[1]
Huang, X-F.; Ruan, B-F.; Wang, X-T.; Xu, C.; Ge, H-M.; Zhu, H-L.; Tan, R-X. Synthesis and cytotoxic evaluation of a series of resveratrol derivatives modified in C2 position. Eur. J. Med. Chem., 2007, 42(2), 263-267.
[2]
Ruan, B-F.; Huang, X-F.; Ding, H.; Xu, C.; Ge, H-M.; Zhu, H-L.; Tan, R-X. Synthesis and cytotoxic evaluation of a series of resveratrol derivatives. Chem. Biodivers., 2006, 3(9), 975-981.
[3]
Biasutto, L.; Mattarei, A.; Azzolini, M.; La Spina, M.; Sassi, N.; Romio, M.; Paradisi, C.; Zoratti, M. Resveratrol derivatives as a pharmacological tool. Ann. N. Y. Acad. Sci., 2017, 1403(1), 27-37.
[4]
Kurgvietiene, L.; Staneviciene, I.; Mongirdiene, A.; Bernatoniene, J. Multiplicity of effects and health benefits of resveratrol. Medicina-
Lithuania., 2016, 52(3), 148-155.
[5]
Gulcin, I. Antioxidant properties of resveratrol: A structure-activity insight. Innov. Food Sci. Emerg. Technol., 2010, 11(1), 210-218.
[6]
Bishayee, A.; Barnes, K.F.; Bhatia, D.; Darvesh, A.S.; Carroll, R.T. Resveratrol Suppresses Oxidative Stress and Inflammatory Response in Diethylnitrosamine-Initiated Rat Hepatocarcinogenesis. Cancer Prev. Res., 2010, 3(6), 753-763.
[7]
Ma, D.S.L.; Tan, L.T-H.; Chan, K-G.; Yap, W.H.; Pusparajah, P.; Chuah, L-H.; Ming, L.C.; Khan, T.M.; Lee, L-H.; Goh, B-H. Resveratrol-Potential Antibacterial Agent against Foodborne Pathogens. Front. Pharmacol., 2018, 9, 102.
[8]
Rauf, A.; Imran, M.; Butt, M.S.; Nadeem, M.; Peters, D.G.; Mubarak, M.S. Resveratrol as an anti-cancer agent: A review. Crit. Rev. Food Sci. Nutr., 2018, 58(9), 1428-1447.
[9]
Shi, D-D.; Dong, C.M.; Ho, L.C.; Lam, C.T.W.; Zhou, X-D.; Wu, E.X.; Zhou, Z-J.; Wang, X-M.; Zhang, Z-J. Resveratrol, a natural polyphenol, prevents chemotherapy-induced cognitive impairment: Involvement of cytokine modulation and neuroprotection. Neurobiol. Dis., 2018, 114, 164-173.
[10]
Hansen, H.C.; Chiacchia, F.S.; Patel, R.; Wong, N.C.W.; Khlebnikov, V.; Jankowska, R.; Patel, K.; Reddy, M.M. Stilbene analogs as inducers of apolipoprotein-I transcription. Eur. J. Med. Chem., 2010, 45(5), 2018-2023.
[11]
Sebai, H.; Sani, M.; Yacoubi, M.T.; Aouani, E.; Ghanem-Boughanmi, N.; Ben-Attia, M. Resveratrol, a red wine polyphenol, attenuates lipopolysaccharide-induced oxidative stress in rat liver. Ecotoxicol. Environ. Saf., 2010, 73(5), 1078-1083.
[12]
Pervaiz, S.; Holme, A.L. Resveratrol: Its biologic targets and functional activity. Antioxid. Redox Signal., 2009, 11(11), 2851-2897.
[13]
Fan, Y.; Liu, Y.; Gao, L.; Zhang, Y.; Yi, J. Improved chemical stability and cellular antioxidant activity of resveratrol in zein nanoparticle with bovine serum albumin-caffeic acid conjugate. Food Chem., 2018, 261, 283-291.
[14]
Fan, E.; Zhang, K.; Zhu, M.; Wang, Q. Obtaining resveratrol: From chemical synthesis to biotechnological production. Mini Rev. Org. Chem., 2010, 7(4), 272-281.
[15]
Ravera, S.; Capanni, C.; Tognotti, D.; Bottega, R.; Columbaro, M.; Dufour, C.; Cappelli, E.; Degan, P. Inhibition of metalloproteinase activity in FANCA is linked to altered oxygen metabolism. J. Cell. Physiol., 2015, 230(3), 603-609.
[16]
Mayhoub, A.S.; Marler, L.; Kondratyuk, T.P.; Park, E-J.; Pezzuto, J.M.; Cushman, M. Optimization of thiazole analogues of resveratrol for induction of NAD(P)H: Quinone reductase 1 (QR1). Bioorg. Med. Chem., 2012, 20(24), 7030-7039.
[17]
Mayhoub, A.S.; Marler, L.; Kondratyuk, T.P.; Park, E-J.; Pezzuto, J.M.; Cushman, M. Optimizing thiadiazole analogues of resveratrol versus three chemopreventive targets. Bioorg. Med. Chem., 2012, 20(1), 510-520.
[18]
He, S.; Yan, X. From resveratrol to its derivatives: New sources of natural antioxidant. Curr. Med. Chem., 2013, 20(8), 1005-1017.
[19]
Csuk, R.; Albert, S.; Siewert, B. Synthesis and radical scavenging activities of resveratrol analogs. Archiv der Pharmazie, 2013, 346(7), 504-510.
[20]
Lee, S.K.; Nam, K.A.; Hoe, Y.H.; Min, H.Y.; Kim, E.Y.; Ko, H.; Song, S.; Lee, T.; Kim, S. Synthesis and evaluation of cytotoxicity of stilbene analogues. Arch. Pharm. Res., 2003, 26(4), 253-257.
[21]
Stivala, L.A.; Savio, M.; Carafoli, F.; Perucca, P.; Bianchi, L.; Maga, G.; Forti, L.; Pagnoni, U.M.; Albini, A.; Prosperi, E.; Vannini, V. Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. J. Biol. Chem., 2001, 276(25), 22586-22594.
[22]
Ferrero-Miliani, L.; Nielsen, O.H.; Andersen, P.S.; Girardin, S.E. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1 beta generation. Clin. Experiment. Immunol., 2007, 147(2), 227-235.
[23]
Park, J.; Min, J-S.; Kim, B.; Chae, U-B.; Yun, J.W.; Choi, M-S.; Kong, I-K.; Chang, K-T.; Lee, D-S. Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-kappa B pathways. Neurosci. Lett., 2015, 584, 191-196.
[24]
Miguel, R.N.; Wong, J.; Westoll, J.F.; Brooks, H.J.; O’Neill, L.A.J.; Gay, N.J.; Bryant, C.E.; Monie, T.P. A dimer of the toll-like receptor 4 cytoplasmic domain provides a specific scaffold for the recruitment of signalling adaptor proteins. PLoS One, 2007, 2(8)
[25]
Feroze, U.; Kalantar-Zadeh, K.; Sterling, K.A.; Molnar, M.Z.; Noori, N.; Benner, D.; Shah, V.; Dwivedi, R.; Becker, K.; Kovesdy, C.P.; Raj, D.S. Examining associations of circulating endotoxin with nutritional status, inflammation, and mortality in hemodialysis patients. J. Ren. Nutr., 2012, 22(3), 317-326.
[26]
Simmons, D.L. What makes a good anti-inflammatory drug target? Drug Discov. Today, 2006, 11(5-6), 210-219.
[27]
Zordok, W.A. Synthesis, spectroscopic, structural characterization, thermal analysis, kinetics, biological evaluation of non-steroidal anti-inflammatory drug diclofenac zirconium (IV) solvates (L) (L = H2O, DMF, Py and Et3N). J. Mol. Struct., 2018, 1166, 270-285.
[28]
Buttner, A.; Thieme, D. Side effects of anabolic androgenic steroids: Pathological findings and structure-activity relationships. Handb. Exp. Pharmacol., 2010, 195, 459-484.
[29]
Rainsford, K.D. Cardiovascular adverse reactions from NSAIDs are more than COX-2 inhibition alone ‘The gun must be loaded for COX-2 inhibitors to pull the trigger and cause cardiovascular toxicity’. Rheumatology, 2010, 49(5), 834-836.
[30]
Minamiyama, Y.; Takemura, S.; Nishino, Y.; Okada, S. Organic nitrate tolerance is induced by degradation of some cytochrome P450 isoforms. Redox Report: Communicat. Free Radical Res., 2002, 7(5), 339-342.
[31]
Basudhar, D.; Bharadwaj, G.; Cheng, R.Y.; Jain, S.; Shi, S.; Heinecke, J.L.; Holland, R.J.; Ridnour, L.A.; Caceres, V.M.; Spadari-Bratfisch, R.C.; Paolocci, N.; Velazquez-Martinez, C.A.; Wink, D.A.; Miranda, K.M. Synthesis and chemical and biological comparison of nitroxyl- and nitric oxide-releasing diazeniumdiolate-based aspirin derivatives. J. Med. Chem., 2013, 56(20), 7804-7820.
[32]
Ruan, B.F.; Ge, W.W.; Cheng, H.J.; Xu, H.J.; Li, Q.S.; Liu, X.H. Resveratrol-based cinnamic ester hybrids: synthesis, characterization, and anti-inflammatory activity. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 1282-1290.
[33]
Pan, J.; Xu, T.; Xu, F.; Zhang, Y.; Liu, Z.; Chen, W.; Fu, W.; Dai, Y.; Zhao, Y.; Feng, J.; Liang, G. Development of resveratrol-curcumin hybrids as potential therapeutic agents for inflammatory lung diseases. Eur. J. Med. Chem., 2017, 125, 478-491.
[34]
Lanzilli, G.; Cottarelli, A.; Nicotera, G.; Guida, S.; Ravagnan, G.; Fuggetta, M.P. Anti-inflammatory effect of resveratrol and polydatin by in vitro IL-17 modulation. Inflammation, 2012, 35(1), 240-248.
[35]
Trombetta, D.; Giofre, S.V.; Tomaino, A.; Raciti, R.; Saija, A.; Cristani, M.; Romeo, R.; Siracusa, L.; Ruberto, G. Selective COX-2 Inhibitory Properties of Dihydrostilbenes from Liquorice Leaves-In Vitro Assays and Structure/Activity Relationship Study. Nat. Prod. Commun., 2014, 9(12), 1761-1764.
[36]
Choo, Q-Y.; Yeo, S.C.M.; Ho, P.C.; Tanaka, Y.; Lin, H-S. Pterostilbene surpassed resveratrol for anti-inflammatory application: Potency consideration and pharmacokinetics perspective. J. Funct. Foods, 2014, 11, 352-362.
[37]
Lin, Y.J.; Ding, Y.; Wu, J.; Ning, B.T. Pterostilbene as treatment for severe acute pancreatitis. Genet. Mol. Res., 2016, 15(3)
[38]
Ma, P.; Ding, Y.S.; Xuan, L.L.; Wang, L.; Shi, J.; Bai, J.Y.; Lin, M.B.; Zheng, W.S.; Hou, Q. Anti-inflammatory effect of a resveratrol derivative 3,4,5-trimethoxy-4′,5′-dihydroxy-trans-stilbene (WL-09-5) via ROS-mediated NF-kappaB pathway. J. Asian Nat. Prod. Res., 2016, 18(10), 1004-1013.
[39]
Feddal, S.; Bouakouk, Z.; Meyar, M.; Kellou-Tairi, S. Atomic 3D-QSAR study based on pharmacophore modeling of resveratrol derivatives as selective COX-2 inhibitors. Med. Chem. Res., 2017, 26(6), 1259-1267.
[40]
Peng, W.; Ma, Y-Y.; Zhang, K.; Zhou, A-Y.; Zhang, Y.; Wang, H.; Du, Z.; Zhao, D-G. Synthesis and Biological Evaluation of Novel Resveratrol-NSAID Derivatives as Anti-inflammatory Agents. Chem. Pharm. Bull., 2016, 64(6), 609-615.
[41]
Choi, R.J.; Chun, J.; Khan, S.; Kim, Y.S. Desoxyrhapontigenin, a potent anti-inflammatory phytochemical, inhibits LPS-induced inflammatory responses via suppressing NF-kappaB and MAPK pathways in RAW 264.7 cells. Int. Immunopharmacol., 2014, 18, 182-190.
[42]
Park, E-J.; Min, H-Y.; Chung, H-J.; Ahn, Y-H.; Pyee, J-H.; Lee, S.K. Pinosylvin Suppresses LPS-stimulated inducible nitric oxide synthase expression via the MyD88-independent, but TRIF-dependent downregulation of IRF-3 signaling pathway in mouse macrophage cells. Cell. Physiol. Biochem., 2011, 27(3-4), 353-362.
[43]
Wang, W.; Sun, L.; Zhang, P.; Song, J.; Liu, W. An anti-inflammatory cell-free collagen/resveratrol scaffold for repairing osteochondral defects in rabbits. Acta Biomater., 2014, 10(12), 4983-4995.
[44]
Antus, C.; Radnai, B.; Dombovari, P.; Fonai, F.; Avar, P.; Matyus, P.; Racz, B.; Sumegi, B.; Veres, B. Anti-inflammatory effects of a triple-bond resveratrol analog: structure and function relationship. Eur. J. Pharmacol., 2015, 748, 61-67.
[45]
Kim, M.H.; Son, Y.J.; Lee, S.Y.; Yang, W.S.; Yi, Y.S.; Yoon, D.H.; Yang, Y.; Kim, S.H.; Lee, D.; Rhee, M.H.; Kang, H.; Kim, T.W.; Sung, G.H.; Cho, J.Y. JAK2-targeted anti-inflammatory effect of a resveratrol derivative 2,4-dihydroxy-N-(4-hydroxyphenyl)-benzamide. Biochem. Pharmacol., 2013, 86(12), 1747-1761.
[46]
Lin, S.J.; Tsai, W.J.; Chiou, W.F.; Yang, T.H.; Yang, L.M. Selective COX-2 inhibitors. Part 2: Synthesis and biological evaluation of 4-benzylideneamino- and 4-phenyliminomethyl-benzenesulfonamides. Bioorg. Med. Chem., 2008, 16(5), 2697-2706.
[47]
Chen, W.; Ge, X.; Xu, F.; Zhang, Y.; Liu, Z.; Pan, J.; Song, J.; Dai, Y.; Zhou, J.; Feng, J.; Liang, G. Design, synthesis and biological evaluation of paralleled Aza resveratrol-chalcone compounds as potential anti-inflammatory agents for the treatment of acute lung injury. Bioorg. Med. Chem. Lett., 2015, 25(15), 2998-3004.
[48]
Chen, L.Q.; Shen, X.F.; Hu, B.Y.; Lin, Y.; Igbe, I.; Zhang, C.G.; Zhang, G.L.; Yuan, X.H.; Wang, F. Nitric oxide production inhibition and mechanism of phenanthrene analogs in lipopolysaccharide-stimulated RAW264.7 macrophages. Bioorg. Med. Chem. Lett., 2016, 26(10), 2521-2525.
[49]
Chang, C.I.; Chien, W.C.; Huang, K.X.; Hsu, J.L. Anti-Inflammatory effects of vitisinol a and four other oligostilbenes from ampelopsis brevipedunculata var. hancei. Molecules, 2017, 22(7)
[50]
Zhong, C.; Liu, X.H.; Chang, J.; Yu, J.M.; Sun, X. Inhibitory effect of resveratrol dimerized derivatives on nitric oxide production in lipopolysaccharide-induced RAW 264.7 cells. Bioorg. Med. Chem. Lett., 2013, 23(15), 4413-4418.
[51]
Chen, G.; Shan, W.; Wu, Y.L.; Ren, L.X.; Dong, I.H.; Ji, Z.Z. Synthesis and anti-inflammatory activity of resveratrol analogs. Chem. Pharm. Bull., 2005, 53(12), 1587-1590.
[53]
Kim, M-H.; Shin, J-S.; Lee, K-T.; Lee, Y-S. Synthesis of Pyronyl Derivatives as Resveratrol Analogues and Their Inhibitory Effects on Nitric Oxide and PGE2Productions. Bull. Korean Chem. Soc., 2011, 32(1), 299-302.
[54]
Huang, C-C.; Tung, Y-T.; Cheng, K-C.; Wu, J-H. Phytocompounds from Vitis kelungensis stem prevent carbon tetrachloride-induced acute liver injury in mice. Food Chem., 2011, 125(2), 726-731.
[55]
Ha, D.T.; Long, P.T.; Hien, T.T.; Tuan, D.T.; An, N.T.T.; Khoi, N.M.; Van Oanh, H.; Hung, T.M. Anti-inflammatory effect of oligostilbenoids from Vitis heyneana in LPS-stimulated RAW 264.7 macrophages via suppressing the NF-kappaB activation. Chem. Cent. J., 2018, 12(1), 14.
[56]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[57]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global Cancer Statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[58]
Wu, W.; Liu, F.; Su, A.; Gong, Y.; Zhao, W.; Liu, Y.; Ye, H.; Zhu, J. The effect and mechanism of millepachine-disrupted spindle assembly in tumor cells. Anticancer Drugs, 2018, 29(5), 449-456.
[59]
Fresco, P.; Borges, F.; Diniz, C.; Marques, M.P.M. New insights on the anticancer properties of dietary polyphenols. Med. Res. Rev., 2006, 26(6), 747-766.
[60]
Khan, M.A.; Chen, H-c.; Wan, X-x.; Tania, M.; Xu, A-h.; Chen, F-z.; Zhang, D-z. Regulatory effects of resveratrol on antioxidant enzymes: A mechanism of growth inhibition and apoptosis induction in cancer cells (vol 35, pg 219, 2013). Mol. Cells, 2013, 35(4), 355-355.
[61]
Shi, Y.; Yang, S.; Troup, S.; Lu, X.; Callaghan, S.; Park, D.S.; Xing, Y.; Yang, X. Resveratrol induces apoptosis in breast cancer cells by E2F1-mediated up-regulation of ASPP1. Oncol. Rep., 2011, 25(6), 1713-1719.
[62]
Trung, L.Q.; Espinoza, J.L.; Takami, A.; Nakao, S. Resveratrol induces cell cycle arrest and apoptosis in malignant NK cells via JAK2/STAT3 pathway inhibition. PLoS One, 2013, 8(1)
[63]
Ko, A.; Han, S.Y.; Song, J. Regulatory network of ARF in cancer development. Mol. Cells, 2018, 41(5), 381-389.
[64]
Delmas, D.; Passilly-Degrace, P.; Jannin, B.; Cherkaoui Malki, M.; Latruffe, N. Resveratrol, a chemopreventive agent, disrupts the cell cycle control of human SW480 colorectal tumor cells. Int. J. Mol. Med., 2002, 10(2), 193-199.
[65]
Delmas, D.; Rebe, C.; Lacour, S.; Filomenko, R.; Athias, A.; Gambert, P.; Cherkaoui-Malki, M.; Jannin, B.; Dubrez-Daloz, L.; Latruffe, N.; Solary, E. Resveratrol-induced apoptosis is associated with Fas redistribution in the rafts and the formation of a death-inducing signaling complex in colon cancer cells. J. Biol. Chem., 2003, 278(42), 41482-41490.
[66]
Schneider, Y.; Vincent, F.; Duranton, B.; Badolo, L.; Gosse, F.; Bergmann, C.; Seiler, N.; Raul, F. Anti-proliferative effect of resveratrol, a natural component of grapes and wine, on human colonic cancer cells. Cancer Lett., 2000, 158, 85-91.
[67]
Athar, M.; Back, J.H.; Tang, X.; Kim, K.H.; Kopelovich, L.; Bickers, D.R.; Kim, A.L. Resveratrol: A review of preclinical studies for human cancer prevention. Toxicol. Appl. Pharmacol., 2007, 224(3), 274-283.
[68]
Bernhard, D.; Tinhofer, I.; Tonko, M.; Hubl, H.; Ausserlechner, M.J.; Greil, R.; Kofler, R.; Csordas, A. Resveratrol causes arrest in the S-phase prior to Fas-independent apoptosis in CEM-C7H2 acute leukemia cells. Cell Death Differ., 2000, 7(9), 834-842.
[69]
Helfinger, V.; Schroder, K. Redox control in cancer development and progression. Mol. Aspects Med., 2018.
[70]
Platella, C.; Guida, S.; Bonmassar, L.; Aquino, A.; Bonmassar, E.; Ravagnan, G.; Montesarchio, D.; Roviello, G.N.; Musumeci, D.; Fuggetta, M.P. Antitumour activity of resveratrol on human melanoma cells: A possible mechanism related to its interaction with malignant cell telomerase. Biochimica et biophysica acta, 2017, 1861(11 Pt A), 2843-2851.
[71]
Shankar, S.; Singh, G.; Srivastava, R.K. Chemoprevention by resveratrol: Molecular mechanisms and therapeutic potential. Front. Bioscience-Landmark, 2007, 12, 4839-4854.
[72]
Mikula-Pietrasik, J.; Sosinska, P.; Murias, M.; Wierzchowski, M.; Brewinska-Olchowik, M.; Piwocka, K.; Szpurek, D.; Ksiazek, K. High potency of a novel resveratrol derivative, 3,3′,4,4′-Tetrahydroxy-trans-stilbene, against ovarian cancer is associated with an oxidative stress-mediated imbalance between DNA damage accumulation and repair. Oxid. Med. Cell. Longev., 2015, 2015135691
[73]
Marel, A.K.; Lizard, G.; Izard, J.C.; Latruffe, N.; Delmas, D. Inhibitory effects of trans-resveratrol analogs molecules on the proliferation and the cell cycle progression of human colon tumoral cells. Mol. Nutr. Food Res., 2008, 52(5), 538-548.
[74]
Nivelle, L.; Hubert, J.; Courot, E.; Jeandet, P.; Aziz, A.; Nuzillard, J.M.; Renault, J.H.; Clement, C.; Martiny, L.; Delmas, D.; Tarpin, M. Anti-Cancer activity of resveratrol and derivatives produced by grapevine cell suspensions in a 14 L stirred bioreactor. Molecules, 2017, 22(3)
[75]
Zhu, Y.; Fu, J.; Shurlknight, K.L.; Soroka, D.N.; Hu, Y.; Chen, X.; Sang, S. Novel resveratrol-based aspirin prodrugs: Synthesis, metabolism, and anticancer activity. J. Med. Chem., 2015, 58(16), 6494-6506.
[76]
Kumar, D.; Raj, K.K.; Malhotra, S.V.; Rawat, D.S. Synthesis and anticancer activity evaluation of resveratrol–chalcone conjugates. MedChemComm, 2014, 5(4), 528.
[77]
Szekeres, T.; Saiko, P.; Fritzer-Szekeres, M.; Djavan, B.; Jager, W. Chemopreventive effects of resveratrol and resveratrol derivatives. Ann. N. Y. Acad. Sci., 2011, 1215, 89-95.
[78]
Chillemi, R.; Cardullo, N.; Greco, V.; Malfa, G.; Tomasello, B.; Sciuto, S. Synthesis of amphiphilic resveratrol lipoconjugates and evaluation of their anticancer activity towards neuroblastoma SH-SY5Y cell line. Eur. J. Med. Chem., 2015, 96, 467-481.
[79]
Madlener, S.; Saiko, P.; Vonach, C.; Viola, K.; Huttary, N.; Stark, N.; Popescu, R.; Gridling, M.; Vo, N.T.; Herbacek, I.; Davidovits, A.; Giessrigl, B.; Venkateswarlu, S.; Geleff, S.; Jager, W.; Grusch, M.; Kerjaschki, D.; Mikulits, W.; Golakoti, T.; Fritzer-Szekeres, M.; Szekeres, T.; Krupitza, G. Multifactorial anticancer effects of digalloyl-resveratrol encompass apoptosis, cell-cycle arrest, and inhibition of lymphendothelial gap formation in vitro. Br. J. Cancer, 2010, 102(9), 1361-1370.
[80]
Saiko, P.; Graser, G.; Giessrigl, B.; Steinmann, M.T.; Schuster, H.; Lackner, A.; Grusch, M.; Krupitza, G.; Jaeger, W.; Somepalli, V.; Golakoti, T.; Fritzer-Szekeres, M.; Szekeres, T. Digalloylresveratrol, a novel resveratrol analog inhibits the growth of human pancreatic cancer cells. Invest. New Drugs, 2013, 31(5), 1115-1124.
[81]
Moon, H.I.; Chung, I.M.; Jung, J.C.; Lim, E.; Lee, Y.; Oh, S.; Jung, M. The convenient synthesis and evaluation of the anticancer activities of new resveratrol derivatives. J. Enzyme Inhib. Med. Chem., 2009, 24(2), 328-336.
[82]
Yoo, K.M.; Kim, S.; Moon, B.K.; Kim, S.S.; Kim, K.T.; Kim, S.Y.; Choi, S.Y. Potent inhibitory effects of resveratrol derivatives on progression of prostate cancer cells. Archiv der Pharmazie, 2006, 339(5), 238-241.
[83]
de Freitas Silva, M.; Coelho, L.F.; Guirelli, I.M.; Pereira, R.M.; Ferreira-Silva, G.A.; Graravelli, G.Y.; Horvath, R.O.; Caixeta, E.S.; Ionta, M.; Viegas, C. Synthetic resveratrol-curcumin hybrid derivative inhibits mitosis progression in estrogen positive MCF-7 breast cancer cells. Toxicol. in vitro: An Intl. J. Pub. Associat. BIBRA, 2018, 50, 75-85.
[84]
Bernhaus, A.; Ozsvar-Kozma, M.; Saiko, P.; Jaschke, M.; Lackner, A.; Grusch, M.; Horvath, Z.; Madlener, S.; Krupitza, G.; Handler, N.; Erker, T.; Jaeger, W.; Fritzer-Szekeres, M.; Szekeres, T. Antitumor effects of KITC, a new resveratrol derivative, in AsPC-1 and BxPC-3 human pancreatic carcinoma cells. Invest. New Drugs, 2009, 27(5), 393-401.
[85]
Mikstacka, R.; Stefanski, T.; Rozanski, J. Tubulin-interactive stilbene derivatives as anticancer agents. Cell. Mol. Biol. Lett., 2013, 18(3), 368-397.
[86]
Simoni, D.; Roberti, M.; Invidiata, F.P.; Aiello, E.; Aiello, S.; Marchetti, P.; Baruchello, R.; Eleopra, M.; Di Cristina, A.; Grimaudo, S.; Gebbia, N.; Crosta, L.; Dieli, F.; Tolomeo, M. Stilbene-based anticancer agents: resveratrol analogues active toward HL60 leukemic cells with a non-specific phase mechanism. Bioorg. Med. Chem. Lett., 2006, 16(12), 3245-3248.
[87]
Aldawsari, F.S.; Aguayo-Ortiz, R.; Kapilashrami, K.; Yoo, J.; Luo, M.; Medina-Franco, J.L.; Velazquez-Martinez, C.A. Resveratrol-salicylate derivatives as selective DNMT3 inhibitors and anticancer agents. J. Enzyme Inhib. Med. Chem., 2016, 31(5), 695-703.
[88]
Cheah, F.K.; Leong, K.H.; Thomas, N.F.; Chin, H.K.; Ariffin, A.; Awang, K. Resveratrol analogue, (E)-N-(2-(4-methoxystyryl)
phenyl) furan-2-carboxamide induces G2/M cell cycle arrest
through the activation of p53-p21(CIP1/WAF1) in human colorectal
HCT116 cells. Apoptosis: An Intl. J. Prog. Cell Death., 2018.
[89]
Okamoto, H.; Matsukawa, T.; Doi, S.; Tsunoda, T.; Sawata, Y.; Naemura, M.; Ohnuki, K.; Shirasawa, S.; Kotake, Y. A novel resveratrol derivative selectively inhibits the proliferation of colorectal cancer cells with KRAS mutation. Mol. Cell. Biochem., 2018, 442(1-2), 39-45.
[90]
Duan, Y.C.; Guan, Y.Y.; Zhai, X.Y.; Ding, L.N.; Qin, W.P.; Shen, D.D.; Liu, X.Q.; Sun, X.D.; Zheng, Y.C.; Liu, H.M. Discovery of resveratrol derivatives as novel LSD1 inhibitors: Design, synthesis and their biological evaluation. Eur. J. Med. Chem., 2017, 126, 246-258.
[91]
Belluti, F.; Fontana, G.; Dal Bo, L.; Carenini, N.; Giommarelli, C.; Zunino, F. Design, synthesis and anticancer activities of stilbene-coumarin hybrid compounds: Identification of novel proapoptotic agents. Bioorg. Med. Chem., 2010, 18(10), 3543-3550.
[92]
Jeong, S.H.; Song, I.S.; Kim, H.K.; Lee, S.R.; Song, S.; Suh, H.; Yoon, Y.G.; Yoo, Y.H.; Kim, N.; Rhee, B.D.; Ko, K.S.; Han, J. An analogue of resveratrol HS-1793 exhibits anticancer activity against MCF-7 cells via inhibition of mitochondrial biogenesis gene expression. Mol. Cells, 2012, 34(4), 357-365.
[93]
Jeong, S.H.; Jo, W.S.; Song, S.; Suh, H.; Seol, S.Y.; Leem, S.H.; Kwon, T.K.; Yoo, Y.H. A novel resveratrol derivative, HS1793, overcomes the resistance conferred by Bcl-2 in human leukemic U937 cells. Biochem. Pharmacol., 2009, 77(8), 1337-1347.
[94]
Srivastava, V.; Lee, H. Synthesis and bio-evaluation of novel quinolino-stilbene derivatives as potential anticancer agents. Bioorg. Med. Chem., 2015, 23(24), 7629-7640.
[95]
Sala, M.; Chimento, A.; Saturnino, C.; Gomez-Monterrey, I.M.; Musella, S.; Bertamino, A.; Milite, C.; Sinicropi, M.S.; Caruso, A.; Sirianni, R.; Tortorella, P.; Novellino, E.; Campiglia, P.; Pezzi, V. Synthesis and cytotoxic activity evaluation of 2,3-thiazolidin-4-one derivatives on human breast cancer cell lines. Bioorg. Med. Chem. Lett., 2013, 23(17), 4990-4995.
[96]
Vergara, D.; De Domenico, S.; Tinelli, A.; Stanca, E.; Del Mercato, L.L.; Giudetti, A.M.; Simeone, P.; Guazzelli, N.; Lessi, M.; Manzini, C.; Santino, A.; Bellina, F.; Maffia, M. Anticancer effects of novel resveratrol analogues on human ovarian cancer cells. Mol. Biosyst., 2017, 13(6), 1131-1141.
[97]
Bellina, F.; Guazzelli, N.; Lessi, M.; Manzini, C. Imidazole analogues of resveratrol: Synthesis and cancer cell growth evaluation. Tetrahedron, 2015, 71(15), 2298-2305.
[98]
Zukowski, P.; Maciejczyk, M.; Waszkiel, D. Sources of free radicals and oxidative stress in the oral cavity. Arch. Oral Biol., 2018, 92, 8-17.
[99]
Lagouge, M.; Larsson, N.G. The role of mitochondrial DNA mutations and free radicals in disease and ageing. J. Intern. Med., 2013, 273(6), 529-543.
[100]
Finkel, T. Radical medicine: Treating ageing to cure disease. Nat. Rev. Mol. Cell Biol., 2005, 6(12), 971-976.
[101]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39, 44-84.
[102]
Yan, L-J. Positive oxidative stress in aging and aging-related disease tolerance. Redox Biol., 2014, 2, 165-169.
[103]
Lee, H.J.; Seo, J.W.; Lee, B.H.; Chung, K.H.; Chi, D.Y. Syntheses and radical scavenging activities of resveratrol derivatives. Bioorg. Med. Chem. Lett., 2004, 14(2), 463-466.
[104]
Amorati, R.; Lucarini, M.; Mugnaini, V.; Pedulli, G.F.; Roberti, M.; Pizzirani, D. Antioxidant activity of hydroxystilbene derivatives in homogeneous solution. J. Org. Chem., 2004, 69(21), 7101-7107.
[105]
Fukuhara, K.; Nakanishi, I.; Matsuoka, A.; Matsumura, T.; Honda, S.; Hayashi, M.; Ozawa, T.; Miyata, N.; Saito, S.; Ikota, N.; Okuda, H. Effect of methyl substitution on the antioxidative property and genotoxicity of resveratrol. Chem. Res. Toxicol., 2008, 21(2), 282-287.
[106]
Sueishi, Y.; Nii, R.; Kakizaki, N. Resveratrol analogues like piceatannol are potent antioxidants as quantitatively demonstrated through the high scavenging ability against reactive oxygen species and methyl radical. Bioorg. Med. Chem. Lett., 2017, 27(23), 5203-5206.
[107]
Bernini, R.; Barontini, M.; Spatafora, C. New lipophilic piceatannol derivatives exhibiting antioxidant activity prepared by aromatic hydroxylation with 2-iodoxybenzoic acid (IBX). Molecules, 2009, 14(11), 4669-4681.
[108]
Vlachogianni, I.C.; Fragopoulou, E.; Kostakis, I.K.; Antonopoulou, S. In vitro assessment of antioxidant activity of tyrosol, resveratrol and their acetylated derivatives. Food Chem., 2015, 177, 165-173.
[109]
Torres, P.; Poveda, A.; Jimenez-Barbero, J.; Ballesteros, A.; Plou, F.J. Regioselective lipase-catalyzed synthesis of 3-o-acyl derivatives of resveratrol and study of their antioxidant properties. J. Agric. Food Chem., 2010, 58(2), 807-813.
[110]
Kerem, Z.; Regev-Shoshani, G.; Flaishman, M.A.; Sivan, L. Resveratrol and two monomethylated stilbenes from Israeli Rumex bucephalophorus and their antioxidant potential. J. Nat. Prod., 2003, 66(9), 1270-1272.
[111]
Kucinska, M.; Piotrowska, H.; Luczak, M.W.; Mikula-Pietrasik, J.; Ksiazek, K.; Wozniak, M.; Wierzchowski, M.; Dudka, J.; Jager, W.; Murias, M. Effects of hydroxylated resveratrol analogs on oxidative stress and cancer cells death in human acute T cell leukemia cell line: Prooxidative potential of hydroxylated resveratrol analogs. Chemico-biol. Interact., 2014, 209, 96-110.
[112]
Jung, J.C.; Lim, E.; Lee, Y.; Kang, J.M.; Kim, H.; Jang, S.; Oh, S.; Jung, M. Synthesis of novel trans-stilbene derivatives and evaluation of their potent antioxidant and neuroprotective effects. Eur. J. Med. Chem., 2009, 44(8), 3166-3174.
[113]
Kerem, Z.; Bilkis, I.; Flaishman, M.A.; Sivan, U. Antioxidant activity and inhibition of alpha-glucosidase by trans-resveratrol, piceid, and a novel trans-stilbene from the roots of Israeli Rumex bucephalophorus L. J. Agric. Food Chem., 2006, 54(4), 1243-1247.
[114]
Kim, M.J.; Jung, S.H.; Moon, I.; Jun, J-G.; Lee, J.T. Syntheses of resveratrol analogues and evaluation of their antioxidant activity. Bull. Korean Chem. Soc., 2014, 35(5), 1549-1552.
[115]
Kotora, P.; Sersen, F.; Filo, J.; Loos, D.; Gregan, J.; Gregan, F. The scavenging of DPPH, galvinoxyl and ABTS radicals by imine analogs of resveratrol. Molecules, 2016, 21E127
[116]
Lu, J.; Li, C.; Chai, Y.F.; Yang, D.Y.; Sun, C.R. The antioxidant effect of imine resveratrol analogues. Bioorg. Med. Chem. Lett., 2012, 22(17), 5744-5747.
[117]
Semenov, A.V.; Balakireva, O.I.; Tarasova, I.V.; Burtasov, A.A.; Semenova, E.V.; Petrov, P.S.; Minaeva, O.V.; Pyataev, N.A. Synthesis, theoretical, and experimental study of radical scavenging activity of 3-pyridinol containing trans-resveratrol analogs. Med. Chem. Res., 2018, 27(4), 1298-1308.
[118]
Ficarra, S.; Tellone, E.; Pirolli, D.; Russo, A.; Barreca, D.; Galtieri, A.; Giardina, B.; Gavezzotti, P.; Riva, S.; De Rosa, M.C. Insights into the properties of the two enantiomers of trans-delta-viniferin, a resveratrol derivative: Antioxidant activity, biochemical and molecular modeling studies of its interactions with hemoglobin. Mol. BioSys., 2016, 12(4), 1276-1286.
[119]
Domazetovic, V.; Fontani, F.; Tanini, D.; D’Esopo, V.; Viglianisi, C.; Marcucci, G.; Panzella, L.; Napolitano, A.; Brandi, M.L.; Capperucci, A.; Menichetti, S.; Vincenzini, M.T.; Iantomasi, T. Protective role of benzoselenophene derivatives of resveratrol on the induced oxidative stress in intestinal myofibroblasts and osteocytes. Chemico-biol. Interact., 2017, 275, 13-21.
[120]
Tanini, D.; Panzella, L.; Amorati, R.; Capperucci, A.; Pizzo, E.; Napolitano, A.; Menichetti, S.; d’Ischia, M. Resveratrol-based benzoselenophenes with an enhanced antioxidant and chain breaking capacity. Org. Biomol. Chem., 2015, 13(20), 5757-5764.
[121]
Manikova, D.; Sestakova, Z.; Rendekova, J.; Vlasakova, D.; Lukacova, P.; Paegle, E.; Arsenyan, P.; Chovanec, M. Resveratrol-Inspired Benzo[b]selenophenes act as anti-oxidants in yeast. Molecules, 2018, 23(2)
[122]
Matos, M.J.; Mura, F.; Vazquez-Rodriguez, S.; Borges, F.; Santana, L.; Uriarte, E.; Olea-Azar, C. Study of coumarin-resveratrol hybrids as potent antioxidant compounds. Molecules, 2015, 20(2), 3290-3308.
[123]
Ding, D.J.; Cao, X.Y.; Dai, F.; Li, X.Z.; Liu, G.Y.; Lin, D.; Fu, X.; Jin, X.L.; Zhou, B. Synthesis and antioxidant activity of hydroxylated phenanthrenes as cis-restricted resveratrol analogues. Food Chem., 2012, 135(3), 1011-1019.
[124]
Bao, L.; Ma, X.; Song, X.; Wang, M.; Liu, H. Two new resveratrol tetramers isolated from cayratia japonica (THUNB.) GAGN. with strong inhibitory activity on fatty acid synthase and antioxidant activity. Chem. Biodivers., 2010, 7(12), 2931-2940.
[125]
Razavi, S.F.; Khoobi, M.; Nadri, H.; Sakhteman, A.; Moradi, A.; Emami, S.; Foroumadi, A.; Shafiee, A. Synthesis and evaluation of 4-substituted coumarins as novel acetylcholinesterase inhibitors. Eur. J. Med. Chem., 2013, 64, 252-259.
[126]
Crews, L.; Masliah, E. Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum. Mol. Genet., 2010, 19, R12-R20.
[127]
Castro, A.; Martinez, A. Targeting beta-amyloid pathogenesis through acetylcholinesterase inhibitors. Curr. Pharm. Des., 2006, 12(33), 4377-4387.
[128]
Tumiatti, V.; Minarini, A.; Bolognesi, M.L.; Milelli, A.; Rosini, M.; Melchiorre, C. Tacrine Derivatives and Alzheimer’s Disease. Curr. Med. Chem., 2010, 17(17), 1825-1838.
[129]
Deora, G.S.; Kantham, S.; Chan, S.; Dighe, S.N.; Veliyath, S.K.; McColl, G.; Parat, M.O.; McGeary, R.P.; Ross, B.P. Multifunctional analogs of kynurenic acid for the treatment of Alzheimer’s Disease: Synthesis, pharmacology, and molecular modeling studies. ACS Chem. Neurosci., 2017, 8(12), 2667-2675.
[130]
Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimer’s Dementia: J. Alzheimer’s Associat., 2016, 12(4), 459-509.
[131]
Okamura, H.; Ishii, S.; Ishii, T.; Eboshida, A. Prevalence of dementia in japan: A systematic review. Dement. Geriatr. Cogn. Disord., 2013, 36(1-2), 111-118.
[132]
Terry, A.V.; Buccafusco, J.J. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: Recent challenges and their implications for novel drug development. J. Pharmacol. Experiment. Therapeut., 2003, 306(3), 821-827.
[133]
Pepeu, G.; Giovannini, M.G. Cholinesterase inhibitors and beyond. Curr. Alzheimer Res., 2009, 6(2), 86-96.
[134]
Saiko, P.; Szakmary, A.; Jaeger, W.; Szekeres, T. Resveratrol and its analogs: Defense against cancer, coronary disease and neurodegenerative maladies or just a fad? Mutat. Res. Rev. Mutat. Res., 2008, 658(1-2), 68-94.
[135]
Savelieff, M.G.; Lee, S.; Liu, Y.Z.; Lim, M.H. Untangling Amyloid-beta, Tau, and metals in Alzheimer’s disease. ACS Chem. Biol., 2013, 8(5), 856-865.
[136]
Jakob-Roetne, R.; Jacobsen, H. Alzheimer’s Disease: From pathology to therapeutic approaches. Angew. Chem. Int. Ed., 2009, 48(17), 3030-3059.
[137]
Penalver, P.; Belmonte-Reche, E.; Adan, N.; Caro, M.; Mateos-Martin, M.L.; Delgado, M.; Gonzalez-Rey, E.; Morales, J.C. Alkylated resveratrol prodrugs and metabolites as potential therapeutics for neurodegenerative diseases. Eur. J. Med. Chem., 2018, 146, 123-138.
[138]
Vion, E.; Page, G.; Bourdeaud, E.; Paccalin, M.; Guillard, J.; Rioux Bilan, A. Trans epsilon-viniferin is an amyloid-beta disaggregating and anti-inflammatory drug in a mouse primary cellular model of Alzheimer’s disease. Mol. Cell. Neurosci., 2018, 88, 1-6.
[139]
Awasthi, M.; Singh, S.; Pandey, V.P.; Dwivedi, U.N. CoMFA and CoMSIA-based designing of resveratrol derivatives as amyloid-beta aggregation inhibitors against Alzheimer’s disease. Med. Chem. Res., 2018, 27(4), 1167-1185.
[140]
Yuan, W.; Shang, Z.; Qiang, X.; Tan, Z.; Deng, Y. Synthesis of pterostilbene and resveratrol carbamate derivatives as potential dual cholinesterase inhibitors and neuroprotective agents. Res. Chem. Intermed., 2013, 40(2), 787-800.
[141]
Puksasook, T.; Kimura, S.; Tadtong, S.; Jiaranaikulwanitch, J.; Pratuangdejkul, J.; Kitphati, W.; Suwanborirux, K.; Saito, N.; Nukoolkarn, V. Semisynthesis and biological evaluation of prenylated resveratrol derivatives as multi-targeted agents for Alzheimer’s disease. J. Nat. Med., 2017, 71(4), 665-682.
[142]
Lu, C.; Guo, Y.; Yan, J.; Luo, Z.; Luo, H.B.; Yan, M.; Huang, L.; Li, X. Design, synthesis, and evaluation of multitarget-directed resveratrol derivatives for the treatment of Alzheimer’s disease. J. Med. Chem., 2013, 56(14), 5843-5859.
[143]
Lu, C.; Guo, Y.; Li, J.; Yao, M.; Liao, Q.; Xie, Z.; Li, X. Design, synthesis, and evaluation of resveratrol derivatives as Ass((1)-(4)(2)) aggregation inhibitors, antioxidants, and neuroprotective agents. Bioorg. Med. Chem. Lett., 2012, 22(24), 7683-7687.
[144]
Jung, J-C.; Lim, E.; Lee, Y.; Kang, J-M.; Kim, H.; Jang, S.; Oh, S.; Jung, M. Synthesis of novel trans-stilbene derivatives and evaluation of their potent antioxidant and neuroprotective effects. Eur. J. Med. Chem., 2009, 44(8), 3166-3174.
[145]
Jerabek, J.; Uliassi, E.; Guidotti, L.; Korabecny, J.; Soukup, O.; Sepsova, V.; Hrabinova, M.; Kuca, K.; Bartolini, M.; Pena-Altamira, L.E.; Petralla, S.; Monti, B.; Roberti, M.; Bolognesi, M.L. Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimer’s disease. Eur. J. Med. Chem., 2017, 127, 250-262.
[146]
Pan, L-F.; Wang, X-B.; Xie, S-S.; Li, S-Y.; Kong, L-Y. Multitarget-directed resveratrol derivatives: anti-cholinesterases, anti-β-amyloid aggregation and monoamine oxidase inhibition properties against Alzheimer’s disease. MedChemComm, 2014, 5(5), 609.
[147]
Chen, P.C.; Tsai, W.J.; Ueng, Y.F.; Tzeng, T.T.; Chen, H.L.; Zhu, P.R.; Huang, C.H.; Shiao, Y.J.; Li, W.T. Neuroprotective and antineuroinflammatory effects of Hydroxyl-Functionalized stilbenes and 2-Arylbenzo[b]furans. J. Med. Chem., 2017, 60(9), 4062-4073.
[148]
Lan, J.S.; Liu, Y.; Hou, J.W.; Yang, J.; Zhang, X.Y.; Zhao, Y.; Xie, S.S.; Ding, Y.; Zhang, T. Design, synthesis and evaluation of resveratrol-indazole hybrids as novel monoamine oxidases inhibitors with amyloid-beta aggregation inhibition. Bioorg. Chem., 2018, 76, 130-139.
[149]
Li, S.Y.; Wang, X.B.; Kong, L.Y. Design, synthesis and biological evaluation of imine resveratrol derivatives as multi-targeted agents against Alzheimer’s disease. Eur. J. Med. Chem., 2014, 71, 36-45.
[150]
Koukoulitsa, C.; Villalonga-Barber, C.; Csonka, R.; Alexi, X.; Leonis, G.; Dellis, D.; Hamelink, E.; Belda, O.; Steele, B.R.; Micha-Screttas, M.; Alexis, M.N.; Papadopoulos, M.G.; Mavromoustakos, T. Biological and computational evaluation of resveratrol inhibitors against Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2016, 31, 67-77.
[151]
Yang, X.; Qiang, X.; Li, Y.; Luo, L.; Xu, R.; Zheng, Y.; Cao, Z.; Tan, Z.; Deng, Y. Pyridoxine-resveratrol hybrids mannich base derivatives as novel dual inhibitors of AChE and MAO-B with antioxidant and metal-chelating properties for the treatment of Alzheimer’s disease. Bioorg. Chem., 2017, 71, 305-314.
[152]
Xu, P.; Zhang, M.; Sheng, R.; Ma, Y. Synthesis and biological evaluation of deferiprone-resveratrol hybrids as antioxidants, Abeta1-42 aggregation inhibitors and metal-chelating agents for Alzheimer’s disease. Eur. J. Med. Chem., 2017, 127, 174-186.
[153]
Lee, I.; Choe, Y.S.; Choi, J.Y.; Lee, K.H.; Kim, B.T. Synthesis and evaluation of (1)(8)F-labeled styryltriazole and resveratrol derivatives for beta-amyloid plaque imaging. J. Med. Chem., 2012, 55(2), 883-892.