Abstract
Cancer gene therapy is considered a very viable approach for the treatment of cancer. The basic idea is to introduce the therapeutic gene, often in the form of a foreign cDNA, into the cancer or other appropriate target cells. For gene delivery purposes, several viral and non-viral vectors have been described. One vector that has become very popular for the purpose of cancer gene therapy is adenovirus. Main reasons are that the recombinant adenoviruses expressing the foreign therapeutic genes can be easily generated, and that the infection of the target cells with the recombinant adenoviruses produces large quantities of the therapeutic proteins. The review describes the basic characteristics and the molecular biology of adenoviruses. This review further describes various methods to generate the recombinant adenoviruses. These include the methods to generate the first generation adenoviruses (E1 deleted), up to the most recently used gutless viruses (with complete viral deletions). A critical compari son of the advantages and disadvantages of various methods is also described. The review also describes the use of adenoviruses which selectively replicate in cancer cells. The review further describes the various approaches for cancer gene therapy currently being exploited. These include the gene replacement strategies using tumor suppressor genes, anti-oncogenes, use of suicide genes, immunomodulation and anti-angiogenesis approaches. An in depth analysis of the pre-clinical data obtained using adenoviral vectors for these cancer gene therapy approaches is also described. The review concludes with a critical discussion of the adenoviruses for cancer gene therapy.
Keywords: adenovirus, adenoviral vector, cancer gene therapy, foreign cdna, viral vector
Current Genomics
Title: Adenoviral Vectors for Cancer Gene Therapy
Volume: 3 Issue: 3
Author(s): Wenli Zhao, Masanobu Kobayashi, Masuo Hosokawa and Prem Seth
Affiliation:
Keywords: adenovirus, adenoviral vector, cancer gene therapy, foreign cdna, viral vector
Abstract: Cancer gene therapy is considered a very viable approach for the treatment of cancer. The basic idea is to introduce the therapeutic gene, often in the form of a foreign cDNA, into the cancer or other appropriate target cells. For gene delivery purposes, several viral and non-viral vectors have been described. One vector that has become very popular for the purpose of cancer gene therapy is adenovirus. Main reasons are that the recombinant adenoviruses expressing the foreign therapeutic genes can be easily generated, and that the infection of the target cells with the recombinant adenoviruses produces large quantities of the therapeutic proteins. The review describes the basic characteristics and the molecular biology of adenoviruses. This review further describes various methods to generate the recombinant adenoviruses. These include the methods to generate the first generation adenoviruses (E1 deleted), up to the most recently used gutless viruses (with complete viral deletions). A critical compari son of the advantages and disadvantages of various methods is also described. The review also describes the use of adenoviruses which selectively replicate in cancer cells. The review further describes the various approaches for cancer gene therapy currently being exploited. These include the gene replacement strategies using tumor suppressor genes, anti-oncogenes, use of suicide genes, immunomodulation and anti-angiogenesis approaches. An in depth analysis of the pre-clinical data obtained using adenoviral vectors for these cancer gene therapy approaches is also described. The review concludes with a critical discussion of the adenoviruses for cancer gene therapy.
Export Options
About this article
Cite this article as:
Zhao Wenli, Kobayashi Masanobu, Hosokawa Masuo and Seth Prem, Adenoviral Vectors for Cancer Gene Therapy, Current Genomics 2002; 3 (3) . https://dx.doi.org/10.2174/1389202023350516
DOI https://dx.doi.org/10.2174/1389202023350516 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Genomic Insights into Oncology: Harnessing Machine Learning for Breakthroughs in Cancer Genomics.
This special issue aims to explore the cutting-edge intersection of genomics and oncology, with a strong emphasis on original data and experimental validation. While maintaining the focus on how machine learning and advanced data analysis techniques are revolutionizing our understanding and treatment of cancer, this issue will prioritize contributions that ...read more
Integrating Artificial Intelligence and Omics Approaches in Complex Diseases
Recent advancements in AI and omics methodologies have revolutionized the landscape of biomedical research, enabling us to extract valuable information from vast amounts of complex data. By combining AI algorithms with omics technologies such as genomics, proteomics, metabolomics, and transcriptomics, researchers can obtain a more comprehensive and multi-dimensional analysis of ...read more
Integrating Machine Learning with Genome Science: Pioneering Developments and Future Directions
Integrating machine learning (ML) with genome science is driving transformative advancements in fields such as genomics, personalized medicine, and drug discovery. Genomic data is vast and complex, making traditional analysis methods inadequate for uncovering deep insights. Machine learning, particularly deep learning models like convolutional neural networks (CNNs) and recurrent neural ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Application of Radiolabeled Antibodies in Targeting Therapy of Breast Cancer
Current Molecular Imaging (Discontinued) Cancer Control by Phytochemicals
Current Pharmaceutical Design Co-delivery of Plasmid DNA and Antisense Oligodeoxyribonucleotide into Human Carcinoma Cells by Cationic Liposomes
Current Pharmaceutical Biotechnology Targeting Carcinogen Metabolism by Dietary Cancer Preventive Compounds
Current Cancer Drug Targets Genistein as a Potential Anticancer Agent Against Head and Neck Squamous Cell Carcinoma
Current Topics in Medicinal Chemistry Organic Synthesis and Antisense Effects of Oligonucleotide-Peptide Conjugates
Current Organic Chemistry Effect of AnnexinA Group Translocated in Extracellular Vesicles on Tumorigenesis
Current Molecular Medicine Circumventing Immune Tolerance Through Epigenetic Modification
Current Pharmaceutical Design Endocannabinoid System in Neurological Disorders
Recent Patents on CNS Drug Discovery (Discontinued) Host Microbiomes in Tumor Precision Medicine: How far are we?
Current Medicinal Chemistry Copper Transport Systems are Involved in Multidrug Resistance and Drug Transport
Current Medicinal Chemistry Statins-Mediated Inhibition of Rho GTPases as a Potential Tool in Anti-Tumor Therapy
Mini-Reviews in Medicinal Chemistry Oncolytic Viruses: Programmable Tumour Hunters
Current Gene Therapy Pharmacogenetics, Regulation and Structural Properties of the Drugmetabolizing Enzymes Arylamine N-acetyltransferases
Current Pharmacogenomics Perioperative Safety of Warfarin Therapy and Reversal
Current Drug Safety An Overview on Fibroblast Growth Factors: Structural, Functional and Therapeutic Implications
Current Proteomics Targeted Regulation of PI3K/Akt/mTOR/NF-κB Signaling by Indole Compounds and their Derivatives: Mechanistic Details and Biological Implications for Cancer Therapy
Anti-Cancer Agents in Medicinal Chemistry Evaluation of Cytotoxic, COX Inhibitory, and Antimicrobial Activities of Novel Isoxazole-carboxamide Derivatives
Letters in Drug Design & Discovery Current Evidence from Phase III Clinical Trials of Selenium Supplementation in Critically Ill Patients: Why Should We Bother?
Mini-Reviews in Medicinal Chemistry Pharmacotherapy in Systemic Lupus Erythematosus
Current Rheumatology Reviews