[1]
Shi TW, Kah WS, Mohamad MS, et al. A review of gene selection tools in classifying cancer microarray data. Curr Bioinform 2017; 12(3): 202-12.
[2]
Zeng X, Liu L, Lü L, Zou Q. Prediction of potential disease-associated microRNAs using structural perturbation method. Bioinformatics 2018; 34(14): 2425-32.
[3]
Nguyen T, Khosravi A, Creighton D, Nahavandi S. A novel aggregate gene selection method for microarray data classification. Pattern Recognit Lett 2015; 60: 16-23.
[4]
Díaz-Uriarte R, Alvarez de Andrés S. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 2006; 7(1): 3.
[5]
Zeng X, Liao Y, Liu Y, Zou Q. Prediction and validation of disease genes using HeteSim Scores. IEEE/ACM Trans Comput Biol Bioinformatics 2017; 14(3): 687-95.
[6]
Chen KH, Wang KJ, Tsai ML, et al. Gene selection for cancer identification: a decision tree model empowered by particle swarm optimization algorithm. BMC Bioinformatics 2014; 15(1): 49.
[7]
Chen KH, Wang KJ, Wang KM, Angelia MA. Applying particle swarm optimization-based decision tree classifier for cancer classification on gene expression data. Appl Soft Comput 2014; 24: 773-80.
[8]
Chuang LY, Yang CS, Wu KC, Yang CH. Gene selection and classification using Taguchi chaotic binary particle swarm optimization. Expert Syst Appl 2011; 38(10): 13367-77.
[9]
Dai J, Xu Q. Attribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification. Appl Soft Comput 2013; 13(1): 211-21.
[10]
Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol 2005; 3(2): 185-205.
[11]
Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn 2002; 46(1-3): 389-422.
[12]
Shen Q, Shi WM, Kong W. Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data. Comput Biol Chem 2008; 32(1): 52-9.
[13]
Gao L, Ye M, Wu C. Cancer classification based on support vector machine optimized by particle swarm optimization and artificial bee colony. Molecules 2017; 22(12): 2086.
[14]
Kar S, Sharma KD, Maitra M. Gene selection from microarray gene expression data for classification of cancer subgroups employing PSO and adaptive K-nearest neighborhood technique. Expert Syst Appl 2015; 42(1): 612-27.
[15]
Agarwalla P, Mukhopadhyay S. Bi-stage hierarchical selection of pathway genes for cancer progression using a swarm based computational approach. Appl Soft Comput 2018; 62: 230-50.
[16]
Gao L, Ye M, Lu X, Huang D. Hybrid method based on information gain and support vector machine for gene selection in cancer classification. Genomics Proteomics Bioinformatics 2017; 15(6): 389-95.
[17]
Li S, Wu X, Tan M. Gene selection using hybrid particle swarm optimization and genetic algorithm. Soft Comput 2008; 12(11): 1039-48.
[18]
Mohamad MS, Omatu S, Deris S, Yoshioka M. A modified binary particle swarm optimization for selecting the small subset of informative genes from gene expression data. IEEE Trans Inf Technol Biomed 2011; 15(6): 813-22.
[19]
Mohamad MS, Omatu S, Deris S, Yoshioka M. Particle swarm optimization for gene selection in classifying cancer classes. Artif Life Robot 2009; 14(1): 16-9.
[20]
Jain I, Jain VK, Jain R. Correlation feature selection based improved-binary particle swarm optimization for gene selection and cancer classification. Appl Soft Comput 2018; 62: 203-15.
[21]
Pawlak Z. Rough sets. Intl J Comp Inform Sci 1982; 11(5): 341-56.
[22]
Ye M, Wu X, Hu X, Hu D. Multi-level rough set reduction for decision rule mining. Appl Intell 2013; 39(3): 642-58.
[23]
Ye M, Wu X, Hu X, Hu D. Knowledge reduction for decision tables with attribute value taxonomies. Knowl Base Syst 2014; 56: 68-78.
[24]
Ye M, Wu X, Hu X, Hu D. Anonymizing classification data using rough set theory. Knowl Base Syst 2013; 43: 82-94.
[25]
Wang X, Yang J, Teng X, Xia W, Jensen R. Feature selection based on rough sets and particle swarm optimization. Pattern Recognit Lett 2007; 28(4): 459-71.
[26]
Meng J, Zhang J, Li R, Luan Y. Gene selection using rough set based on neighborhood for the analysis of plant stress response. Appl Soft Comput 2014; 25: 51-63.
[27]
Meng J, Zhang J, Luan Y. Gene selection integrated with biological knowledge for plant stress response using neighborhood system and rough set theory. IEEE/ACM Trans Comput Biol Bioinform 2015.12(2): 433-44.
[28]
Zhang SW, Huang DS, Wang SL. A method of tumor classification based on wavelet packet transforms and neighborhood rough set. Comput Biol Med 2010; 40(4): 430-7.
[29]
Yang X, Zhang M, Dou H, Yang J. Neighborhood systems-based rough sets in incomplete information system. Knowl Base Syst 2011; 24(6): 858-67.
[30]
Luo C, Li T, Chen H, Fujita H, Yi Z. Incremental rough set approach for hierarchical multicriteria classification. Inf Sci 2018; 429: 72-87.
[31]
Wang SL, Li X, Zhang S, Gui J, Huang DS. Tumor classification by combining PNN classifier ensemble with neighborhood rough set based gene reduction. Comput Biol Med 2010; 40(2): 179-89.
[32]
Wang Y, Chen X, Jiang W, et al. Predicting human microRNA precursors based on an optimized feature subset generated by GA-SVM. Genomics 2011; 98(2): 73-8.
[33]
Nanni L, Brahnam S, Lumini A. Combining multiple approaches for gene microarray classification. Bioinformatics 2012; 28(8): 1151-7.
[34]
Li S, Harner EJ, Adjeroh DA. Random KNN feature selection - a fast and stable alternative to Random Forests. BMC Bioinformatics 2011; 12(1): 450.
[35]
Park CH, Kim SB. Sequential random k-nearest neighbor feature selection for high-dimensional data. Expert Syst Appl 2015; 42(5): 2336-42.
[36]
Maji P, Paul S. Rough set based maximum relevance-maximum significance criterion and gene selection from microarray data. Int J Approx Reason 2011; 52(3): 408-26.
[37]
Inbarani HH, Azar AT, Jothi G. Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis. Comput Methods Programs Biomed 2014; 113(1): 175-85.
[38]
Hu Q, Yu D, Liu J, Wu C. Neighborhood rough set based heterogeneous feature subset selection. Inf Sci 2008; 178(18): 3577-94.
[39]
Maji P, Garai P. On fuzzy-rough attribute selection: criteria of max-dependency, max-relevance, min-redundancy, and max-significance. Appl Soft Comput 2013; 13(9): 3968-80.