Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Preparation, Characterization, and In Vitro pH-sensitivity Evaluation of Superparamagnetic Iron Oxide Nanoparticle- Misonidazole pH-sensitive Liposomes

Author(s): Bibo Li, Biqiang Li, Daiying He, Changyan Feng, Zhibin Luo* and Mei He*

Volume 16, Issue 3, 2019

Page: [254 - 267] Pages: 14

DOI: 10.2174/1567201816666181114124333

conference banner
Abstract

Background: The use of Misonidazole (MISO), the first and a potential hypoxic tumor cell radiosensitizer, has been limited by peripheral neurotoxicity, thus discouraging phase III clinical trials.

Objective: To develop a targeted drug delivery and tracing System with pH-sensitive liposomes (SpHLs) and Superparamagnetic Iron Oxide Nanoparticles (SPIONs) to counter MISO-related adverse effects and to enable tracing under magnetic resonance.

Methods: SPION-MISO-SpHLs were prepared by a reverse evaporation and freeze-thawing method. HPLC and phenanthroline spectrophotometry were established for MISO and Fe determination. The characterization and in vitro pH-sensitivity of SPION-MISO-SpHLs were evaluated.

Results: The maximal entrapment efficiencies of MISO and SPIONs in SPION-MISO-SpHLs were 30.2% and 23.7%, respectively. The cumulative release rates of MISO and SPIONs were respectively 2.49 and 2.47 times higher in pH 5.5 than in pH 7.4 buffer. The mean particle size of SPION-MISOSpHLs was 950 nm. The zeta potential was -58.9 mV in pH 7.4 buffer and 36.3 mV in pH 5.5 buffer. SEM imaging showed that SPION-MISO-SpHLs had similar spherical morphologies. SPIONs were packed in the center of liposomes and were well dispersed in a TEM graph. Magnetization curve showed that SPION-MISO-SpHLs retained superparamagnetic properties. SPION-MISO-SpHLs were compared with MISO+SPION+blank liposome in hypoxia and control groups of A549 cells. MISO and SPION concentrations in culture medium showed significant differences between the same concentration groups (P < 0.0001) and at different times (P < 0.0001).

Conclusion: SPION-MISO-SpHLs possess pH-dependent release ability and superparamagnetism, and thus provides a system for targeted delivery and tracing under magnetic resonance.

Keywords: Misonidazole, pH-sensitive liposomes, superparamagnetic iron oxide nanoparticles, phenanthrolinespectrophotometry, targeting delivery, tracing system, magnetic resonance.

Graphical Abstract
[1]
Dische, S. Chemical sensitizers for hypoxic cells: A decade of experience in clinical radiotherapy. Radiother. Oncol., 1985, 3(2), 97-115.
[2]
Cai, Y.; Chen, Z.L.; Zhao, F.; Chen, J.R. Progress on nitroimidazole as anti-neoplasm radio-sensitizing agents. Chin. J. New Drugs., 2003, 12(4), 249-253.
[3]
Zhang, W.S. Advances and chemical synthesis of radiosensitizers of nitroimidazoles. World Clinical Drugs, 1987, 8(5), 265-271.
[4]
Liu, X. Advances in studies on radiosensitizer CMNa. Oncol. Prog., 2004, 2(Suppl.), 111-114.
[5]
Saunders, M.E.; Dische, S.; Anderson, P.; Flockhart, I.R. The neurotoxicity of misonidazole and its relationship to dose, half-life and concentration in the serum. Br. J. Cancer Suppl., 1978, 3, 268-270.
[6]
Fazekas, J.; Pajak, T.F.; Wasserman, T.; Marcial, V.; Davis, L.; Kramer, S.; Rotman, M.; Stetz, J. Failure of misonidazole-sensitized radiotherapy to impact upon outcome among stage III-IV squamous cancers of the head and neck. Int. J. Radiat. Oncol. Biol. Phys., 1987, 13(8), 1155-1160.
[7]
Sarwar Hossen, M.; Khalid Hossain, M.K.; Basher, M.N.H. Mia, M.T.; Rahman, M.; Jalal, U. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res., 2018.
[http://dx.doi.org/10.1016/j.jare.2018.06.005]
[8]
Hamed, N.; Naser, S.; Ali, S.; Hossein, D.; Hamidreza, K.M. Bovine Serum Albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorg. Chem., 2018, 76, 501-509.
[9]
Peng, M.Y.; Zheng, D.W.; Wang, S.B.; Cheng, S.X.; Zhang, X.Z. Multifunctional nanosystem for synergistic tumor therapy delivered by two-dimensional MoS2. ACS Appl. Mater. Interfaces, 2017, 9(16), 13965-13975.
[10]
Chen, W.; Ouyang, J.; Liu, H.; Chen, M.; Zeng, K.; Sheng, J.P.; Liu, Z.J.; Han, Y.J.; Wang, L.Q.; Li, J.; Deng, L.; Liu, Y.N.; Guo, S.J. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater., 2017, 29, 1603864-1603870.
[11]
Amr, S.A.L.; Tatsuhiro, I. Liposomal delivery systems: Design optimization and current applications. Biol. Pharm. Bull., 2017, 40(1), 1-10.
[12]
Nakaya, T.; Tsuchiya, Y.; Horiguchi, B.; Sugikawa, K.; Komaguchi, K.; Ikeda, A. 1H NMR determination of incorporated porphyrin location in lipid membranes of liposomes. Bull. Chem. Soc. Jpn., 2018, 91, 1337-1342.
[13]
Rajan, R.; Sabnani, M.K.; Mavinkurve, V.; Shmeeda, H.; Mansouri, H.; Bonkoungou, S.; Le, A.D.; Wood, L.M.; Gabizon, A.A.; La-Beck, N.M. Liposome-induced immunosuppression and tumor growth is mediated by macrophages and mitigated by liposome-encapsulated alendronate. J. Control. Release, 2018, 271, 139-148.
[14]
Paliwal, S.R.; Paliwal, R.; Vyas, S.P. A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery. Drug Deliv., 2015, 22(3), 231-242.
[15]
Liziane, O.F.M.; Angelo, M.; Gwenaelle, P.L.; Rogerio, M.P.; Vanessa, C.F.M.; Mônica, C.O.A.B.D.B.; Elaine, A.L. Paclitaxelloaded pH-sensitive liposome: New insights on structural and physicochemical characterization. Langmuir,, 2018. 10.1021/acs. langmuir.8b00411.
[16]
Zhang, H.; Li, R.Y.; Lu, X.; Mou, Z.Z.; Lin, G.M. Docetaxelloaded liposomes: Preparation, pH sensitivity, pharmacokinetics, and tissue distribution. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 2012.
[17]
Aoki, A.; Akaboshi, H.; Ogura, T.; Aikawa, T.; Kondo, T.; Tobori, N.; Yuasa, M. Preparation of pH-sensitive anionic liposomes designed for drug delivery system (DDS) application. J. Oleo Sci., 2015, 64(2), 233.
[18]
Fan, Y.; Chen, C.; Huang, Y.H.; Zhang, F.; Lin, G.M. Study of the pH-sensitive mechanism of tumor-targeting liposomes. Colloid Surf. B, 2017, 151, 19-25.
[19]
Zuo, T.T.; Lin, G.M.; Shao, W. Preparation and study of docetaxel loaded pH sensitive liposomes. Pharm. Biotechnol., 2015, 22(1), 25-28.
[20]
Qiao-ling, Z.; Yi, Z.; Min, G.; Di-jia, Y.; Xiao-feng, Z.; Yang, L.; Jing-yu, X.; Ying, W.; Zong-lin, G.; Kong-lang, X.; Ai-jun, Z.; Wei-liang, C.; Lin-sen, S.; Xue-nong, Z.; Qiang, Z. Hepatocyte-targeted delivery using ph-sensitive liposomes loaded with lactosylnorcantharidin phospholipid complex: Preparation, characterization, and therapeutic evaluation in vivo and in vitro. Curr. Med. Chem., 2012, 19(33), 5754-5763.
[21]
Yao, Y.; Su, Z.H.; Liang, Y.C.; Zhang, N. pH-sensitive carboxymethyl chitosan - modified cationic liposomes for sorafenib and siRNA co-delivery. Int. J. Nanomedicine, 2015, 10, 6185-6197.
[22]
Li, P.; Liu, D.H.; Miao, L.; Liu, C.X.; Sun, X.L.; Liu, Y.J.; Zhang, N.A. pH-sensitive multifunctional gene carrier assembled via layer-by-layer technique for efficient gene delivery. Int. J. Nanomedicine, 2012, 7, 925-939.
[23]
Xia, T.; He, Q.; Shi, K.R.; Wang, Y.; Yu, Q.W.; Zhang, L.; Zhang, Q.Y.; Gao, H.L.; Ma, L.F.; Liu, J. Losartan loaded liposomes improve the antitumor efficacy of liposomal paclitaxel modified with pH sensitive peptides by inhibition of collagen in breast cancer. Pharm. Dev. Technol., 2018, 23(1), 13-21.
[24]
Workman, P.; Little, C.J.; Marten, T.R.; Dale, A.D.; Ruane, I.R.J.; Flockhart, R.N.; Bleehen, M. Estimation of the hypoxic cell- sensitiser misonidazole and its O-demetbylated metabolite in biological materials by reversed phase-high-performance liquid chromatography. J. Chromatogr. A, 1978, 145(3), 507-512.
[25]
Flockhart, R.; Malcom, S.L.; Marten, T.R.; Parkins, C.S.; Ruane, R.J.; Troup, D. Some aspects of the metabolism of misonidazole. Br. J. Cancer Suppl., 1978, 3(7), 264-267.
[26]
Wei, W.; He, M.; Wang, C.; Li, R.; Li, B.B.; Lou, Z.B. Determination of drug content and release rate of misonidazole pH sensitive liposome by UV spectra combined with metal ion precipitation method. China Pharm., (Epub ahead of print).
[27]
Ittrich, H.; Lange, C.; Dahnke, H.; Zander, A.R.; Adam, G.; Nolte-Ernsting, C. Labeling of mesenchymal stem cells with different superparamagnetic particles of iron oxide and detectability with MRI at 3T. RoFo., 2005, 177, 1151-1163.
[28]
Lewin, M.; Carlesso, N.; Tung, C.H.; Tang, X.W.; Cory, D.; Scadden, D.T.; Weissleder, R. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol., 2000, 18, 410-414.
[29]
Sun, R.; Dittrich, J.; Le-Huu, M.; Mueller, M.M.; Bedke, J.; Kartenbeck, J.; Lehmann, W.D.; Krueger, R.; Bock, M.; Huss, R.; Seliger, C.; Gröne, H.J.; Misselwitz, B.; Semmler, W.; Kiessling, F. Physical and biological characterization of superparamagnetic iron oxide- and ultrasmall superparamagnetic iron oxide-labeled cells: A comparison. Invest. Radiol., 2005, 40, 504-513.
[30]
Mo, L.P. Spectrophotometric determination of trace iron in highly purity rare earth with Fe(III)-SCN--crystal violet system. Chin. J. Spectroscopy Lab., 2002, 19(2), 270-273.
[31]
Zhao, Y.; Ye, H. Content determination of Fe in Iron dextran preparations by UV- VIS. Chin. Pharm, 2009, 20(10), 788-789.
[32]
Qiu, X.X. Determination of ferrous by spectrophotometry in water. J. Southwest University for Nationalities (Nat. Sci. Ed), 2011, (1), 111-113.
[33]
Ingrid, B. Magnetic resonance cell-Tracking studies: Spectrophotometry-based method for the quantification of cellular iron content after loading with superparamagnetic iron oxide nanoparticles. Mol. Imaging, 2011, 10(4), 270-277.
[34]
Dadashzadeha, E.R.; Hobsona, M.; Bryant, L.H.; Deana, D.D.; Franka, J.A. Rapid spectrophotometric technique for quantifying iron in cells labeled with superparamagnetic iron oxide nanoparticles: potential translation to the clinic. Contrast Media Mol. Imaging, 2013, 8, 50-56.
[35]
Xu, H.; Hu, M.N.; Yu, X.; Li, Y.; Fu, Y.S.; Zhou, X.X.; Zhang, D.; Li, J.Y. Design and evaluation of pH-sensitive liposomes constructed by poly(2-ethyl-2-oxazoline) -cholesterol hemisuccinate for doxorubicin delivery. Eur. J. Pharm. Biopharm., 2015, 91, 66-74.
[36]
Liang, J.; Fang, C.L.; Wu, W.L.; Yu, P.H.; Gao, J.Y.; Li, J.B. Preparation and properties evaluation of a novel pH-sensitive liposomes based on imidazole-modified cholesterol derivatives. Int. J. Pharm., 2017, 518(1-2), 213-219.
[37]
Giansantia, L.; Maucerib, A.; Galantinic, L.; Altieria, B.; Piozzic, A.; Mancinib, G. Glucosylated pH-sensitive liposomes as potential drug delivery systems. Chem. Phys. Lipids, 2016, 200, 113-119.
[38]
Hong, Y.J.; Kim, J.C. Egg phosphatidylcholine liposomes incorporating hydrophobically modified chitosan: pH-sensitive release. J. Nanosci. Nanotechnol., 2011, 11(1), 204-209.
[39]
Hua, Y. hao, Z.M.; Ehrich, M.; Fuhrman, K.; Zhang, C.M. In vitro controlled release of antigen in dendritic cells using pH-sensitive liposome-polymeric hybrid nanoparticles. Polymer, 2015, 80, 171-179.
[40]
Zong, W.; Hu, Y.; Su, Y.C.; Luo, N.; Zhang, X.N.; Li, Q.C.; Han, X.J. Polydopamine-coated liposomes as pH-sensitive anticancer drug carriers. J. Microencapsul., 2016, 33(3), 257-262.
[41]
Zuo, T.T.; Guan, Y.Y.; Chang, M.L.; Zhang, F.; Lu, S.S.; Wei, T.; Shao, W.; Lin, G.M. RGD(Arg-Gly-Asp) internalized docetaxel-loaded pH sensitive liposomes: Preparation, characterization and antitumor efficacy in vivo and in vitro. Colloid Surf. B, 2016, 147, 90-99.
[42]
Wang, M.F.; Liu, T.X.; Han, L.Q.; Gao, W.W.; Yang, S.M.; Zhang, N. Functionalized O-carboxymethylchitosan/ polyethy- lenimine based novel dual pH-responsive nanocarriers for controlled co-delivery of DOX and genes. Polym. Chem., 2015, 6(17), 3324-3335.
[43]
Zhao, L.; Wei, Y.M.; Zhong, X.D.; Liang, Y.; Zhang, X.M.; Li, W.; Li, B.B.; Wang, Y.; Yu, Y. PK and tissue distribution of docetaxel in rabbits after i.v. administration of liposomal and injectable formulations. J. Pharm. Biomed. Anal., 2009, 49(4), 989-996.
[44]
Chang, M.L.; Lu, S.S.; Zhang, F.; Zuo, T.T.; Guan, Y.Y.; Wei, T.; Shao, W.; Lin, G.M. RGD-modified pH-sensitive liposomes for docetaxel tumor targeting. Colloid. Surface. B., 2015, 129, 175-182.
[45]
Skalko-Basnet, N.; Tohda, M.; Watanabe, H. Uptake of liposomally entrapped fluorescent antisense oligonucleotides in NG108-15 cells: Conventional versus pH-sensitive. Biol. Pharm. Bull., 2002, 25(12), 1583-1587.
[46]
Luciene, D.G.M.; André, L.B.D.B.; Leonardo, L.F.; Mônica, C.D.O.; Valbert, N.C. Long-circulating and pH-sensitive liposome preparation trapping a radiotracer for inflammation site detection. J. Nanosci. Nanotechnol., 2015, 15(6), 4149-4158.
[47]
André, L.B.D.B.; Luciene, D.G.M.; Marina, M.A.C.; Natássia, C.R.C.; Alfredo, M.D.G.; Mônica, C.O.; Valbert, N.C. Bombesin encapsulated in long-circulating pH-sensitive liposomes as a radiotracer for breast tumor identification. J. Biomed. Nanotechnol., 2015, 11, 342-350.
[48]
Liziane, O.F.; Monteiroa, R.S.; Fernandesa, C.M.R.; Odaa, S.C.; Lopesa, D.M.; Townsendb, V.N.; Cardosoc, M.C.; Oliveiraa, E.A.; Leitea, D.R.; André, L.B.D.B. Paclitaxel-loaded folate-coated long circulating and pH-sensitive liposomes as a potential drug delivery system: A biodistribution study. Biomed. Pharmacother., 2018, 97, 489-495.
[49]
Juliana, O.; Silva, R.S.; Fernandes, S.C.A.; Lopes, V.N.; Cardoso, E.A.; Leite, G.D.; Cassali, M.C.; Marzola, D.; Rubello, M.C.; Oliveira, A.L.B.D.B. pH-sensitive, long-circulating liposomes as an alternative tool to deliver doxorubicin into tumors: A feasibility animal study. Mol. Imaging Biol., 2016, 18, 898-904.
[50]
Jesus, P.T.; Nobina, M.; Martin, W.; Pilar, L.L.; Paloma, B.; Sebastian, C.; Armagan, K. Image guided drug release from pH-sensitive ion channel-functionalized stealth liposomes into an in vivo glioblastoma model. Nanomed. Nanotechnol. Biol. Med., 2015, 11, 1345-1354.
[51]
Ana, L.C.M.; Christian, F.; Cynthia, N.P.D.O.; Claudia, S.T.; Mariana, S.O.; Daniel, C.F.S.; Gilson, A.R. Liposomes containing gadodiamide: Preparation, physicochemical characterization, and in vitro cytotoxic evaluation. Curr. Drug Deliv., 2017, 14, 566-574.
[52]
Bai, W.; Song, L.; Li, S.L.; Li, B.B.; Peng, Z.P. Preparation and performance testing for super-paramagnetic contrast agent of magnetic resonance. J. Chongqing. Med. Univ., 2007, 32(9), 922-929.
[53]
Wen, M.; Bai, W.; Li, S.L.; Li, J.; Li, B.B.; Li, Q.; Zhang, Z.W. The magnetic properties measurement of ultrasmall Fe3O4 nanoparticle. J. Southwest China Normal Univ. Nat. Sci., 2007, 32(6), 15-18.
[54]
Wen, M.; Li, B.B.; Ouyang, Y.; Luo, Y.; Li, S.L. Preparation and quality test of superparamagnetic iron oxide labeled antisense oligodeoxynucleotide probe: A preliminary study. Ann. Biomed. Eng., 2009, 37(6), 1240-1250.
[55]
Wen, M.; Li, B.B.; Bai, W.; Li, S.L.; Yang, X.H. Application of atomic force microscopy in morphological observation of antisense probe labeled with magnetism. Mol. Vis., 2008, 14(1), 114-117.

© 2024 Bentham Science Publishers | Privacy Policy