mitchell JP, Court J, Mason MD, Tabi Z, Clayton A. Increased exosome production from tumour cell cultures using the Integra CELLine Culture System. J Immunol Methods 2008; 335(1-2): 98-105.
[http://dx.doi.org/10.1016/j.jim.2008.03.001] [PMID: 18423480]
[189]
Jeon Y, Lee MS, Cheon YP. Decreased contact inhibition in mouse adipose mesenchymal stem cells. Dev Reprod 2012; 16(4): 329-38.
[http://dx.doi.org/10.12717/DR.2012.16.4.329] [PMID: 25949108]
[190]
Shelke GV, Lässer C, Gho YS, Lötvall J. Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum. J Extracell Vesicles 2014; 3: 3.
[http://dx.doi.org/10.3402/jev.v3.24783] [PMID: 25317276]
[191]
Ramirez MI, Amorim MG, Gadelha C, et al. Technical challenges of working with extracellular vesicles. Nanoscale 2018; 10(3): 881-906.
[http://dx.doi.org/10.1039/C7NR08360B] [PMID: 29265147]
[192]
Wei Z, Batagov AO, Carter DR, Krichevsky AM. Fetal Bovine Serum RNA Interferes with the Cell Culture derived Extracellular RNA. Sci Rep 2016; 6: 31175.
[http://dx.doi.org/10.1038/srep31175] [PMID: 27503761]
[193]
Willms E, Cabañas C, Mäger I, Wood MJA, Vader P. Extracellular Vesicle Heterogeneity: Subpopulations, Isolation Techniques, and Diverse Functions in Cancer Progression. Front Immunol 2018; 9: 738.
[http://dx.doi.org/10.3389/fimmu.2018.00738] [PMID: 29760691]
[194]
Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 2006; Chapter 3: Unit 3. 22.
[http://dx.doi.org/10.1002/0471143030.cb0322s30]
[195]
Zeringer E, Barta T, Li M, Vlassov AV. Strategies for isolation of exosomes. Cold Spring Harb Protoc 2015; 2015(4): 319-23.
[http://dx.doi.org/10.1101/pdb.top074476] [PMID: 25834266]
[196]
Abels ER, Breakefield XO. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell Mol Neurobiol 2016; 36(3): 301-12.
[http://dx.doi.org/10.1007/s10571-016-0366-z] [PMID: 27053351]
[197]
Marcus ME, Leonard JN. FedExosomes: Engineering Therapeutic Biological Nanoparticles that Truly Deliver. Pharmaceuticals (Basel) 2013; 6(5): 659-80.
[http://dx.doi.org/10.3390/ph6050659] [PMID: 23894228]
[198]
Chen C, Skog J, Hsu CH, et al. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip 2010; 10(4): 505-11.
[http://dx.doi.org/10.1039/B916199F] [PMID: 20126692]
[199]
van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018; 19(4): 213-28.
[http://dx.doi.org/10.1038/nrm.2017.125] [PMID: 29339798]
[200]
Gilligan KE, Dwyer RM. Engineering Exosomes for Cancer Therapy. Int J Mol Sci 2017; 18(6): 18.
[PMID: 28538671]
[201]
Li Y, Tew SR, Russell AM, Gonzalez KR, Hardingham TE, Hawkins RE. Transduction of passaged human articular chondrocytes with adenoviral, retroviral, and lentiviral vectors and the effects of enhanced expression of SOX9. Tissue Eng 2004; 10(3-4): 575-84.
[http://dx.doi.org/10.1089/107632704323061933] [PMID: 15165474]
[202]
Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles - endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta 2014; 1846(1): 75-87.
[PMID: 24747178]
[203]
Wang J, Wang L, Lin Z, Tao L, Chen M. More efficient induction of antitumor T cell immunity by exosomes from CD40L gene-modified lung tumor cells. Mol Med Rep 2014; 9(1): 125-31.
[http://dx.doi.org/10.3892/mmr.2013.1759] [PMID: 24173626]
[204]
Li W, Mu D, Tian F, et al. Exosomes derived from Rab27aoverexpressing tumor cells elicit efficient induction of antitumor immunity. Mol Med Rep 2013; 8(6): 1876-82.
[http://dx.doi.org/10.3892/mmr.2013.1738] [PMID: 24146068]
[205]
Mahmoodzadeh Hosseini H, Ali Imani Fooladi A, Soleimanirad J, Reza Nourani M, Mahdavi M. Exosome/staphylococcal enterotoxin B, an anti tumor compound against pancreatic cancer. J BUON 2014; 19(2): 440-8.
[PMID: 24965404]
[206]
Dai S, Zhou X, Wang B, et al. Enhanced induction of dendritic cell maturation and HLA-A*0201-restricted CEA-specific CD8(+) CTL response by exosomes derived from IL-18 gene-modified CEA-positive tumor cells. J Mol Med (Berl) 2006; 84(12): 1067-76.
[http://dx.doi.org/10.1007/s00109-006-0102-0] [PMID: 17016692]
[207]
Yang Y, Xiu F, Cai Z, et al. Increased induction of antitumor response by exosomes derived from interleukin-2 gene-modified tumor cells. J Cancer Res Clin Oncol 2007; 133(6): 389-99.
[http://dx.doi.org/10.1007/s00432-006-0184-7] [PMID: 17219198]
[208]
Aspe JR, Diaz Osterman CJ, Jutzy JM, Deshields S, Whang S, Wall NR. Enhancement of Gemcitabine sensitivity in pancreatic adenocarcinoma by novel exosome-mediated delivery of the Survivin-T34A mutant. J Extracell Vesicles 2014; 3: 3.
[http://dx.doi.org/10.3402/jev.v3.23244] [PMID: 24624263]
[209]
Rivoltini L, Chiodoni C, Squarcina P, et al. TNF-Related Apoptosis-Inducing Ligand (TRAIL)-Armed Exosomes Deliver Proapoptotic Signals to Tumor Site. Clin Cancer Res 2016; 22(14): 3499-512.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2170] [PMID: 26944067]
[210]
Li P, Feng J, Liu Y, et al. Novel Therapy for Glioblastoma Multiforme by Restoring LRRC4 in Tumor Cells: LRRC4 Inhibits Tumor-Infitrating Regulatory T Cells by Cytokine and Programmed Cell Death 1-Containing Exosomes. Front Immunol 2017; 8: 1748.
[http://dx.doi.org/10.3389/fimmu.2017.01748] [PMID: 29312296]
[211]
Chulpanova DS, Kitaeva KV, James V, Rizvanov AA, Solovyeva VV. Therapeutic Prospects of Extracellular Vesicles in Cancer Treatment. Front Immunol 2018; 9: 1534.
[http://dx.doi.org/10.3389/fimmu.2018.01534] [PMID: 30018618]
[212]
Ostrowski M, Carmo NB, Krumeich S, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 2010; 12: 19-30.
[http://dx.doi.org/10.1038/ncb2000]
[213]
O’Brien K, Lowry MC, Corcoran C, et al. miR-134 in extracellular vesicles reduces triple-negative breast cancer aggression and increases drug sensitivity. Oncotarget 2015; 6(32): 32774-89.
[http://dx.doi.org/10.18632/oncotarget.5192] [PMID: 26416415]
[214]
Zhang H, Bai M, Deng T, et al. Cell-derived microvesicles mediate the delivery of miR-29a/c to suppress angiogenesis in gastric carcinoma. Cancer Lett 2016; 375(2): 331-9.
[http://dx.doi.org/10.1016/j.canlet.2016.03.026] [PMID: 27000664]
[215]
Wang Y, Qin X, Zhu X, Chen W, Zhang J, Chen W. Oral cancer-derived exosomal NAP1 enhances cytotoxicity of natural killer cells via the IRF-3 pathway. Oral Oncol 2018; 76: 34-41.
[http://dx.doi.org/10.1016/j.oraloncology.2017.11.024] [PMID: 29290284]
[216]
Gehrmann U, Hiltbrunner S, Georgoudaki AM, Karlsson MC, Näslund TI, Gabrielsson S. Synergistic induction of adaptive antitumor immunity by codelivery of antigen with α-galactosylceramide on exosomes. Cancer Res 2013; 73(13): 3865-76.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3918] [PMID: 23658368]
[217]
Viaud S, Terme M, Flament C, et al. Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: A role for NKG2D ligands and IL-15Ralpha. PLoS One 2009; 4(3)e4942
[http://dx.doi.org/10.1371/journal.pone.0004942] [PMID: 9319200]
[218]
Lu Z, Zuo B, Jing R, et al. Dendritic cell-derived exosomes elicit tumor regression in autochthonous hepatocellular carcinoma mouse models. J Hepatol 2017; 67(4): 739-48.
[http://dx.doi.org/10.1016/j.jhep.2017.05.019] [PMID: 28549917]
[219]
Besse B, Charrier M, Lapierre V, et al. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. OncoImmunology 2015; 5(4)e1071008
[http://dx.doi.org/10.1080/2162402X.2015.1071008] [PMID: 7141373]
[220]
Jang SC, Kim OY, Yoon CM, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 2013; 7(9): 7698-710.
[http://dx.doi.org/10.1021/nn402232g] [PMID: 24004438]
[221]
Morishita M, Takahashi Y, Matsumoto A, Nishikawa M, Takakura Y. Exosome-based tumor antigens-adjuvant co-delivery utilizing genetically engineered tumor cell-derived exosomes with immunostimulatory CpG DNA. Biomaterials 2016; 111: 55-65.
[http://dx.doi.org/10.1016/j.biomaterials.2016.09.031] [PMID: 27723556]
[222]
Hung ME, Leonard JN. Stabilization of exosome-targeting peptides via engineered glycosylation. J Biol Chem 2015; 290(13): 8166-72.
[http://dx.doi.org/10.1074/jbc.M114.621383] [PMID: 25657008]
[223]
Smyth T, Petrova K, Payton NM, et al. Surface functionalization of exosomes using click chemistry. Bioconjug Chem 2014; 25(10): 1777-84.
[http://dx.doi.org/10.1021/bc500291r] [PMID: 25220352]
[224]
Wang M, Altinoglu S, Takeda YS, Xu Q. Integrating Protein Engineering and Bioorthogonal Click Conjugation for Extracellular Vesicle Modulation and Intracellular Delivery. PLoS One 2015; 10(11)e0141860
[http://dx.doi.org/10.1371/journal.pone.0141860] [PMID: 6529317]
[225]
Saari H, Lázaro-Ibáñez E, Viitala T, Vuorimaa-Laukkanen E, Siljander P, Yliperttula M. Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J Control Release 2015; 220(Pt B): 727-37.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.031] [PMID: 26390807]
[226]
Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 2010; 18(9): 1606-14.
[http://dx.doi.org/10.1038/mt.2010.105] [PMID: 20571541]
[227]
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011; 29(4): 341-5.
[http://dx.doi.org/10.1038/nbt.1807] [PMID: 21423189]
[228]
Wahlgren J, De L, Karlson T, Brisslert M, et al. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res 2012; 40(17)e130
[http://dx.doi.org/10.1093/nar/gks463] [PMID: 22618874]
[229]
Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 2015; 207: 18-30.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.033] [PMID: 25836593]
[230]
Felgner PL, Gadek TR, Holm M, et al. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 1987; 84(21): 7413-7.
[http://dx.doi.org/10.1073/pnas.84.21.7413] [PMID: 2823261]
[231]
Kooijmans SAA, Stremersch S, Braeckmans K, et al. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J Control Release 2013; 172(1): 229-38.
[http://dx.doi.org/10.1016/j.jconrel.2013.08.014] [PMID: 23994516]
[232]
Hood JL, Scott MJ, Wickline SA. Maximizing exosome colloidal stability following electroporation. Anal Biochem 2014; 448: 41-9.
[http://dx.doi.org/10.1016/j.ab.2013.12.001] [PMID: 24333249]
[233]
Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release 2015; 205: 35-44.
[http://dx.doi.org/10.1016/j.jconrel.2014.11.029] [PMID: 25483424]
[234]
Gresch O, Engel FB, Nesic D, et al. New non-viral method for gene transfer into primary cells. Methods 2004; 33(2): 151-63.
[http://dx.doi.org/10.1016/j.ymeth.2003.11.009] [PMID: 15121170]
[235]
Witwer KW, Buzás EI, Bemis LT, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2013; 2: 2.
[http://dx.doi.org/10.3402/jev.v2i0.20360] [PMID: 24009894]
[236]
Zhou H, Yuen PS, Pisitkun T, et al. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int 2006; 69(8): 1471-6.
[http://dx.doi.org/10.1038/sj.ki.5000273] [PMID: 16501490]
[237]
Munagala R, Aqil F, Jeyabalan J, Gupta RC. Bovine milk-derived exosomes for drug delivery. Cancer Lett 2016; 371(1): 48-61.
[http://dx.doi.org/10.1016/j.canlet.2015.10.020] [PMID: 26604130]
[238]
Bosch S, de Beaurepaire L, Allard M, et al. Trehalose prevents aggregation of exosomes and cryodamage. Sci Rep 2016; 6: 36162.
[http://dx.doi.org/10.1038/srep36162] [PMID: 27824088]
[239]
Kreke MSR, Hanscome P, Peck K, Ibrahim A. Processes for producing stable exosome formulations. 4520160158291A1 2016.
[240]
Takahashi Y, Nishikawa M, Shinotsuka H, et al. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J Biotechnol 2013; 165(2): 77-84.
[http://dx.doi.org/10.1016/j.jbiotec.2013.03.013] [PMID: 23562828]
[241]
Morishita M, Takahashi Y, Nishikawa M, et al. Quantitative analysis of tissue distribution of the B16BL6-derived exosomes using a streptavidin-lactadherin fusion protein and iodine-125-labeled biotin derivative after intravenous injection in mice. J Pharm Sci 2015; 104(2): 705-13.
[http://dx.doi.org/10.1002/jps.24251] [PMID: 25393546]
[242]
Imai T, Takahashi Y, Nishikawa M, et al. Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice. J Extracell Vesicles 2015; 4: 26238.
[http://dx.doi.org/10.3402/jev.v4.26238] [PMID: 25669322]
[243]
Matsumoto A, Takahashi Y, Nishikawa M, et al. Role of Phosphatidylserine-Derived Negative Surface Charges in the Recognition and Uptake of Intravenously Injected B16BL6-Derived Exosomes by Macrophages. J Pharm Sci 2017; 106(1): 168-75.
[http://dx.doi.org/10.1016/j.xphs.2016.07.022] [PMID: 27649887]
[244]
Lai CP, Mardini O, Ericsson M, et al. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano 2014; 8(1): 483-94.
[http://dx.doi.org/10.1021/nn404945r] [PMID: 24383518]
[245]
Grange C, Tapparo M, Bruno S, et al. Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging. Int J Mol Med 2014; 33(5): 1055-63.
[http://dx.doi.org/10.3892/ijmm.2014.1663] [PMID: 24573178]
[246]
L C-W. Vascular permeability-the essentials. Ups J Med Sci 2015; 120: 9.
[247]
Wiklander OP, Nordin JZ, O’Loughlin A, et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles 2015; 4: 26316.
[http://dx.doi.org/10.3402/jev.v4.26316] [PMID: 25899407]
[248]
Charoenviriyakul C, Takahashi Y, Morishita M, Matsumoto A, Nishikawa M, Takakura Y. Cell type-specific and common characteristics of exosomes derived from mouse cell lines: Yield, physicochemical properties, and pharmacokinetics. Eur J Pharm Sci 2017; 96: 316-22.
[http://dx.doi.org/10.1016/j.ejps.2016.10.009] [PMID: 27720897]
[249]
Clayton A, Mason MD. Exosomes in tumour immunity. Curr Oncol 2009; 16(3): 46-9.
[http://dx.doi.org/10.3747/co.v16i3.367] [PMID: 19526085]
[250]
Mahaweni NM, Kaijen-Lambers ME, Dekkers J, Aerts JG, Hegmans JP. Tumour-derived exosomes as antigen delivery carriers in dendritic cell-based immunotherapy for malignant mesothelioma. J Extracell Vesicles 2013; 2: 2.
[http://dx.doi.org/10.3402/jev.v2i0.22492] [PMID: 24223258]
[251]
Liu H, Chen L, Liu J, et al. Co-delivery of tumor-derived exosomes with alpha-galactosylceramide on dendritic cell-based immunotherapy for glioblastoma. Cancer Lett 2017; 411: 182-90.
[http://dx.doi.org/10.1016/j.canlet.2017.09.022] [PMID: 28947140]
[252]
Xiao L, Erb U, Zhao K, Hackert T, Zöller M. Efficacy of vaccination with tumor-exosome loaded dendritic cells combined with cytotoxic drug treatment in pancreatic cancer. OncoImmunology 2017; 6(6)e1319044
[http://dx.doi.org/10.1080/2162402X.2017.1319044] [PMID: 8680753]
[253]
Gregory CD, Pound JD. Microenvironmental influences of apoptosis in vivo and in vitro. Apoptosis 2010; 15(9): 1029-49.
[http://dx.doi.org/10.1007/s10495-010-0485-9] [PMID: 20237956]
[254]
Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 2009; 30(11): 592-9.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[255]
Tarahovsky YS. “Smart” liposomal nanocontainers in biology and medicine. Biochemistry (Mosc) 2010; 75(7): 811-24.
[http://dx.doi.org/10.1134/S0006297910070023] [PMID: 20673204]
[256]
Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 2010; 285(23): 17442-52.
[http://dx.doi.org/10.1074/jbc.M110.107821] [PMID: 20353945]
[257]
Delcayre A, Estelles A, Sperinde J, et al. Exosome Display technology: Applications to the development of new diagnostics and therapeutics. Blood Cells Mol Dis 2005; 35(2): 158-68.
[http://dx.doi.org/10.1016/j.bcmd.2005.07.003] [PMID: 16087368]
[258]
Estelles A, Sperinde J, Roulon T, et al. Exosome nanovesicles displaying G protein-coupled receptors for drug discovery. Int J Nanomedicine 2007; 2(4): 751-60.
[PMID: 18203441]
[259]
Cho JA, Yeo DJ, Son HY, et al. Exosomes: A new delivery system for tumor antigens in cancer immunotherapy. Int J Cancer 2005; 114(4): 613-22.
[http://dx.doi.org/10.1002/ijc.20757] [PMID: 15609328]
[260]
Zhang Y, Wu XH, Luo CL, Zhang JM, He BC, Chen G. Interleukin-12-anchored exosomes increase cytotoxicity of T lymphocytes by reversing the JAK/STAT pathway impaired by tumor-derived exosomes. Int J Mol Med 2010; 25(5): 695-700.
[PMID: 20372811]
[261]
Colino J, Snapper CM. Exosomes from bone marrow dendritic cells pulsed with diphtheria toxoid preferentially induce type 1 antigen-specific IgG responses in naive recipients in the absence of free antigen. J Immunol 2006; 177(6): 3757-62.
[http://dx.doi.org/10.4049/jimmunol.177.6.3757] [PMID: 16951336]
[262]
Théry C, Regnault A, Garin J, et al. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol 1999; 147(3): 599-610.
[http://dx.doi.org/10.1083/jcb.147.3.599] [PMID: 10545503]
[263]
Raposo G, Nijman HW, Stoorvogel W, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med 1996; 183(3): 1161-72.
[http://dx.doi.org/10.1084/jem.183.3.1161] [PMID: 8642258]
[264]
Zitvogel L, Regnault A, Lozier A, et al. Eradication of established murine tumors using a novel cell-free vaccine: Dendritic cell-derived exosomes. Nat Med 1998; 4(5): 594-600.
[http://dx.doi.org/10.1038/nm0598-594] [PMID: 9585234]
[265]
Näslund TI, Gehrmann U, Qazi KR, Karlsson MC, Gabrielsson S. Dendritic cell-derived exosomes need to activate both T and B cells to induce antitumor immunity. J Immunol 2013; 190(6): 2712-9.
[http://dx.doi.org/10.4049/jimmunol.1203082] [PMID: 23418627]
[266]
Escudier B, Dorval T, Chaput N, et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: Results of thefirst phase I clinical trial. J Transl Med 2005; 3(1): 10.
[http://dx.doi.org/10.1186/1479-5876-3-10] [PMID: 15740633]
[267]
Greening DW, Gopal SK, Xu R, Simpson RJ, Chen W. Exosomes and their roles in immune regulation and cancer. Semin Cell Dev Biol 2015; 40: 72-81.
[http://dx.doi.org/10.1016/j.semcdb.2015.02.009] [PMID: 25724562]
[268]
Pitt JM, Charrier M, Viaud S, et al. Dendritic cell-derived exosomes as immunotherapies in the fight against cancer. J Immunol 2014; 193(3): 1006-11.
[http://dx.doi.org/10.4049/jimmunol.1400703] [PMID: 25049431]
[269]
Gu X, Erb U, Büchler MW, Zöller M. Improved vaccine efficacy of tumor exosome compared to tumor lysate loaded dendritic cells in mice. Int J Cancer 2015; 136(4): E74-84.
[http://dx.doi.org/10.1002/ijc.29100] [PMID: 25066479]
[270]
Seo N, Furukawa F, Tokura Y, Takigawa M. Vaccine therapy for cutaneous T-cell lymphoma. Hematol Oncol Clin North Am 2003; 17(6): 1467-74.
[http://dx.doi.org/10.1016/S0889-8588(03)00113-8] [PMID: 14710897]
[271]
Seo N, Tokura Y, Nishijima T, Hashizume H, Furukawa F, Takigawa M. Percutaneous peptide immunization via corneum barrier-disrupted murine skin for experimental tumor immunoprophylaxis. Proc Natl Acad Sci USA 2000; 97(1): 371-6.
[http://dx.doi.org/10.1073/pnas.97.1.371] [PMID: 10618425]
[272]
Quah BJ, O’Neill HC. The immunogenicity of dendritic cell-derived exosomes. Blood Cells Mol Dis 2005; 35(2): 94-110.
[http://dx.doi.org/10.1016/j.bcmd.2005.05.002] [PMID: 15975838]
[273]
Seo N, Akiyoshi K, Shiku H. Exosome-mediated regulation of tumor immunology. Cancer Sci 2018; 109(10): 2998-3004.
[http://dx.doi.org/10.1111/cas.13735] [PMID: 29999574]
[274]
Wolfers J, Lozier A, Raposo G, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 2001; 7(3): 297-303.
[http://dx.doi.org/10.1038/85438] [PMID: 11231627]
[275]
Sedlik C, Vigneron J, Torrieri-Dramard L, et al. Different immunogenicity but similar antitumor efficacy of two DNA vaccines coding for an antigen secreted in different membrane vesicle-associated forms. J Extracell Vesicles 2014; 3: 3.
[http://dx.doi.org/10.3402/jev.v3.24646] [PMID: 25206960]
[276]
Luketic L, Delanghe J, Sobol PT, et al. Antigen presentation by exosomes released from peptide-pulsed dendritic cells is not suppressed by the presence of active CTL. J Immunol 2007; 179(8): 5024-32.
[http://dx.doi.org/10.4049/jimmunol.179.8.5024] [PMID: 17911587]
[277]
Bell BM, Kirk ID, Hiltbrunner S, Gabrielsson S, Bultema JJ. Designer exosomes as next-generation cancer immunotherapy. Nanomedicine (Lond) 2016; 12(1): 163-9.
[http://dx.doi.org/10.1016/j.nano.2015.09.011] [PMID: 26500074]
[278]
Pitt JM, André F, Amigorena S, et al. Dendritic cell-derived exosomes for cancer therapy. J Clin Invest 2016; 126(4): 1224-32.
[http://dx.doi.org/10.1172/JCI81137] [PMID: 27035813]
[279]
Gehrmann U, Näslund TI, Hiltbrunner S, Larssen P, Gabrielsson S. Harnessing the exosome-induced immune response for cancer immunotherapy. Semin Cancer Biol 2014; 28: 58-67.
[http://dx.doi.org/10.1016/j.semcancer.2014.05.003] [PMID: 24859748]
[280]
André F, Chaput N, Schartz NE, et al. Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J Immunol 2004; 172(4): 2126-36.
[http://dx.doi.org/10.4049/jimmunol.172.4.2126] [PMID: 14764678]
[281]
Tan A, De La Peña H, Seifalian AM. The application of exosomes as a nanoscale cancer vaccine. Int J Nanomedicine 2010; 5: 889-900.
[PMID: 21116329]
[282]
Tian H, Li W. Dendritic cell-derived exosomes for cancer immunotherapy: Hope and challenges. Ann Transl Med 2017; 5(10): 221.
[http://dx.doi.org/10.21037/atm.2017.02.23] [PMID: 28603736]
[283]
Morse MA, Garst J, Osada T, et al. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med 2005; 3(1): 9.
[http://dx.doi.org/10.1186/1479-5876-3-9] [PMID: 15723705]
[284]
Shen B, Wu N, Yang JM, Gould SJ. Protein targeting to exosomes/microvesicles by plasma membrane anchors. J Biol Chem 2011; 286(16): 14383-95.
[http://dx.doi.org/10.1074/jbc.M110.208660] [PMID: 21300796]
[285]
Ghosh A, Davey M, Chute IC, et al. Rapid isolation of extracellular vesicles from cell culture and biological fluids using a synthetic peptide with specific affinity for heat shock proteins. PLoS One 2014; 9(10)e110443
[http://dx.doi.org/10.1371/journal.pone.0110443] [PMID: 5329303]
[286]
Pogge von Strandmann E, Shatnyeva O, Hansen HP. NKp30 and its ligands: Emerging players in tumor immune evasion from natural killer cells. Ann Transl Med 2015; 3(20): 314.
[PMID: 26697474]
[287]
Guerra N, Tan YX, Joncker NT, et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 2008; 28(4): 571-80.
[http://dx.doi.org/10.1016/j.immuni.2008.02.016] [PMID: 18394936]
[288]
Lugini L, Cecchetti S, Huber V, et al. Immune surveillance properties of human NK cell-derived exosomes. J Immunol 2012; 189(6): 2833-42.
[http://dx.doi.org/10.4049/jimmunol.1101988] [PMID: 22904309]
[289]
Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008; 319(5867): 1244-7.
[http://dx.doi.org/10.1126/science.1153124] [PMID: 18309083]
[290]
Seo N, Shirakura Y, Tahara Y, et al. Activated CD8+ T cell extracellular vesicles prevent tumour progression by targeting of lesional mesenchymal cells. Nat Commun 2018; 9(1): 435.
[http://dx.doi.org/10.1038/s41467-018-02865-1] [PMID: 29382847]
[291]
Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer 2003; 3(6): 401-10.
[http://dx.doi.org/10.1038/nrc1093] [PMID: 12778130]
[292]
Ribeiro MF, Zhu H, Millard RW, Fan GC. Exosomes Function in Pro- and Anti-Angiogenesis. Curr Angiogenes 2013; 2(1): 54-9.
[PMID: 25374792]
[293]
Dignat-George F, Boulanger CM. The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol 2011; 31(1): 27-33.
[http://dx.doi.org/10.1161/ATVBAHA.110.218123] [PMID: 21160065]
[294]
van Balkom BW, de Jong OG, Smits M, et al. Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells Blood 121: 3997-4006, S1-15
[http://dx.doi.org/10.1182/blood-2013-02-478925]
[295]
Penna E, Orso F, Taverna D. miR-214 as a key hub that controls cancer networks: Small player, multiple functions. J Invest Dermatol 2015; 135(4): 960-9.
[http://dx.doi.org/10.1038/jid.2014.479] [PMID: 25501033]
[296]
Mezentsev A, Merks RM, O’Riordan E, et al. Endothelial microparticles affect angiogenesis in vitro: Role of oxidative stress. Am J Physiol Heart Circ Physiol 2005; 289(3): H1106-14.
[http://dx.doi.org/10.1152/ajpheart.00265.2005] [PMID: 15879485]
[297]
Merino-González C, Zuñiga FA, Escudero C, et al. Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Angiogenesis: Potencial Clinical Application. Front Physiol 2016; 7: 24.
[http://dx.doi.org/10.3389/fphys.2016.00024] [PMID: 26903875]
[298]
Bruno S, Collino F, Deregibus MC, Grange C, Tetta C, Camussi G. Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth. Stem Cells Dev 2013; 22(5): 758-71.
[http://dx.doi.org/10.1089/scd.2012.0304] [PMID: 23034046]
[299]
Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(5411): 143-7.
[http://dx.doi.org/10.1126/science.284.5411.143] [PMID: 10102814]
[300]
Lee JK, Park SR, Jung BK, et al. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One 2013; 8(12)e84256
[http://dx.doi.org/10.1371/journal.pone.0084256] [PMID: 24391924]
[301]
Hua Z, Lv Q, Ye W, et al. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 2006; 1e116
[http://dx.doi.org/10.1371/journal.pone.0000116] [PMID: 17205120]
[302]
Umezu T, Imanishi S, Azuma K, et al. Replenishing exosomes from older bone marrow stromal cells with miR-340 inhibits myeloma-related angiogenesis. Blood Adv 2017; 1(13): 812-23.
[http://dx.doi.org/10.1182/bloodadvances.2016003251] [PMID: 29296725]
[303]
Lopatina T, Grange C, Fonsato V, et al. Extracellular vesicles from human liver stem cells inhibit tumor angiogenesis. Int J Cancer 2019; 144(2): 322-33.
[PMID: 30110127]
[304]
Alcayaga-Miranda F, González PL, Lopez-Verrilli A, et al. Prostate tumor-induced angiogenesis is blocked by exosomes derived from menstrual stem cells through the inhibition of reactive oxygen species. Oncotarget 2016; 7(28): 44462-77.
[http://dx.doi.org/10.18632/oncotarget.9852] [PMID: 27286448]
[305]
Janiszewski M, Do Carmo AO, Pedro MA, Silva E, Knobel E, Laurindo FR. Platelet-derived exosomes of septic individuals possess proapoptotic NAD(P)H oxidase activity: A novel vascular redox pathway. Crit Care Med 2004; 32(3): 818-25.
[http://dx.doi.org/10.1097/01.CCM.0000114829.17746.19] [PMID: 15090968]
[306]
Gambim MH, do Carmo Ade O, Marti L, Veríssimo-Filho S, Lopes LR, Janiszewski M. Platelet-derived exosomes induce endothelial cell apoptosis through peroxynitrite generation: Experimental evidence for a novel mechanism of septic vascular dysfunction. Crit Care 2007; 11(5): R107.
[http://dx.doi.org/10.1186/cc6133] [PMID: 17894858]
[307]
Lu J, Liu QH, Wang F, et al. Exosomal miR-9 inhibits angiogenesis by targeting MDK and regulating PDK/AKT pathway in nasopharyngeal carcinoma. J Exp Clin Cancer Res 2018; 37(1): 147.
[http://dx.doi.org/10.1186/s13046-018-0814-3] [PMID: 30001734]
[308]
Zhuang G, Wu X, Jiang Z, et al. Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J 2012; 31(17): 3513-23.
[http://dx.doi.org/10.1038/emboj.2012.183] [PMID: 22773185]
[309]
Taverna S, Fontana S, Monteleone F, et al. Curcumin modulates chronic myelogenous leukemia exosomes composition and affects angiogenic phenotype via exosomal miR-21. Oncotarget 2016; 7(21): 30420-39.
[http://dx.doi.org/10.18632/oncotarget.8483] [PMID: 27050372]
[310]
Shih TC, Tien YJ, Wen CJ, et al. MicroRNA-214 downregulation contributes to tumor angiogenesis by inducing secretion of the hepatoma-derived growth factor in human hepatoma. J Hepatol 2012; 57(3): 584-91.
[http://dx.doi.org/10.1016/j.jhep.2012.04.031] [PMID: 22613005]
[311]
Wang XH, Qian RZ, Zhang W, Chen SF, Jin HM, Hu RM. MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clin Exp Pharmacol Physiol 2009; 36(2): 181-8.
[http://dx.doi.org/10.1111/j.1440-1681.2008.05057.x] [PMID: 18986336]
[312]
Ridge SM, Sullivan FJ, Glynn SA. Mesenchymal stem cells: Key players in cancer progression. Mol Cancer 2017; 16(1): 31.
[http://dx.doi.org/10.1186/s12943-017-0597-8] [PMID: 28148268]
[313]
Ono M, Kosaka N, Tominaga N, et al. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal 2014; 7(332): Ra63.
[http://dx.doi.org/10.1126/scisignal.2005231] [PMID: 24985346]
[314]
Rombouts K, Carloni V, Mello T, et al. Myristoylated Alanine-Rich protein Kinase C Substrate (MARCKS) expression modulates the metastatic phenotype in human and murine colon carcinoma in vitro and in vivo. Cancer Lett 2013; 333(2): 244-52.
[http://dx.doi.org/10.1016/j.canlet.2013.01.040] [PMID: 23376641]
[315]
Zhao X, Wu X, Qian M, Song Y, Wu D, Zhang W. Knockdown of TGF-β1 expression in human umbilical cord mesenchymal stem cells reverts their exosome-mediated EMT promoting effect on lung cancer cells. Cancer Lett 2018; 428: 34-44.
[http://dx.doi.org/10.1016/j.canlet.2018.04.026] [PMID: 29702191]
[316]
Tadesse S, Yu M, Kumarasiri M, Le BT, Wang S. Targeting CDK6 in cancer: State of the art and new insights. Cell Cycle 2015; 14(20): 3220-30.
[http://dx.doi.org/10.1080/15384101.2015.1084445] [PMID: 26315616]
[317]
Lee HK, Finniss S, Cazacu S, et al. Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal. Oncotarget 2013; 4(2): 346-61.
[http://dx.doi.org/10.18632/oncotarget.868] [PMID: 23548312]
[318]
Sharif S, Ghahremani MH, Soleimani M. Delivery of Exogenous miR-124 to Glioblastoma Multiform Cells by Wharton’s Jelly Mesenchymal Stem Cells Decreases Cell Proliferation and Migration, and Confers Chemosensitivity. Stem Cell Rev 2018; 14(2): 236-46.
[http://dx.doi.org/10.1007/s12015-017-9788-3] [PMID: 29185191]
[319]
Clancy C, Khan S, Glynn CL, et al. Screening of exosomal microRNAs from colorectal cancer cells. Cancer Biomark 2016; 17(4): 427-35.
[http://dx.doi.org/10.3233/CBM-160659] [PMID: 27802194]
[320]
Khan S, Brougham CL, Ryan J, et al. miR-379 regulates cyclin B1 expression and is decreased in breast cancer. PLoS One 2013; 8(7)e68753
[http://dx.doi.org/10.1371/journal.pone.0068753] [PMID: 23874748]
[321]
Holzner S, Senfter D, Stadler S, et al. Colorectal cancer cell-derived microRNA200 modulates the resistance of adjacent blood endothelial barriers in vitro. Oncol Rep 2016; 36(5): 3065-71.
[http://dx.doi.org/10.3892/or.2016.5114] [PMID: 27666412]
[322]
Cao H, Wang H, He X, et al. Bioengineered Macrophages Can Responsively Transform into Nanovesicles To Target Lung Metastasis. Nano Lett 2018; 18(8): 4762-70.
[http://dx.doi.org/10.1021/acs.nanolett.8b01236] [PMID: 30028623]
[323]
Kuppusamy P, Li H, Ilangovan G, et al. Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res 2002; 62(1): 307-12.
[PMID: 11782393]
[324]
Liang G, Kan S, Zhu Y, Feng S, Feng W, Gao S. Engineered exosome-mediated delivery of functionally active miR-26a and its enhanced suppression effect in HepG2 cells. Int J Nanomedicine 2018; 13: 585-99.
[http://dx.doi.org/10.2147/IJN.S154458] [PMID: 29430178]
[325]
Munoz JL, Bliss SA, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P. Delivery of Functional Anti-miR-9 by Mesenchymal Stem Cell-derived Exosomes to Glioblastoma Multiforme Cells Conferred Chemosensitivity. Mol Ther Nucleic Acids 2013; 2e126
[http://dx.doi.org/10.1038/mtna.2013.60] [PMID: 24084846]
[326]
Lou G, Song X, Yang F, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol 2015; 8: 122.
[http://dx.doi.org/10.1186/s13045-015-0220-7] [PMID: 26514126]
[327]
Yuan Z, Kolluri KK, Gowers KH, Janes SM. TRAIL delivery by MSC-derived extracellular vesicles is an effective anticancer therapy. J Extracell Vesicles 2017; 6(1)1265291
[http://dx.doi.org/10.1080/20013078.2017.1265291] [PMID: 28326166]
[328]
Liu VC, Wong LY, Jang T, et al. Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: Role of tumor-derived TGF-beta. J Immunol 2007; 178(5): 2883-92.
[http://dx.doi.org/10.4049/jimmunol.178.5.2883] [PMID: 17312132]
[329]
Li Y, Liang Y, Sang Y, et al. MiR-770 suppresses the chemo-resistance and metastasis of triple negative breast cancer via direct targeting of STMN1. Cell Death Dis 2018; 9(1): 14.
[http://dx.doi.org/10.1038/s41419-017-0030-7] [PMID: 29323124]
[330]
Andre F, Schartz NE, Movassagh M, et al. Malignant effusions and immunogenic tumour-derived exosomes. Lancet 2002; 360(9329): 295-305.
[http://dx.doi.org/10.1016/S0140-6736(02)09552-1] [PMID: 12147373]
[331]
Dai S, Wan T, Wang B, et al. More efficient induction of HLA-A*0201-restricted and carcinoembryonic antigen (CEA)-specific CTL response by immunization with exosomes prepared from heat-stressed CEA-positive tumor cells. Clin Cancer Res 2005; 11(20): 7554-63.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0810] [PMID: 16243831]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy