Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Harmonious Biomaterials for Development of In situ Approaches for Locoregional Delivery of Anti-cancer Drugs: Current Trends

Author(s): Amrinder Singh, Shubham Thakur, Tushit Sharma, Manjot Kaur, Nikhil Shri Sahajpal, Rohan Aurora and Subheet Kumar Jain*

Volume 27, Issue 21, 2020

Page: [3463 - 3498] Pages: 36

DOI: 10.2174/1573406415666190621095726

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Locoregional drug delivery is a novel approach for the effective delivery of anti-cancer agents as it exposes the tumors to high concentration of drugs. In situ gelling systems have fetched paramount attention in the field of localized cancer chemotherapy due to their targeted delivery, ease of preparation, prolonged or sustained drug release and improved patient compliance. Numerous polymers have been investigated for their properties like swelling along with biodegradation, drug release and physicochemical properties for successful targeting of the drugs at the site of implantation. The polymers such as chitosan, Hyaluronic Acid (HA), poloxamer, Poly Glycolic Lactic Acid (PGLA) and Poly Lactic Acid (PLA) tend to form in situ hydrogels and have been exploited to develop localized delivery vehicles. These formulations are administered in the solution form and on exposure to physiological environment such as temperature, pH or ionic composition they undergo phase conversion into a hydrogel drug depot. The use of in situ gelling approach has provided prospects to increase overall survival and life quality of cancer patient by enhancing the bioavailability of drug to the site of tumor by minimizing the exposure to normal cells and alleviating systemic side effects. Because of its favorable safety profile and clinical benefits, United States Food and Drug Administration (U.S. FDA) has approved polymer based in situ systems for prolonged locoregional activity. This article discusses the rationale for developing in situ systems for targeted delivery of anti-cancer agents with special emphasis on types of polymers used to formulate the in situ system. In situ formulations for locoregional anti-cancer drug delivery that are marketed and are under clinical trials have also been discussed in detail in this article.

Keywords: Locoregional, in situ gel, anti-cancer drugs, biomaterials, commercial formulations, clinical trials.

[1]
Shao, J.; Liu, X.; Zhu, L.; Yen, Y. Targeting ribonucleotide reductase for cancer therapy. Expert Opin. Ther. Targets, 2013, 17(12), 1423-1437.
[http://dx.doi.org/10.1517/14728222.2013.840293] [PMID: 24083455]
[2]
Kumar, S.; Bajaj, S.; Bodla, R.B. Preclinical screening methods in cancer. Indian J. Pharmacol., 2016, 48(5), 481-486.
[http://dx.doi.org/10.4103/0253-7613.190716] [PMID: 27721530]
[3]
Krukiewicz, K.; Zak, J.K. Biomaterial-based regional chemotherapy: Local anticancer drug delivery to enhance chemotherapy and minimize its side-effects. Mater. Sci. Eng. C, 2016, 62, 927-942.
[http://dx.doi.org/10.1016/j.msec.2016.01.063] [PMID: 26952500]
[4]
Guo, X.; Wang, L.; Wei, X.; Zhou, S. Polymer‐based drug delivery systems for cancer treatment. J. Polym. Sci. A Polym. Chem., 2016, 54, 3525-3550.
[http://dx.doi.org/10.1002/pola.28252]
[5]
Della Pepa, C.; Tonini, G.; Pisano, C.; Di Napoli, M.; Cecere, S.C.; Tambaro, R.; Facchini, G.; Pignata, S. Ovarian cancer standard of care: are there real alternatives? Chin. J. Cancer, 2015, 34(1), 17-27.
[http://dx.doi.org/10.5732/cjc.014.10274] [PMID: 25556615]
[6]
Wright, A.A.; Cronin, A.; Milne, D.E.; Bookman, M.A.; Burger, R.A.; Cohn, D.E.; Cristea, M.C.; Griggs, J.J.; Keating, N.L.; Levenback, C.F.; Mantia-Smaldone, G.; Matulonis, U.A.; Meyer, L.A.; Niland, J.C.; Weeks, J.C.; O’Malley, D.M. Use and effectiveness of intraperitoneal chemotherapy for treatment of ovarian cancer. J. Clin. Oncol., 2015, 33(26), 2841-2847.
[http://dx.doi.org/10.1200/JCO.2015.61.4776] [PMID: 26240233]
[7]
Kumbhar, A.B.; Rakde, A.K.; Chaudhari, P.D. In situ gel forming injectable drug delivery system. Int. J. Pharm. Sci. Res., 2013, 4, 597.
[8]
Madan, M.; Bajaj, A.; Lewis, S.; Udupa, N.; Baig, J.A. In situ forming polymeric drug delivery systems. Indian J. Pharm. Sci., 2009, 71(3), 242-251.
[http://dx.doi.org/10.4103/0250-474X.56015] [PMID: 20490289]
[9]
Nirmal, H.; Bakliwal, S.R.; Pawar, S.P. In situ gel: new trends in controlled and sustained drug delivery system. Int. J. Pharm. Tech. Res., 2010, 2(2), 1398-1408.
[10]
Rao, M.; Agrawal, D.K.; Shirsath, C. Thermoreversible mucoadhesive in situ nasal gel for treatment of Parkinson’s disease. Drug Dev. Ind. Pharm., 2017, 43(1), 142-150.
[http://dx.doi.org/10.1080/03639045.2016.1225754] [PMID: 27533244]
[11]
Sharma, S.; Lohan, S.; Murthy, R.S. Formulation and characterization of intranasal mucoadhesive nanoparticulates and thermo-reversible gel of levodopa for brain delivery. Drug Dev. Ind. Pharm., 2014, 40(7), 869-878.
[http://dx.doi.org/10.3109/03639045.2013.789051] [PMID: 23600649]
[12]
Elstad, N.L.; Fowers, K.D. OncoGel (ReGel/paclitaxel)--clinical applications for a novel paclitaxel delivery system. Adv. Drug Deliv. Rev., 2009, 61(10), 785-794.
[http://dx.doi.org/10.1016/j.addr.2009.04.010] [PMID: 19422870]
[13]
Rozier, A.; Mazuel, C.; Grove, J.; Plazonnet, B. Gelrite®: A novel, ion-activated, in situ gelling polymer for ophthalmic vehicles. Effect on bioavailability of timolol. Int. J. Pharm., 1989, 57, 163-168.
[http://dx.doi.org/10.1016/0378-5173(89)90305-0]
[14]
Shen, N.; Hu, J.; Zhang, L.; Sun, Y.; Xie, Y.; Wu, S.; Liu, L.; Gao, Z. Doxorubicin-loaded zein in situ gel for interstitial chemotherapy for colorectal cancer. Acta Pharm. Sin. B, 2012, 2, 610-614.
[http://dx.doi.org/10.1016/j.apsb.2012.09.001]
[15]
Arnone, G.D.; Bhimani, A.D.; Aguilar, T.; Mehta, A.I. Localized targeted antiangiogenic drug delivery for glioblastoma. J. Neurooncol., 2018, 137(2), 223-231.
[http://dx.doi.org/10.1007/s11060-018-2747-2] [PMID: 29327174]
[16]
Wu, H.; Song, L.; Chen, L.; Zhang, W.; Chen, Y.; Zang, F.; Chen, H.; Ma, M.; Gu, N.; Zhang, Y. Injectable magnetic supramolecular hydrogel with magnetocaloric liquid-conformal property prevents post-operative recurrence in a breast cancer model. Acta Biomater., 2018, 74, 302-311.
[http://dx.doi.org/10.1016/j.actbio.2018.04.052] [PMID: 29729897]
[17]
Kim, M.K.; Moon, Y.A.; Song, C.K.; Baskaran, R.; Bae, S.; Yang, S.G. Tumor-suppressing miR-141 gene complex-loaded tissue-adhesive glue for the locoregional treatment of hepatocellular carcinoma. Theranostics, 2018, 8(14), 3891-3901.
[http://dx.doi.org/10.7150/thno.24056] [PMID: 30083268]
[18]
Fiorica, C.; Ventura, C.A.; Pitarresi, G.; Giammona, G. Polyaspartamide based hydrogel with cell recruitment properties for the local administration of hydrophobic anticancer drugs. React. Funct. Polym., 2019, 138, 9-17.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.02.014]
[19]
Li, Q.; Wen, J.; Liu, C.; Jia, Y.; Wu, Y.; Shan, Y.; Qian, Z.; Liao, J. Graphene nanoparticles-based self-healing hydrogel in preventing post-operative recurrence of breast cancer. ACS Biomater. Sci. Eng., 2019, 5, 768-779.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01475]
[20]
Yoo, Y.; Yoon, S.J.; Kim, S.Y.; Lee, D.W.; Um, S.; Hyun, H.; Hong, S.O.; Yang, D.H. A local drug delivery system based on visible light-cured glycol chitosan and doxorubicin⋅hydrochloride for thyroid cancer treatment in vitro and in vivo. Drug Deliv., 2018, 25(1), 1664-1671.
[http://dx.doi.org/10.1080/10717544.2018.1507058] [PMID: 30183420]
[21]
Mittal, N.; Kaur, G. In situ gelling ophthalmic drug delivery system: formulation and evaluation. J. Appl. Polym. Sci., 2014, 131, 1-9.
[http://dx.doi.org/10.1002/app.39788]
[22]
Xu, H.; Shi, M.; Liu, Y.; Jiang, J.; Ma, T. A novel in situ gel formulation of ranitidine for oral sustained delivery. Biomol. Ther. (Seoul), 2014, 22(2), 161-165.
[http://dx.doi.org/10.4062/biomolther.2013.109] [PMID: 24753823]
[23]
Abo Elela, M.M.; ElKasabgy, N.A.; Basalious, E.B. Bio-shielding in situ forming gels (BSIFG) loaded with lipospheres for depot injection of quetiapine fumarate: in vitro and in vivo evaluation. AAPS PharmSciTech, 2017, 18(8), 2999-3010.
[http://dx.doi.org/10.1208/s12249-017-0789-y] [PMID: 28493003]
[24]
Vigani, B.; Faccendini, A.; Rossi, S.; Sandri, G.; Bonferoni, M.C.; Grisoli, P.; Ferrari, F. Development of a mucoadhesive in situ gelling formulation for the delivery of Lactobacillus gasseri into vaginal cavity. Pharmaceutics, 2019, 11(10), 511.
[http://dx.doi.org/10.3390/pharmaceutics11100511] [PMID: 31623341]
[25]
Cao, S.L.; Ren, X.W.; Zhang, Q.Z.; Chen, E.; Xu, F.; Chen, J.; Liu, L.C.; Jiang, X.G. In situ gel based on gellan gum as new carrier for nasal administration of mometasone furoate. Int. J. Pharm., 2009, 365(1-2), 109-115.
[http://dx.doi.org/10.1016/j.ijpharm.2008.08.042] [PMID: 18822361]
[26]
Berrada, M.; Serreqi, A.; Dabbarh, F.; Owusu, A.; Gupta, A.; Lehnert, S. A novel non-toxic camptothecin formulation for cancer chemotherapy. Biomaterials, 2005, 26(14), 2115-2120.
[http://dx.doi.org/10.1016/j.biomaterials.2004.06.013] [PMID: 15576186]
[27]
Fakhari, A.; Anand Subramony, J. Engineered in-situ depot- forming hydrogels for intratumoral drug delivery. J. Control. Release, 2015, 220(Pt A), 465-475.
[http://dx.doi.org/10.1016/j.jconrel.2015.11.014] [PMID: 26585504]
[28]
Packhaeuser, C.B.; Schnieders, J.; Oster, C.G.; Kissel, T. In situ forming parenteral drug delivery systems: an overview. Eur. J. Pharm. Biopharm., 2004, 58(2), 445-455.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.003] [PMID: 15296966]
[29]
Hoare, T.R.; Kohane, D.S. Hydrogels in drug delivery: progress and challenges. Polym., 2008, 49, 1993-2007.
[http://dx.doi.org/10.1016/j.polymer.2008.01.027]
[30]
Almeida, H.; Amaral, M.H.; Lobao, P. Temperature and pH stimuli-responsive polymers and their applications in controlled and self-regulated drug delivery. J. Appl. Pharm. Sci., 2012, 2, 1-10.
[http://dx.doi.org/10.7324/JAPS.2012.2609]
[31]
Matricardi, P.; Cencetti, C.; Ria, R.; Alhaique, F.; Coviello, T. Preparation and characterization of novel gellan gum hydrogels suitable for modified drug release. Molecules, 2009, 14(9), 3376-3391.
[http://dx.doi.org/10.3390/molecules14093376] [PMID: 19783932]
[32]
Hatefi, A.; Amsden, B. Biodegradable injectable in situ forming drug delivery systems. J. Control. Release, 2002, 80(1-3), 9-28.
[http://dx.doi.org/10.1016/S0168-3659(02)00008-1] [PMID: 11943384]
[33]
Shoib, M.; Bahadur, A.; Saeed, A.; Ur Rahman, M.S.; Naseer, M.M. Biocompatible pH responsive, and biodegradable polyurethanes as smart anti-cancer drug delivery carriers. React. Funct. Polym., 2018, 127, 153-160.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2018.04.010]
[34]
Shoib, M.; Saeed, A.; Akhtar, J.; Ur Rahmann, M.S.; Ullah, A.; Jurkschat, J.; Naseer, M.M. Pottasium-doped mesoporous bioactive glass: Synthesis, characterization and evaluation of biomedical properties. Mater. Sci. Eng. C, 2017, 75, 836-844.
[http://dx.doi.org/10.1016/j.msec.2017.02.090]
[35]
Shoaib, M.; Ur Rahman, M.S.; Saeed, A.; Naseer, M.M. Mesoporous bioactive glass-polyurethane nanocomposites as reservoirs for sustained drug delivery. Colloids Surf. B Biointerfaces, 2018, 172, 806-811.
[http://dx.doi.org/10.1016/j.colsurfb.2018.10.030] [PMID: 30352378]
[36]
Dunn, R.L.; English, J.P.; Cowsar, D.R.; Vanderbilt, D.P. Biodegradable in-situ forming implants and methods of producing the same. US patent 5990 1999.
[37]
Rohith, G.; Sridhar, B.K.; Srinatha, A. Floating drug delivery of a locally acting H2-antagonist: an approach using an in situ gelling liquid formulation. Acta Pharm., 2009, 59(3), 345-354.
[http://dx.doi.org/10.2478/v10007-009-0021-z] [PMID: 19819830]
[38]
Lee, S.H.; Lee, Y.; Lee, S.W.; Ji, H.Y.; Lee, J.H.; Lee, D.S.; Park, T.G. Enzyme-mediated cross-linking of Pluronic copolymer micelles for injectable and in situ forming hydrogels. Acta Biomater., 2011, 7(4), 1468-1476.
[http://dx.doi.org/10.1016/j.actbio.2010.11.029] [PMID: 21111850]
[39]
Sudhakar, C.K.; Upadhyay, N.; Jain, A.; Verma, A.; Charyulu, R.N.; Jain, S. Hydrogels-promising candidates for tissue engineering. Nanotechnol. Appl. Tissue. Eng, 2015, 77-94.
[http://dx.doi.org/10.1016/B978-0-323-32889-0.00005-4]
[40]
Peppas, N.A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm., 2000, 50(1), 27-46.
[http://dx.doi.org/10.1016/S0939-6411(00)00090-4] [PMID: 10840191]
[41]
Khan, F.; Tanaka, M.; Ahmad, S.R. Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices. J. Mater. Chem. B Mater. Biol. Med., 2015, 3, 8224-8249.
[http://dx.doi.org/10.1039/C5TB01370D]
[42]
Jana, S.; Gandhi, A.; Sen, K.K.; Basu, S.K. Natural polymers and their application in drug delivery and biomedical field. J. Pharm. Sci. Technol., 2011, 1, 16-27.
[43]
Ruel-Gariépy, E.; Shive, M.; Bichara, A.; Berrada, M.; Le Garrec, D.; Chenite, A.; Leroux, J.C. A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Eur. J. Pharm. Biopharm., 2004, 57(1), 53-63.
[http://dx.doi.org/10.1016/S0939-6411(03)00095-X] [PMID: 14729080]
[44]
Liu, L.; Gao, Q.; Lu, X.; Zhou, H. In situ forming hydrogels based on chitosan for drug delivery and tissue regeneration. Asian J. Pharm. Sci., 2016, 11, 673-683.
[http://dx.doi.org/10.1016/j.ajps.2016.07.001]
[45]
Coleman, M.M.; Painter, P.C. Hydrogen bonded polymer blends. Prog. Polym. Sci., 1995, 20, 1-59.
[http://dx.doi.org/10.1016/0079-6700(94)00038-4]
[46]
Hang, T.T.; Dass, C.R.; Larson, I.; Dunstan, D.E. A chitosan dipottasium orthophosphate hydrogel for the delivery of Doxorubicin in the treatment of osteosarcoma. Biomater., 2009, 30, 3605-3613.
[http://dx.doi.org/10.1016/j.biomaterials.2009.03.022]
[47]
Ta, H.T.; Dass, C.R.; Larson, I.; Choong, P.F.; Dunstan, D.E.; Peter, F.M.; Choong, B.; Dave, E.; Dunstan, A. A chitosan hydrogel delivery system for osteosarcoma gene therapy with pigment epithelium-derived factor combined with chemotherapy. Biomaterials, 2009, 30(27), 4815-4823.
[http://dx.doi.org/10.1016/j.biomaterials.2009.05.035] [PMID: 19505719]
[48]
Huang, F.Y.; Huang, L.K.; Lin, W.Y.; Luo, T.Y.; Tsai, C.S.; Hsieh, B.T. Development of a thermosensitive hydrogel system for local delivery of (188)Re colloid drugs. Appl. Radiat. Isot., 2009, 67(7-8), 1405-1411.
[http://dx.doi.org/10.1016/j.apradiso.2009.02.081] [PMID: 19318266]
[49]
Rossi, S.; Marciello, M.; Bonferoni, M.C.; Ferrari, F.; Sandri, G.; Dacarro, C.; Grisoli, P.; Caramella, C. Thermally sensitive gels based on chitosan derivatives for the treatment of oral mucositis. Eur. J. Pharm. Biopharm., 2010, 74(2), 248-254.
[http://dx.doi.org/10.1016/j.ejpb.2009.10.003] [PMID: 19854272]
[50]
Li, F.; Ba, Q.; Niu, S.; Guo, Y.; Duan, Y.; Zhao, P.; Lin, C.; Sun, J. In-situ forming biodegradable glycol chitosan-based hydrogels: synthesis, characterization, and chondrocyte culture. Mater. Sci. Eng. C, 2012, 32, 2017-2025.
[http://dx.doi.org/10.1016/j.msec.2012.05.021]
[51]
Chen, R.; Chen, Q.; Huo, D.; Ding, Y.; Hu, Y.; Jiang, X. In situ formation of chitosan-gold hybrid hydrogel and its application for drug delivery. Colloids Surf. B Biointerfaces, 2012, 97, 132-137.
[http://dx.doi.org/10.1016/j.colsurfb.2012.03.027] [PMID: 22609593]
[52]
Hastings, C.L.; Kelly, H.M.; Murphy, M.J.; Barry, F.P.; O’Brien, F.J.; Duffy, G.P. Development of a thermoresponsive chitosan gel combined with human mesenchymal stem cells and desferrioxamine as a multimodal pro-angiogenic therapeutic for the treatment of critical limb ischaemia. J. Control. Release, 2012, 161(1), 73-80.
[http://dx.doi.org/10.1016/j.jconrel.2012.04.033] [PMID: 22562065]
[53]
Tian, M.; Yang, Z.; Kuwahara, K.; Nimni, M.E.; Wan, C.; Han, B. Delivery of demineralized bone matrix powder using a thermogelling chitosan carrier. Acta Biomater., 2012, 8(2), 753-762.
[http://dx.doi.org/10.1016/j.actbio.2011.10.030] [PMID: 22079781]
[54]
Li, X.; Chen, S.; Zhang, B.; Li, M.; Diao, K.; Zhang, Z.; Li, J.; Xu, Y.; Wang, X.; Chen, H. In situ injectable nano-composite hydrogel composed of curcumin, N,O-carboxymethyl chitosan and oxidized alginate for wound healing application. Int. J. Pharm., 2012, 437(1-2), 110-119.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.001] [PMID: 22903048]
[55]
Moura, M.J.; Gil, M.H.; Figueiredo, M.M. Delivery of cisplatin from thermosensitive co-cross-linked chitosan hydrogels. Eur. Polym. J., 2019, 49, 2504-2510.
[http://dx.doi.org/10.1016/j.eurpolymj.2013.02.032]
[56]
Peng, Y.; Li, J.; Li, J.; Fei, Y.; Dong, J.; Pan, W. Optimization of thermosensitive chitosan hydrogels for the sustained delivery of venlafaxine hydrochloride. Int. J. Pharm., 2013, 441(1-2), 482-490.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.005] [PMID: 23159345]
[57]
Zhang, D.; Sun, P.; Li, P.; Xue, A.; Zhang, X.; Zhang, H.; Jin, X. A magnetic chitosan hydrogel for sustained and prolonged delivery of Bacillus Calmette-Guérin in the treatment of bladder cancer. Biomaterials, 2013, 34(38), 10258-10266.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.027] [PMID: 24070571]
[58]
Cheng, Y.H.; Yang, S.H.; Liu, C.C.; Gefen, A.; Lin, F.H. Thermosensitive hydrogel made of ferulic acid-gelatin and chitosan glycerophosphate. Carbohydr. Polym., 2013, 92(2), 1512-1519.
[http://dx.doi.org/10.1016/j.carbpol.2012.10.074] [PMID: 23399183]
[59]
Thakur, V.; Kush, P.; Pandey, R.S.; Jain, U.K.; Chandra, R.; Madan, J. Vincristine sulfate loaded dextran microspheres amalgamated with thermosensitive gel offered sustained release and enhanced cytotoxicity in THP-1, human leukemia cells: In vitro and in vivo study. Mater. Sci. Eng. C, 2016, 61, 113-122.
[http://dx.doi.org/10.1016/j.msec.2015.12.015] [PMID: 26838831]
[60]
Arunkumar, P.; Indulekha, S.; Vijayalakshmi, S.; Srivastava, R. In vitro comparative studies of Zein nanoparticles and composite Chitosan thermogels based injectable formulation of Doxorubicin. J. Drug Deliv. Sci. Technol., 2017, 40, 116-124.
[http://dx.doi.org/10.1016/j.jddst.2017.05.015]
[61]
Kumar, S.; Himmelstein, K.J. Modification of in situ gelling behavior of carbopol solutions by hydroxypropyl methylcellulose. J. Pharm. Sci., 1995, 84(3), 344-348.
[http://dx.doi.org/10.1002/jps.2600840315] [PMID: 7616375]
[62]
Patel, R.B.; Chauhan, M.A.; Shah, A.L.; Suthar, S.J.; Patel, M.P.; Patel, J.K. Floating in situ gel: new trends in controlled and sustained gastroretentive drug delivery system. Res. J. Pharm. Tech., 2012, 5, 4.
[63]
Morozowich, N.L.; Nichol, J.L.; Allcock, H.R. Hydrogels based on schiff base formation between an amino‐containing polyphosphazene and aldehyde functionalized‐dextrans. J. Polym. Sci. A Polym. Chem., 2016, 54, 2984-2991.
[http://dx.doi.org/10.1002/pola.28184]
[64]
Berger, J.; Reist, M.; Mayer, J.M.; Felt, O.; Peppas, N.A.; Gurny, R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur. J. Pharm. Biopharm., 2004, 57(1), 19-34.
[http://dx.doi.org/10.1016/S0939-6411(03)00161-9] [PMID: 14729078]
[65]
Tirnaksiz, F.; Robinson, J.R. Rheological, mucoadhesive and release properties of pluronic F-127 gel and pluronic F-127/polycarbophil mixed gel systems. Pharmazie, 2005, 60(7), 518-523.
[PMID: 16076078]
[66]
Berger, J.; Reist, M.; Mayer, J.M.; Felt, O.; Gurny, R. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur. J. Pharm. Biopharm., 2004, 57(1), 35-52.
[http://dx.doi.org/10.1016/S0939-6411(03)00160-7] [PMID: 14729079]
[67]
Devasani, S.; Dev, A.; Rathod, S.R.; Deshmukh, G. An overview of in situ gelling systems. Pharm. Biol. Eval., 2016, 3, 60-69.
[68]
Jiang, Y.; Meng, X.; Wu, Z.; Qi, X. Modified chitosan thermosensitive hydrogel enables sustained and efficient anti-tumor therapy via intratumoral injection. Carbohydr. Polym., 2016, 144, 245-253.
[http://dx.doi.org/10.1016/j.carbpol.2016.02.059] [PMID: 27083815]
[69]
Ta, H.T.; Dass, C.R.; Dunstan, D.E. Injectable chitosan hydrogels for localised cancer therapy. J. Control. Release, 2008, 126(3), 205-216.
[http://dx.doi.org/10.1016/j.jconrel.2007.11.018] [PMID: 18258328]
[70]
Shi, J.; Guobao, W.; Chen, H.; Zhong, W.; Qiu, X.; Xing, M.M. Schiff based injectable hydrogel for in situ pH-triggered delivery of doxorubicin for breast tumor treatment. Polym. Chem., 2014, 5(21), 6180-6189.
[http://dx.doi.org/10.1039/C4PY00631C]
[71]
Amoozgar, Z.; Rickett, T.; Park, J.; Tuchek, C.; Shi, R.; Yeo, Y. Semi-interpenetrating network of polyethylene glycol and photocrosslinkable chitosan as an in-situ-forming nerve adhesive. Acta Biomater., 2012, 8(5), 1849-1858.
[http://dx.doi.org/10.1016/j.actbio.2012.01.022] [PMID: 22310507]
[72]
Iurciuc, C.E.; Savin, A.; Lungu, C.; Martin, P.; Popa, M. Gellan food applications. Cellul. Chem. Technol., 2016, 50, 1-13.
[73]
Oliveira, J.T.; Martins, L.; Picciochi, R.; Malafaya, P.B.; Sousa, R.A.; Neves, N.M.; Mano, J.F.; Reis, R.L. Gellan gum: a new biomaterial for cartilage tissue engineering applications. J. Biomed. Mater. Res. A, 2010, 93(3), 852-863.
[PMID: 19658177]
[74]
Morsi, N.; Ibrahim, M.; Refai, H.; El Sorogy, H. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide. Eur. J. Pharm. Sci., 2017, 104, 302-314.
[http://dx.doi.org/10.1016/j.ejps.2017.04.013] [PMID: 28433750]
[75]
Miyazaki, S.; Aoyama, H.; Kawasaki, N.; Kubo, W.; Attwood, D. In situ-gelling gellan formulations as vehicles for oral drug delivery. J. Control. Release, 1999, 60(2-3), 287-295.
[http://dx.doi.org/10.1016/S0168-3659(99)00084-X] [PMID: 10425334]
[76]
Jansson, B.; Hägerström, H.; Fransén, N.; Edsman, K.; Björk, E. The influence of gellan gum on the transfer of fluorescein dextran across rat nasal epithelium in vivo. Eur. J. Pharm. Biopharm., 2005, 59(3), 557-564.
[http://dx.doi.org/10.1016/j.ejpb.2004.10.001] [PMID: 15760737]
[77]
Rajinikanth, P.S.; Balasubramaniam, J.; Mishra, B. Development and evaluation of a novel floating in situ gelling system of amoxicillin for eradication of Helicobacter pylori. Int. J. Pharm., 2007, 335(1-2), 114-122.
[http://dx.doi.org/10.1016/j.ijpharm.2006.11.008] [PMID: 17141986]
[78]
Belgamwar, V.S.; Chauk, D.S.; Mahajan, H.S.; Jain, S.A.; Gattani, S.G.; Surana, S.J. Formulation and evaluation of in situ gelling system of dimenhydrinate for nasal administration. Pharm. Dev. Technol., 2009, 14(3), 240-248.
[http://dx.doi.org/10.1080/10837450802498910] [PMID: 19235555]
[79]
Tayel, S.A.; El-Nabarawi, M.A.; Tadros, M.I.; Abd-Elsalam, W.H. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits. Int. J. Pharm., 2013, 443(1-2), 293-305.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.049] [PMID: 23333217]
[80]
Mahajan, H.S.; Patil, P.P. In situ cross linked chitosan-gellan gum polyelectrolyte complex based nanogels containing curcumin for delivery to cancer cells. Indian J. Pharm. Edu. Res., 2017, 51, 40-45.
[http://dx.doi.org/10.5530/ijper.51.2s.48]
[81]
Tønnesen, H.H.; Karlsen, J. Alginate in drug delivery systems. Drug Dev. Ind. Pharm., 2002, 28(6), 621-630.
[http://dx.doi.org/10.1081/DDC-120003853] [PMID: 12149954]
[82]
Ug, A.; Larsen, B. Quantitative determination of the uronic acid composition of alginates. Acta Chem. Scand., 1962, 16, 1908-1918.
[http://dx.doi.org/10.3891/acta.chem.scand.16-1908]
[83]
Hori, Y.; Winans, A.M.; Irvine, D.J. Modular injectable matrices based on alginate solution/microsphere mixtures that gel in situ and co-deliver immunomodulatory factors. Acta Biomater., 2009, 5(4), 969-982.
[http://dx.doi.org/10.1016/j.actbio.2008.11.019] [PMID: 19117820]
[84]
Hori, Y.; Stern, P.J.; Hynes, R.O.; Irvine, D.J. Engulfing tumors with synthetic extracellular matrices for cancer immunotherapy. Biomaterials, 2009, 30(35), 6757-6767.
[http://dx.doi.org/10.1016/j.biomaterials.2009.08.037] [PMID: 19766305]
[85]
Le Renard, P.E.; Jordan, O.; Faes, A.; Petri-Fink, A.; Hofmann, H.; Rüfenacht, D.; Bosman, F.; Buchegger, F.; Doelker, E. The in vivo performance of magnetic particle-loaded injectable, in situ gelling, carriers for the delivery of local hyperthermia. Biomaterials, 2010, 31(4), 691-705.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.091] [PMID: 19878991]
[86]
Eliaz, R.E.; Kost, J. Characterization of a polymeric PLGA-injectable implant delivery system for the controlled release of proteins. J. Biomed. Mater. Res., 2000, 50(3), 388-396.
[http://dx.doi.org/10.1002/(SICI)1097-4636(20000605)50: 3<388::AID-JBM13>3.0.CO;2-F] [PMID: 10737881]
[87]
Han, Y.; Zeng, Q.; Li, H.; Chang, J. The calcium silicate/alginate composite: preparation and evaluation of its behavior as bioactive injectable hydrogels. Acta Biomater., 2013, 9(11), 9107-9117.
[http://dx.doi.org/10.1016/j.actbio.2013.06.022] [PMID: 23796407]
[88]
Sun, Y.; Deng, Z.; Tian, Y.; Lin, C. Horseradish peroxidase‐mediated in situ forming hydrogels from degradable tyramine‐based poly(amido amine)s. J. Appl. Polym. Sci., 2013, 127, 40-48.
[http://dx.doi.org/10.1002/app.36869]
[89]
Dabiri, S.M.H.; Lagazzo, A.; Barberis, F.; Shayganpour, A.; Finocchio, E.; Pastorino, L. New in-situ synthetized hydrogel composite based on alginate and brushite as a potential pH sensitive drug delivery system. Carbohydr. Polym., 2017, 177, 324-333.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.046] [PMID: 28962775]
[90]
Deepthi, S.; Jayakumar, R. Alginate nanobeads interspersed fibrin network as in situ forming hydrogel for soft tissue engineering. Bioact. Mater., 2017, 3(2), 194-200.
[http://dx.doi.org/10.1016/j.bioactmat.2017.09.005] [PMID: 29744457]
[91]
Yuan, L.; Wu, Y.; Gu, Q.S.; El-Hamshary, H.; El-Newehy, M.; Mo, X. Injectable photo crosslinked enhanced double-network hydrogels from modified sodium alginate and gelatin. Int. J. Biol. Macromol., 2017, 96, 569-577.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.058] [PMID: 28017764]
[92]
Khan, R.; Mahendhiran, B.; Aroulmoji, V. Chemistry of Hyaluronic acid and its significance in drug delivery strategies: a review. Int. J. Pharm. Sci. Res., 2013, 4, 3699-3710.
[93]
Crescenzi, V.; Francescangeli, A.; Taglienti, A.; Capitani, D.; Mannina, L. Synthesis and partial characterization of hydrogels obtained via glutaraldehyde crosslinking of acetylated chitosan and of hyaluronan derivatives. Biomacromolecules, 2003, 4(4), 1045-1054.
[http://dx.doi.org/10.1021/bm0340669] [PMID: 12857091]
[94]
Ibrahim, S.; Kang, Q.K.; Ramamurthi, A. The impact of hyaluronic acid oligomer content on physical, mechanical, and biologic properties of divinyl sulfone-crosslinked hyaluronic acid hydrogels. J. Biomed. Mater. Res. A, 2010, 94(2), 355-370.
[http://dx.doi.org/10.1002/jbm.a.32704] [PMID: 20186732]
[95]
Dulong, V.; Lack, S.; Cerf, L.; Picton, L.; Vannier, J.P.; Muller, G. Hyaluronan-based hydrogels particles prepared by crosslinking with trisodium trimetaphosphate. Synthesis and characterization. Carbohydr. Polym., 2004, 57, 1-6.
[http://dx.doi.org/10.1016/j.carbpol.2003.12.006]
[96]
Lee, F.; Chung, J.E.; Kurisawa, M. An injectable hyaluronic acid-tyramine hydrogel system for protein delivery. J. Control. Release, 2009, 134(3), 186-193.
[http://dx.doi.org/10.1016/j.jconrel.2008.11.028] [PMID: 19121348]
[97]
Ananthanarayanan, B.; Kim, Y.; Kumar, S. Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform. Biomaterials, 2011, 32(31), 7913-7923.
[http://dx.doi.org/10.1016/j.biomaterials.2011.07.005] [PMID: 21820737]
[98]
Zhang, R.; Huang, Z.; Xue, M.; Yang, J.; Tan, T. Detailed characterization of an injectable hyaluronic acid-polyaspartylhydrazide hydrogel for protein delivery. Carbohydr. Polym., 2011, 85, 717-725.
[http://dx.doi.org/10.1016/j.carbpol.2011.02.014]
[99]
Bajaj, G.; Kim, M.R.; Mohammed, S.I.; Yeo, Y. Hyaluronic acid-based hydrogel for regional delivery of paclitaxel to intraperitoneal tumors. J. Control. Release, 2012, 158(3), 386-392.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.001] [PMID: 22178261]
[100]
Xu, K.; Lee, F.; Gao, S.J.; Chung, J.E.; Yano, H.; Kurisawa, M. Injectable hyaluronic acid-tyramine hydrogels incorporating interferon-α2a for liver cancer therapy. J. Control. Release, 2013, 166(3), 203-210.
[http://dx.doi.org/10.1016/j.jconrel.2013.01.008] [PMID: 23328125]
[101]
Byeon, H.J.; Choi, S.H.; Choi, J.S.; Kim, I.; Shin, B.S.; Lee, E.S.; Park, E.S.; Lee, K.C.; Youn, Y.S. Four-arm PEG cross-linked hyaluronic acid hydrogels containing PEGylated apoptotic TRAIL protein for treating pancreatic cancer. Acta Biomater., 2014, 10(1), 142-150.
[http://dx.doi.org/10.1016/j.actbio.2013.08.046] [PMID: 24021228]
[102]
Zarembinski, T.I.; Doty, N.J.; Erickson, I.E.; Srinivas, R.; Wirostko, B.M.; Tew, W.P. Thiolated hyaluronan-based hydrogels crosslinked using oxidized glutathione: an injectable matrix designed for ophthalmic applications. Acta Biomater., 2014, 10(1), 94-103.
[http://dx.doi.org/10.1016/j.actbio.2013.09.029] [PMID: 24096152]
[103]
Xu, X.; Sabanayagam, C.R.; Harrington, D.A.; Farach-Carson, M.C.; Jia, X. A hydrogel-based tumor model for the evaluation of nanoparticle-based cancer therapeutics. Biomaterials, 2014, 35(10), 3319-3330.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.080] [PMID: 24447463]
[104]
Cho, E.J.; Sun, B.; Doh, K.O.; Wilson, E.M.; Torregrosa-Allen, S.; Elzey, B.D.; Yeo, Y. Intraperitoneal delivery of platinum with in-situ crosslinkable hyaluronic acid gel for local therapy of ovarian cancer. Biomaterials, 2015, 37, 312-319.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.039] [PMID: 25453960]
[105]
Ueda, K.; Akiba, J.; Ogasawara, S.; Todoroki, K.; Nakayama, M.; Sumi, A.; Kusano, H.; Sanada, S.; Suekane, S.; Xu, K.; Bae, K.H.; Kurisawa, M.; Igawa, T.; Yano, H. Growth inhibitory effect of an injectable hyaluronic acid-tyramine hydrogels incorporating human natural interferon-α and sorafenib on renal cell carcinoma cells. Acta Biomater., 2016, 29, 103-111.
[http://dx.doi.org/10.1016/j.actbio.2015.10.024] [PMID: 26481041]
[106]
Fiorica, C.; Palumbo, F.S.; Pitarresi, G.; Bongiovì, F.; Giammona, G. Hyaluronic acid and beta cyclodextrins films for the release of corneal epithelial cells and dexamethasone. Carbohydr. Polym., 2017, 166, 281-290.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.071] [PMID: 28385234]
[107]
Chen, F.; Ni, Y.; Liu, B.; Zhou, T.; Yu, C.; Su, Y.; Zhu, X.; Yu, X.; Zhou, Y. Self-crosslinking and injectable hyaluronic acid/RGD-functionalized pectin hydrogel for cartilage tissue engineering. Carbohydr. Polym., 2017, 166, 31-44.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.059] [PMID: 28385238]
[108]
Zhang, W.; Jin, X.; Li, H.; Zhang, R.R.; Wu, C.W. Injectable and body temperature sensitive hydrogels based on chitosan and hyaluronic acid for pH sensitive drug release. Carbohydr. Polym., 2018, 186, 82-90.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.008] [PMID: 29456012]
[109]
Mishra, A.; Malhotra, A.V. Tamarind xyloglucan: a polysaccharide with versatile application potential. J. Mater. Chem., 2009, 19(45), 8528-8536.
[http://dx.doi.org/10.1039/b911150f]
[110]
Cao, Y.; Gu, Y.; Ma, H.; Bai, J.; Liu, L.; Zhao, P.; He, H. Self-assembled nanoparticle drug delivery systems from galactosylated polysaccharide-doxorubicin conjugate loaded doxorubicin. Int. J. Biol. Macromol., 2010, 46(2), 245-249.
[http://dx.doi.org/10.1016/j.ijbiomac.2009.11.008] [PMID: 19958788]
[111]
Cao, Y.; Ikeda, I. Antioxidant activity and antitumor activity (in vitro) of xyloglucan selenious ester and sulfated [corrected] xyloglucan. Int. J. Biol. Macromol., 2009, 45(3), 231-235.
[http://dx.doi.org/10.1016/j.ijbiomac.2009.05.007] [PMID: 19481106]
[112]
Coviello, T.; Matricardi, P.; Alhaique, F. Drug delivery strategies using polysaccharidic gels. Expert Opin. Drug Deliv., 2006, 3(3), 395-404.
[http://dx.doi.org/10.1517/17425247.3.3.395] [PMID: 16640499]
[113]
Kulkarni, A.D.; Joshi, A.A.; Patil, C.L.; Amale, P.D.; Patel, H.M.; Surana, S.J.; Belgamwar, V.S.; Chaudhari, K.S.; Pardeshi, C.V. Xyloglucan: A functional biomacromolecule for drug delivery applications. Int. J. Biol. Macromol., 2017, 104(Pt A), 799-812.,
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.088] [PMID: 28648637]
[114]
Mahajan, H.S.; Tyagi, V.; Lohiya, G.; Nerkar, P. Thermally reversible xyloglucan gels as vehicles for nasal drug delivery. Drug Deliv., 2012, 19(5), 270-276.
[http://dx.doi.org/10.3109/10717544.2012.704095] [PMID: 22823894]
[115]
Kumar, A.; Garg, T.; Sarma, G.S.; Rath, G.; Goyal, A.K. Optimization of combinational intranasal drug delivery system for the management of migraine by using statistical design. Eur. J. Pharm. Sci., 2015, 70, 140-151.
[http://dx.doi.org/10.1016/j.ejps.2015.01.012] [PMID: 25676136]
[116]
Burgalassi, S.; Chetoni, P.; Panichi, L.; Boldrini, E.; Saettone, M.F. Xyloglucan as a novel vehicle for timolol: pharmacokinetics and pressure lowering activity in rabbits. J. Ocul. Pharmacol. Ther., 2000, 16(6), 497-509.
[http://dx.doi.org/10.1089/jop.2000.16.497] [PMID: 11132897]
[117]
Miyazaki, S.; Suzuki, S.; Kawasaki, N.; Endo, K.; Takahashi, A.; Attwood, D. In situ gelling xyloglucan formulations for sustained release ocular delivery of pilocarpine hydrochloride. Int. J. Pharm., 2001, 229(1-2), 29-36.
[http://dx.doi.org/10.1016/S0378-5173(01)00825-0] [PMID: 11604255]
[118]
Mahajan, H.S.; Deshmukh, S.R. Development and evaluation of gel-forming ocular films based on xyloglucan. Carbohydr. Polym., 2015, 122, 243-247.
[http://dx.doi.org/10.1016/j.carbpol.2015.01.018] [PMID: 25817665]
[119]
Miyazaki, S.; Suisha, F.; Kawasaki, N.; Shirakawa, M.; Yamatoya, K.; Attwood, D. Thermally reversible xyloglucan gels as vehicles for rectal drug delivery. J. Control. Release, 1998, 56(1-3), 75-83.
[http://dx.doi.org/10.1016/S0168-3659(98)00079-0] [PMID: 9801431]
[120]
Miyazaki, S.; Kawasaki, N.; Endo, K.; Attwood, D. Oral sustained delivery of theophylline from thermally reversible xyloglucan gels in rabbits. J. Pharm. Pharmacol., 2001, 53(9), 1185-1191.
[http://dx.doi.org/10.1211/0022357011776621] [PMID: 11578100]
[121]
Miyazaki, S.; Kawasaki, N.; Kubo, W.; Endo, K.; Attwood, D. Comparison of in situ gelling formulations for the oral delivery of cimetidine. Int. J. Pharm., 2001, 220(1-2), 161-168.
[http://dx.doi.org/10.1016/S0378-5173(01)00669-X] [PMID: 11376978]
[122]
Miyazaki, S.; Endo, K.; Kawasaki, N.; Kubo, W.; Watanabe, H.; Attwood, D. Oral sustained delivery of paracetamol from in situ gelling xyloglucan formulations. Drug Dev. Ind. Pharm., 2003, 29(2), 113-119.
[http://dx.doi.org/10.1081/DDC-120016718] [PMID: 12648007]
[123]
Kawasaki, N.; Ohkura, R.; Miyazaki, S.; Uno, Y.; Sugimoto, S.; Attwood, D. Thermally reversible xyloglucan gels as vehicles for oral drug delivery. Int. J. Pharm., 1999, 181(2), 227-234.
[http://dx.doi.org/10.1016/S0378-5173(99)00026-5] [PMID: 10370218]
[124]
Chen, D.; Guo, P.; Chen, S.; Cao, Y.; Ji, W.; Lei, X.; Liu, L.; Zhao, P.; Wang, R.; Qi, C.; Liu, Y.; He, H. Properties of xyloglucan hydrogel as the biomedical sustained-release carriers. J. Mater. Sci. Mater. Med., 2012, 23(4), 955-962.
[http://dx.doi.org/10.1007/s10856-012-4564-z] [PMID: 22354327]
[125]
Takahashi, A.; Suzuki, S.; Kawasaki, N.; Kubo, W.; Miyazaki, S.; Loebenberg, R.; Bachynsky, J.; Attwood, D. Percutaneous absorption of non-steroidal anti-inflammatory drugs from in situ gelling xyloglucan formulations in rats. Int. J. Pharm., 2002, 246(1-2), 179-186.
[http://dx.doi.org/10.1016/S0378-5173(02)00394-0] [PMID: 12270620]
[126]
Suisha, F.; Kawasaki, N.; Miyazaki, S.; Shirakawa, M.; Yamatoya, K.; Sasaki, M.; Attwood, D. Xyloglucan gels as sustained release vesicles for the intraperitoneal administration of mitomycin C. Int. J. Pharm., 1998, 172, 27-32.
[http://dx.doi.org/10.1016/S0378-5173(98)00157-4]
[127]
Pandit, A.P.; Pol, V.V.; Kulkarni, V.S. Xyloglucan based in situ gel of lidocaine HCl for the treatment of periodontosis. J. Pharm. (Cairo), 2016, 2016, 3054321
[http://dx.doi.org/10.1155/2016/3054321] [PMID: 27034908]
[128]
Fuente, B.H.; Anguiamo, I.S.; Espinar, F.J.; Blanco, M.J. In vitro bioadhesion of carbopol hydrogels. Int. J. Pharm., 1996, 142, 169-174.
[http://dx.doi.org/10.1016/0378-5173(96)04665-0]
[129]
Riley, R.G.; Smart, J.D.; Tsibouklis, J.; Dettmar, P.W.; Hampson, F.; Davis, J.A.; Kelly, G.; Wilber, W.R. An investigation of mucus/polymer rheological synergism using synthesised and characterised poly(acrylic acid)s. Int. J. Pharm., 2001, 217(1-2), 87-100.
[http://dx.doi.org/10.1016/S0378-5173(01)00592-0] [PMID: 11292545]
[130]
Katdare, A.; Chaubal, M. Excipient development for pharmaceutical, biotechnology, and drug delivery systems; CRC Press: USA, 2006.
[http://dx.doi.org/10.1201/9781420004137]
[131]
Panzade, P.; Puranik, K.P. Carbopol polymers: a versatile polymer for pharmaceutical applications. Res. J. Pharm. Technol., 2010, 3, 672-675.
[132]
French, D.L.; Himmelstein, K.J.; Mauger, J.W. Physicochemical aspects of controlled release of substituted benzoic and naphthoic acids from Carbopol gels. J. Control. Release, 1995, 37, 281-289.
[http://dx.doi.org/10.1016/0168-3659(95)00086-0]
[133]
Liu, Y.; Zhu, Y.Y.; Wei, G.; Lu, W.Y. Effect of carrageenan on poloxamer-based in situ gel for vaginal use: Improved in vitro and in vivo sustained-release properties. Eur. J. Pharm. Sci., 2009, 37(3-4), 306-312.
[http://dx.doi.org/10.1016/j.ejps.2009.02.022] [PMID: 19491020]
[134]
Gan, L.; Gan, Y.; Zhu, C.; Zhang, X.; Zhu, J. Novel microemulsion in situ electrolyte-triggered gelling system for ophthalmic delivery of lipophilic cyclosporine A: in vitro and in vivo results. Int. J. Pharm., 2009, 365(1-2), 143-149.
[http://dx.doi.org/10.1016/j.ijpharm.2008.08.004] [PMID: 18773948]
[135]
Shastri, D.; Patel, L.; Parikh, R. Studies on in situ hydrogel: a smart way for safe and sustained ocular drug delivery. J. Young Pharm., 2010, 2(2), 116-120.
[http://dx.doi.org/10.4103/0975-1483.63144] [PMID: 21264112]
[136]
Wu, H.; Liu, Z.; Peng, J.; Li, L.; Li, N.; Li, J.; Pan, H. Design and evaluation of baicalin-containing in situ pH-triggered gelling system for sustained ophthalmic drug delivery. Int. J. Pharm., 2011, 410(1-2), 31-40.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.007] [PMID: 21397671]
[137]
Asasutjarit, R.; Thanasanchokpibull, S.; Fuongfuchat, A.; Veeranondha, S. Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic in situ gels. Int. J. Pharm., 2011, 411(1-2), 128-135.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.054] [PMID: 21459137]
[138]
Lo, Y.L.; Lin, Y.; Lin, H.R. Evaluation of epirubicin in thermogelling and bioadhesive liquid and solid suppository formulations for rectal administration. Int. J. Mol. Sci., 2013, 15(1), 342-360.
[http://dx.doi.org/10.3390/ijms15010342] [PMID: 24384838]
[139]
Kulkarni, A.; Khan, S.; Dehghan, M. Evaluation of polaxomer-based in situ gelling system of articaine as a drug delivery system for anesthetizing periodontal pockets- An in vitro study. Indian J. Dent., 2012, 3, 201-208.
[http://dx.doi.org/10.1016/j.ijd.2012.07.006]
[140]
Song, J.; Bi, H.; Xie, X.; Guo, J.; Wang, X.; Liu, D. Preparation and evaluation of sinomenine hydrochloride in situ gel for uveitis treatment. Int. Immunopharmacol., 2013, 17(1), 99-107.
[http://dx.doi.org/10.1016/j.intimp.2013.05.020] [PMID: 23747586]
[141]
Patel, S.; Koradia, H.; Parikh, R. Design and development of intranasal in situ gelling system of Midazolam hydrochloride using 32 full factorial design. J. Drug Deliv. Sci. Technol., 2015, 30, 154-162.
[http://dx.doi.org/10.1016/j.jddst.2015.10.010]
[142]
Shelke, S.; Shahi, S.; Jalalpure, S.; Dhamecha, D.; Shengule, S. Formulation and evaluation of thermoreversible mucoadhesive in-situ gel for intranasal delivery of naratriptan hydrochloride. J. Drug Deliv. Sci. Technol., 2015, 29, 238-244.
[http://dx.doi.org/10.1016/j.jddst.2015.08.003]
[143]
Abouhussein, D.; Khattab, A.; Bayoumi, N.; Mahmoud, A.; Sakr, T. Brain targeted rivastigmine mucoadhesive thermosensitive in situ gel: optimization, in vitro evaluation, radiolabeling, in vivo pharmacokinetics and biodistribution. J. Drug Deliv. Sci. Technol., 2017, 43, 129-140.
[http://dx.doi.org/10.1016/j.jddst.2017.09.021]
[144]
Mura, P.; Mennini, N.; Nativi, C.; Richichi, B. In situ mucoadhesive-thermosensitive liposomal gel as a novel vehicle for nasal extended delivery of opiorphin. Eur. J. Pharm. Biopharm., 2018, 122, 54-61.
[http://dx.doi.org/10.1016/j.ejpb.2017.10.008] [PMID: 29032194]
[145]
Wang, P.; Johnston, T.P. Kinetics of sol-to-gel transition for Poloxamer polyols. J. Appl. Polym. Sci., 1991, 43, 283-292.
[http://dx.doi.org/10.1002/app.1991.070430207]
[146]
Alexandridis, P. Amphiphilic copolymers and their applications. Curr. Opin. Colloid Interface Sci., 1996, 1, 490-501.
[http://dx.doi.org/10.1016/S1359-0294(96)80118-X]
[147]
Zhang, K.; Khan, A. Phase behavior of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) triblock copolymers in water. Macromol., 1995, 28, 3807-3812.
[http://dx.doi.org/10.1021/ma00115a009]
[148]
Joshi, A.; Ding, S.; Himmelstrin, K.J. Reversible gelation compositions and methods of use. US Patent 1993, 5(252), 318-.
[149]
Laughlin, R.G. The Aqueous Phase Behavior of Surfactants; Acad. Pr: London, 1994.
[150]
Miller, D.W.; Batrakova, E.V.; Waltner, T.O.; Alakhov VYu, ; Kabanov, A.V. Interactions of pluronic block copolymers with brain microvessel endothelial cells: evidence of two potential pathways for drug absorption. Bioconjug. Chem., 1997, 8(5), 649-657.
[http://dx.doi.org/10.1021/bc970118d] [PMID: 9327127]
[151]
Batrakova, E.V.; Han, H.Y.; Alakhov VYu, ; Miller, D.W.; Kabanov, A.V. Effects of pluronic block copolymers on drug absorption in Caco-2 cell monolayers. Pharm. Res., 1998, 15(6), 850-855.
[http://dx.doi.org/10.1023/A:1011964213024] [PMID: 9647349]
[152]
Alakhov VYu, ; Moskaleva EYu, ; Batrakova, E.V.; Kabanov, A.V. Hypersensitization of multidrug resistant human ovarian carcinoma cells by pluronic P85 block copolymer. Bioconjug. Chem., 1996, 7(2), 209-216.
[http://dx.doi.org/10.1021/bc950093n] [PMID: 8983343]
[153]
McKenzie, M.; Betts, D.; Suh, A.; Bui, K.; Kim, L.D.; Cho, H. Hydrogel-based drug delivery systems for poorly water-soluble drugs. Molecules, 2015, 20(11), 20397-20408.
[http://dx.doi.org/10.3390/molecules201119705] [PMID: 26580588]
[154]
Guo, D.D.; Xu, C.X.; Quan, J.S.; Song, C.K.; Jin, H.; Kim, D.D.; Choi, Y.J.; Cho, M.H.; Cho, C.S. Synergistic anti-tumor activity of paclitaxel-incorporated conjugated linoleic acid-coupled poloxamer thermosensitive hydrogel in vitro and in vivo. Biomaterials, 2009, 30(27), 4777-4785.
[http://dx.doi.org/10.1016/j.biomaterials.2009.05.051] [PMID: 19524293]
[155]
Ur-Rehman, T.; Tavelin, S.; Gröbner, G. Chitosan in situ gelation for improved drug loading and retention in poloxamer 407 gels. Int. J. Pharm., 2011, 409(1-2), 19-29.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.017] [PMID: 21335076]
[156]
Lin, Z.; Gao, W.; Hu, H.; Ma, K.; He, B.; Dai, W.; Wang, X.; Wang, J.; Zhang, X.; Zhang, Q. Novel thermo-sensitive hydrogel system with paclitaxel nanocrystals: High drug-loading, sustained drug release and extended local retention guaranteeing better efficacy and lower toxicity. J. Control. Release, 2014, 174, 161-170.
[http://dx.doi.org/10.1016/j.jconrel.2013.10.026] [PMID: 24512789]
[157]
Seoane, S.; Díaz-Rodríguez, P.; Sendon-Lago, J.; Gallego, R.; Pérez-Fernández, R.; Landin, M. Administration of the optimized β-Lapachone-poloxamer-cyclodextrin ternary system induces apoptosis, DNA damage and reduces tumor growth in a human breast adenocarcinoma xenograft mouse model. Eur. J. Pharm. Biopharm., 2013, 84(3), 497-504.
[http://dx.doi.org/10.1016/j.ejpb.2012.12.019] [PMID: 23333901]
[158]
Ju, C.; Sun, J.; Zi, P.; Jin, X.; Zhang, C. Thermosensitive micelles-hydrogel hybrid system based on poloxamer 407 for localized delivery of paclitaxel. J. Pharm. Sci., 2013, 102(8), 2707-2717.
[http://dx.doi.org/10.1002/jps.23649] [PMID: 23839931]
[159]
Shaker, D.S.; Shaker, M.A.; Klingner, A.; Hanafy, M.S. In situ thermosensitive Tamoxifen citrate loaded hydrogels: An effective tool in breast cancer loco-regional therapy. J. Drug Deliv. Sci. Technol., 2016, 35, 155-164.
[http://dx.doi.org/10.1016/j.jddst.2016.05.007]
[160]
Jin, X.; Zhang, Y.; Zhang, Z.; Che, D.; Lv, H. Juglone loaded poloxamer 188/phospholipid mixed micelles evaluated in vitro and in vivo in breast cancer. Int. J. Pharm., 2016, 515(1-2), 359-366.
[http://dx.doi.org/10.1016/j.ijpharm.2016.10.027] [PMID: 27744033]
[161]
Mao, Y.; Li, X.; Chen, G.; Wang, S. Thermosensitive hydrogel system with paclitaxel liposomes used in localized drug delivery system for in situ treatment of tumor: better antitumor efficacy and lower toxicity. J. Pharm. Sci., 2016, 105(1), 194-204.
[http://dx.doi.org/10.1002/jps.24693] [PMID: 26580704]
[162]
Gao, L.; Wang, X.; Ma, J.; Hao, D.; Wei, P.; Zhou, L.; Liu, G. Evaluation of TPGS-modified thermo-sensitive Pluronic PF127 hydrogel as a potential carrier to reverse the resistance of P-gp-overexpressing SMMC-7721 cell lines. Colloids Surf. B Biointerfaces, 2016, 140, 307-316.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.057] [PMID: 26764117]
[163]
Sheu, M.T.; Jhan, H.J.; Su, C.Y.; Chen, L.C.; Chang, C.E.; Liu, D.Z.; Ho, H.O. Codelivery of doxorubicin-containing thermosensitive hydrogels incorporated with docetaxel-loaded mixed micelles enhances local cancer therapy. Colloids Surf. B Biointerfaces, 2016, 143, 260-270.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.054] [PMID: 27022865]
[164]
Ding, W.; Li, Y.; Hou, X.; Li, G. Bleomycin A6-loaded anionic liposomes with in situ gel as a new antitumoral drug delivery system. Drug Deliv., 2016, 23(1), 88-94.
[http://dx.doi.org/10.3109/10717544.2014.905651]
[165]
Khaliq, N.U.; Oh, K.S.; Sandra, F.C.; Joo, Y.; Lee, J.; Byun, Y.; Kim, I.S.; Kwon, I.C.; Seo, J.H.; Kim, S.Y.; Yuk, S.H. Assembly of polymer micelles through the sol-gel transition for effective cancer therapy. J. Control. Release, 2017, 255, 258-269.
[http://dx.doi.org/10.1016/j.jconrel.2017.04.039] [PMID: 28456679]
[166]
Tran, S.; DeGiovanni, P.J.; Piel, B.; Rai, P. Cancer nanomedicine: a review of recent success in drug delivery. Clin. Transl. Med., 2017, 6(1), 44.
[http://dx.doi.org/10.1186/s40169-017-0175-0] [PMID: 29230567]
[167]
Wolinsky, J.B.; Colson, Y.L.; Grinstaff, M.W. Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J. Control. Release, 2012, 159(1), 14-26.
[http://dx.doi.org/10.1016/j.jconrel.2011.11.031] [PMID: 22154931]
[168]
Sciubba, D.M.; Petteys, R.J.; Dekutoski, M.B.; Fisher, C.G.; Fehlings, M.G.; Ondra, S.L.; Rhines, L.D.; Gokaslan, Z.L. Diagnosis and management of metastatic spine disease. A review. J. Neurosurg. Spine, 2010, 13(1), 94-108.
[http://dx.doi.org/10.3171/2010.3.SPINE09202] [PMID: 20594024]
[169]
Dhanikula, A.B.; Panchagnula, R. Localized paclitaxel delivery. Int. J. Pharm., 1999, 183(2), 85-100.
[http://dx.doi.org/10.1016/S0378-5173(99)00087-3] [PMID: 10361159]
[170]
Olbrich, J.M.; Tate, P.L.; Corbett, J.T.; Lindsey, J.M., III; Nagatomi, S.D.; Shalaby, W.S.; Shalaby, S.W. Injectable in situ forming controlled release implant composed of a poly-ether-ester-carbonate and applications in the field of chemotherapy. J. Biomed. Mater. Res. A, 2012, 100(9), 2365-2372.
[http://dx.doi.org/10.1002/jbm.a.34179] [PMID: 22528373]
[171]
Tyler, B.; Fowers, K.D.; Li, K.W.; Recinos, V.R.; Caplan, J.M.; Hdeib, A.; Grossman, R.; Basaldella, L.; Bekelis, K.; Pradilla, G.; Legnani, F.; Brem, H. A thermal gel depot for local delivery of paclitaxel to treat experimental brain tumors in rats. J. Neurosurg., 2010, 113(2), 210-217.
[http://dx.doi.org/10.3171/2009.11.JNS08162] [PMID: 20001591]
[172]
Lerchen, H.G.; Baumgarten, J.; von dem Bruch, K.; Lehmann, T.E.; Sperzel, M.; Kempka, G.; Fiebig, H.H. Design and optimization of 20-O-linked camptothecin glycoconjugates as anticancer agents. J. Med. Chem., 2001, 44(24), 4186-4195.
[http://dx.doi.org/10.1021/jm010893l] [PMID: 11708920]
[173]
Burke, T.G.; Mi, Z. The structural basis of camptothecin interactions with human serum albumin: impact on drug stability. J. Med. Chem., 1994, 37(1), 40-46.
[http://dx.doi.org/10.1021/jm00027a005] [PMID: 8289200]
[174]
Saltzman, W.M.; Radomsky, M.L. Drugs released from polymers: diffusion and elimination in brain tissue. Chem. Eng. Sci., 1991, 46(10), 2429-2444.
[http://dx.doi.org/10.1016/0009-2509(91)80036-X]
[175]
Weingart, J.D.; Thompson, R.C.; Tyler, B.; Colvin, O.M.; Brem, H. Local delivery of the topoisomerase I inhibitor camptothecin sodium prolongs survival in the rat intracranial 9L gliosarcoma model. Int. J. Cancer, 1995, 62(5), 605-609.
[http://dx.doi.org/10.1002/ijc.2910620519] [PMID: 7665233]
[176]
Wong, H.L.; Bendayan, R.; Rauth, A.M.; Wu, X.Y. Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new polymer-lipid hybrid nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer. J. Control. Release, 2006, 116(3), 275-284.
[http://dx.doi.org/10.1016/j.jconrel.2006.09.007] [PMID: 17097178]
[177]
Minko, T.; Kopecková, P.; Pozharov, V.; Kopecek, J. HPMA copolymer bound adriamycin overcomes MDR1 gene encoded resistance in a human ovarian carcinoma cell line. J. Control. Release, 1998, 54(2), 223-233.
[http://dx.doi.org/10.1016/S0168-3659(98)00009-1] [PMID: 9724909]
[178]
Benjamin, R.S.; Riggs, C.E., Jr; Bachur, N.R. Pharmacokinetics and metabolism of adriamycin in man. Clin. Pharmacol. Ther., 1973, 14(4), 592-600.
[http://dx.doi.org/10.1002/cpt1973144part1592] [PMID: 4723268]
[179]
Al-Abd, A.M.; Hong, K.Y.; Song, S.C.; Kuh, H.J. Pharmacokinetics of doxorubicin after intratumoral injection using a thermosensitive hydrogel in tumor-bearing mice. J. Control. Release, 2010, 142(1), 101-107.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.003] [PMID: 19819274]
[180]
Alex, A.T.; Joseph, A.; Shavi, G.; Rao, J.V.; Udupa, N. Development and evaluation of carboplatin-loaded PCL nanoparticles for intranasal delivery. Drug Deliv., 2016, 23(7), 2144-2153.
[PMID: 25544603]
[181]
Zhu, S.; Li, X.; Lansakara-P, D.S.; Kumar, A.; Cui, Z. A nanoparticle depot formulation of 4-(N)-stearoyl gemcitabine shows a strong anti-tumour activity. J. Pharm. Pharmacol., 2013, 65(2), 236-242.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01599.x] [PMID: 23278691]
[182]
Chen, Z.; Zheng, Y.; Shi, Y.; Cui, Z. Overcoming tumor cell chemoresistance using nanoparticles: lysosomes are beneficial for (stearoyl) gemcitabine-incorporated solid lipid nanoparticles. Int. J. Nanomedicine, 2018, 13, 319-336.
[http://dx.doi.org/10.2147/IJN.S149196] [PMID: 29391792]
[183]
Kamath, K.R.; Park, K. Biodegradable hydrogels in drug delivery. Adv. Drug Deliv. Rev., 1993, 11, 59-84.
[http://dx.doi.org/10.1016/0169-409X(93)90027-2]
[184]
Jalalvandi, E.; Hanton, L.R.; Moratti, S.C. Preparation of a pH sensitive hydrogel based on dextran and polyhydrazide for release of 5-Flurouracil, an anticancer drug. J. Drug Deliv. Sci. Technol., 2018, 44, 146-152.
[http://dx.doi.org/10.1016/j.jddst.2017.12.011]
[185]
Lo, Y.L.; Ho, C.T.; Tsai, F.L. Inhibit multidrug resistance and induce apoptosis by using glycocholic acid and epirubicin. Eur. J. Pharm. Sci., 2008, 35(1-2), 52-67.
[http://dx.doi.org/10.1016/j.ejps.2008.06.003] [PMID: 18606222]
[186]
Lo, Y.L.; Hsu, C.Y.; Lin, H.R. pH-and thermo-sensitive pluronic/poly(acrylic acid) in situ hydrogels for sustained release of an anticancer drug. J. Drug Target., 2013, 21(1), 54-66.
[http://dx.doi.org/10.3109/1061186X.2012.725406] [PMID: 23009351]
[187]
Sterile opthalmic gel forming solution, Timoptic XE 0.25% and 0.5 % (Timolol maleate opthalmic gel forming solution). Available at: https://www.merck.com/product/usa/ pi_circulars/t/timoptic/timoptic_xe_pi.pdf(Accessed Date: 16 July, 2018).
[188]
Pandya, Y.; Sisodiya, D.; Dashora, K. ATRIGEL® implants and controlled released drug delivery system. Int. J. Biopharm., 2014, 5, 208-213.
[189]
Rathi, R.; Zentner, C.; Gaylen, M.; Jeong, B. Biodegradable low molecular weight triblock poly (lactide-coglycolide) polyethylene glycol co-polymers having reverse thermal gelation properties. US patent 6117949 2000.
[190]
Samlowski, W.E.; McGregor, J.R.; Jurek, M.; Baudys, M.; Zentner, G.M.; Fowers, K.D. ReGel polymer-based delivery of interleukin-2 as a cancer treatment. J. Immunother., 2006, 29(5), 524-535.
[http://dx.doi.org/10.1097/01.cji.0000211306.05869.25] [PMID: 16971808]
[191]
Vellimana, A.K.; Recinos, V.R.; Hwang, L.; Fowers, K.D.; Li, K.W.; Zhang, Y.; Okonma, S.; Eberhart, C.G.; Brem, H.; Tyler, B.M. Combination of paclitaxel thermal gel depot with temozolomide and radiotherapy significantly prolongs survival in an experimental rodent glioma model. J. Neurooncol., 2013, 111(3), 229-236.
[http://dx.doi.org/10.1007/s11060-012-1014-1] [PMID: 23224713]
[192]
Zoladex goserelin acetate implant. Available at: http://www.aboutzoladex.com/(Accessed Date: 16 July, 2018).
[193]
Eligard leuprolide acetate for injectable suspension. Available at: http://eligard.com/(Accessed Date: 16 July, 2018.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy