Review Article

刺激反应型纳米载体在乳腺癌治疗中的应用

卷 27, 期 15, 2020

页: [2494 - 2513] 页: 20

弟呕挨: 10.2174/0929867325666181009120610

价格: $65

conference banner
摘要

Stimuli-responsive drug-delivery nanocarriers (DDNs)作为乳腺癌治疗的一种替代药物,在文献中得到了越来越多的报道。刺激响应型ddn的材料可以对内在/化学刺激(pH、氧化还原和酶)和外在/物理刺激(超声、近红外光(NIR)、磁场和电流)做出剧烈的反应。此外,他们可以使用不同的开发策略,如与信号分子功能化,导致几个优点,如改善药物脂溶的药物的性质,与肿瘤组织选择性降低系统性毒性作用,控制释放不同的刺激,这些都是提高基础治疗乳腺癌治疗的有效性。因此,本文综述了对刺激有反应的DDNs在乳腺癌治疗中的应用。我们将讨论分为内在刺激和外在刺激,并分别详细说明了它们的定义和应用。最后,我们的目标是在乳腺癌模型的体内评估这些刺激反应型DDNs在体外控制药物释放的能力和对乳腺癌治疗的影响。

关键词: 刺激反应药物纳米载体,内在/化学刺激,外在/物理刺激,乳腺癌治疗,近红外光(NIR),脂溶性药物。

[1]
Medeiros, G.C.; Bergmann, A.; Aguiar, S.S.; Thuler, L.C.S. Análise dos determinantes que influenciam o tempo para o início do tratamento de mulheres com câncer de mama no Brasil. Cad. Saude Publica, 2015, 31(6), 1269-1282.
[http://dx.doi.org/10.1590/0102-311X00048514] [PMID: 26200374]
[2]
Wild, C.P. International Agency for Research on Cancer. Encycl Toxicol, 2014, 33, 1067-1069.
[http://dx.doi.org/10.1016/B978-0-12-386454-3.00402-4]
[3]
Ma, Y.; Bai, R.K.; Trieu, R.; Wong, L.J.C. Mitochondrial dysfunction in human breast cancer cells and their transmitochondrial cybrids. Biochim. Biophys. Acta, 2010, 1797(1), 29-37.
[http://dx.doi.org/10.1016/j.bbabio.2009.07.008] [PMID: 19647716]
[4]
Brandon, M.; Baldi, P.; Wallace, D.C. Mitochondrial mutations in cancer. Oncogene, 2006, 25(34), 4647-4662.
[http://dx.doi.org/10.1038/sj.onc.1209607] [PMID: 16892079]
[5]
Santidrian, A.F.; Matsuno-Yagi, A.; Ritland, M.; Seo, B.B.; LeBoeuf, S.E.; Gay, L.J.; Yagi, T.; Felding-Habermann, B. Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. J. Clin. Invest., 2013, 123(3), 1068-1081.
[http://dx.doi.org/10.1172/JCI64264] [PMID: 23426180]
[6]
Gozzo, T de O.; de Souza, S.G.; Moysés, A.M.; Panobianco, M.S.; de Almeida, A.M. [Incidence and management of chemotherapy-induced nausea and vomiting in women with breast cancer]. Rev. Gaúcha Enferm., 2014, 35(3), 117-123.
[http://dx.doi.org/10.1590/1983-1447.2014.03.42068] [PMID: 25474850]
[7]
Darvishi, B.; Farahmand, L.; Majidzadeh-A, K. Stimuli-responsive mesoporous silica NPs as non-viral dual siRNA/chemotherapy carriers for triple negative breast cancer. Mol. Ther. Nucleic Acids, 2017, 7, 164-180.
[http://dx.doi.org/10.1016/j.omtn.2017.03.007] [PMID: 28624192]
[8]
Karimi, M.; Ghasemi, A.; Sahandi Zangabad, P.; Rahighi, R.; Moosavi Basri, S.M.; Mirshekari, H. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev., 2016, 45(5), 1457-1501.
[9]
Zhang, P.; An, K.; Duan, X.; Xu, H.; Li, F.; Xu, F. Recent advances in siRNA delivery for cancer therapy using smart nanocarriers. Drug Discov. Today, 2018, 23(4), 900-911.
[http://dx.doi.org/10.1016/j.drudis.2018.01.042] [PMID: 29373841]
[10]
Greenberg, P.A.; Hortobagyi, G.N.; Smith, T.L.; Ziegler, L.D.; Frye, D.K.; Buzdar, A.U. Long-term follow-up of patients with complete remission following combination chemotherapy for metastatic breast cancer. J. Clin. Oncol., 1996, 14(8), 2197-2205.
[http://dx.doi.org/10.1200/JCO.1996.14.8.2197] [PMID: 8708708]
[11]
Yamamoto, N.; Katsumata, N.; Watanabe, T.; Omuro, Y.; Ando, M.; Narabayashi, M. Clinical characteristics of patients with metastatic breast cancer with complete remission following systemic treatment. Jpn. J. Clin. Oncol., 1993, 28, 368-373.
[http://dx.doi.org/10.1093/jjco/28.6.368] [PMID: 9730151]
[12]
Zhang, X.G.; Miao, J.; Dai, Y.Q.; Du, Y.Z.; Yuan, H.; Hu, F.Q. Reversal activity of nanostructured lipid carriers loading cytotoxic drug in multi-drug resistant cancer cells. Int. J. Pharm., 2008, 361(1-2), 239-244.
[http://dx.doi.org/10.1016/j.ijpharm.2008.06.002] [PMID: 18586075]
[13]
Oshiro, J.A.; Sato, M.R.; Scardueli, C.R.; Lopes de Oliveira, G.J.P.; Abucafy, M.P.; Chorilli, M. Bioactive Molecule-loaded Drug Delivery Systems to Optimize Bone Tissue Repair. Curr. Protein Pept. Sci., 2017, 18(8), 850-863.
[http://dx.doi.org/10.2174/1389203718666170328111605] [PMID: 28355998]
[14]
Tran, T.H.; Nguyen, H.T.; Pham, T.T.; Choi, J.Y.; Choi, H.G.; Yong, C.S.; Kim, J.O. Development of a graphene oxide nanocarrier for dual-drug chemo-phototherapy to overcome drug resistance in cancer. ACS Appl. Mater. Interfaces, 2015, 7(51), 28647-28655.
[http://dx.doi.org/10.1021/acsami.5b10426] [PMID: 26641922]
[15]
Voliani, V.; Signore, G.; Vittorio, O.; Faraci, P.; Luin, S.; Peréz-Prieto, J. Cancer phototherapy in living cells by multiphoton release of doxorubicin from gold nanospheres. J. Mater. Chem. B Mater. Biol. Med., 2013, 1, 4225.
[http://dx.doi.org/10.1039/c3tb20798f]
[16]
Wang, J.; Wang, L.; Zhou, Z.; Lai, H.; Xu, P.; Liao, L.; Wei, J. Biodegradable polymer membranes applied in guided bone/tissue regeneration: A review. Polymers (Basel), 2016, 8(4), 1-20.
[http://dx.doi.org/10.3390/polym8040115] [PMID: 30979206]
[17]
Oshiro, J.A; Nasser, N.J; Chiari-andréo, B.G. Study of triamcinolone release and mucoadhesive properties of macroporous hybrid films for oral disease treatment., 2018, 8-10.
[http://dx.doi.org/10.1088/2057-1976/aaa84b]
[18]
Alphandéry, E.; Grand-Dewyse, P.; Lefèvre, R.; Mandawala, C.; Durand-Dubief, M. Cancer therapy using nanoformulated substances: scientific, regulatory and financial aspects. Expert Rev. Anticancer Ther., 2015, 15(10), 1233-1255.
[http://dx.doi.org/10.1586/14737140.2015.1086647] [PMID: 26402250]
[19]
Gross, N.; Ranjbar, M.; Evers, C.; Hua, J.; Martin, G.; Schulze, B.; Michaelis, U.; Hansen, L.L.; Agostini, H.T. Choroidal neovascularization reduced by targeted drug delivery with cationic liposome-encapsulated paclitaxel or targeted photodynamic therapy with verteporfin encapsulated in cationic liposomes. Mol. Vis., 2013, 19, 54-61.
[PMID: 23335851]
[20]
Sato, M.R.; Oshiro Junior, J.A.; Machado, R.T.; de Souza, P.C.; Campos, D.L.; Pavan, F.R.; da Silva, P.B.; Chorilli, M. Nanostructured lipid carriers for incorporation of copper(II) complexes to be used against Mycobacterium tuberculosis. Drug Des. Devel. Ther., 2017, 11, 909-921.
[http://dx.doi.org/10.2147/DDDT.S127048] [PMID: 28356717]
[21]
Oshiro, J.A.; Scardueli, C.R.; José, G.; Lopes, P.; Adriana, R.; Marcantonio, C. Development of ureasil - polyether membranes for guided bone regeneration 1976, 5-7.
[22]
Oshiro, J.A. Junior; Mortari, G.R.; de Freitas, R.M.; Marcantonio-Junior, E.; Lopes, L.; Spolidorio, L.C. Assessment of biocompatibility of ureasil-polyether hybrid membranes for future use in implantodontology. Int. J. Polym. Mater. Polym. Biomater., 2016, 65, 647-652.
[http://dx.doi.org/10.1080/00914037.2016.1157796]
[23]
Shi, S.; Han, L.; Deng, L.; Zhang, Y.; Shen, H.; Gong, T.; Zhang, Z.; Sun, X. Dual drugs (microRNA-34a and paclitaxel)-loaded functional solid lipid nanoparticles for synergistic cancer cell suppression. J. Control. Release, 2014, 194, 228-237.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.005] [PMID: 25220161]
[24]
Techawanitchai, P.; Yamamoto, K.; Ebara, M.; Aoyagi, T. Surface design with self-heating smart polymers for on-off switchable traps. Sci. Technol. Adv. Mater., 2011, 12(4), 044609
[http://dx.doi.org/10.1088/1468-6996/12/4/044609] [PMID: 27877417]
[25]
Eloy, J.O.; Petrilli, R.; Lopez, R.F.V.; Lee, R.J. Stimuli-responsive nanoparticles for siRNA delivery. Curr. Pharm. Des., 2015, 21(29), 4131-4144.
[http://dx.doi.org/10.2174/1381612821666150901095349] [PMID: 26323434]
[26]
Wu, C.J.; Gaharwar, A.K.; Schexnailder, P.J.; Schmidt, G. Development of biomedical polymer-silicate nanocomposites: A materials science perspective. Materials (Basel), 2010, 3, 2986-3005.
[http://dx.doi.org/10.3390/ma3052986]
[27]
Kumar, A.; Srivastava, A.; Galaev, I.Y.; Mattiasson, B. Smart polymers: Physical forms and bioengineering applications. Prog. Polym. Sci., 2007, 32, 1205-1237.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.003]
[28]
Zhou, L.; Wang, H.; Li, Y. Stimuli-responsive nanomedicines for overcoming cancer multidrug resistance. Theranostics, 2018, 8(4), 1059-1074.
[http://dx.doi.org/10.7150/thno.22679] [PMID: 29463999]
[29]
Allinen, M.; Beroukhim, R.; Cai, L.; Brennan, C.; Lahti-Domenici, J.; Huang, H.; Porter, D.; Hu, M.; Chin, L.; Richardson, A.; Schnitt, S.; Sellers, W.R.; Polyak, K. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 2004, 6(1), 17-32.
[http://dx.doi.org/10.1016/j.ccr.2004.06.010] [PMID: 15261139]
[30]
Begum, M.; Karim, S.; Malik, A.; Khurshid, R.; Asif, M.; Salim, A.; Nagra, S.A.; Zaheer, A.; Iqbal, Z.; Abuzenadah, A.M.; Alqahtani, M.H.; Rasool, M. CA 15-3 (Mucin-1) and physiological characteristics of breast cancer from Lahore, Pakistan. Asian Pac. J. Cancer Prev., 2012, 13(10), 5257-5261.
[http://dx.doi.org/10.7314/APJCP.2012.13.10.5257] [PMID: 23244146]
[31]
Jena, M.K.; Janjanam, J. Role of extracellular matrix in breast cancer development: a brief update. F1000 Res., 2018, 7, 274.
[http://dx.doi.org/10.12688/f1000research.14133.2] [PMID: 29983921]
[32]
Overchuk, M.; Zheng, G. Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics. Biomaterials, 2018, 156, 217-237.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.024] [PMID: 29207323]
[33]
Sakhrani, N.M.; Padh, H. Organelle targeting: third level of drug targeting. Drug Des. Devel. Ther., 2013, 7, 585-599.
[PMID: 23898223]
[34]
Biswas, S.; Kumari, P.; Lakhani, P.M.; Ghosh, B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur. J. Pharm. Sci., 2016, 83, 184-202.
[http://dx.doi.org/10.1016/j.ejps.2015.12.031] [PMID: 26747018]
[35]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[36]
Roy, D.; Cambre, J.N.; Sumerlin, B.S. Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci., 2010, 35, 278-301.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.10.008]
[37]
Liu, J.; Huang, Y.; Kumar, A.; Tan, A.; Jin, S.; Mozhi, A.; Liang, X.J. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol. Adv., 2014, 32(4), 693-710.
[http://dx.doi.org/10.1016/j.biotechadv.2013.11.009] [PMID: 24309541]
[38]
Wang, T.; Yang, S.; Petrenko, V.A.; Torchilin, V.P. Cytoplasmic delivery of liposomes into MCF-7 breast cancer cells mediated by cell-specific phage fusion coat protein. Mol. Pharm., 2010, 7(4), 1149-1158.
[http://dx.doi.org/10.1021/mp1000229] [PMID: 20438086]
[39]
Huang, D.; Zhuang, Y.; Shen, H.; Yang, F.; Wang, X.; Wu, D. Acetal-linked PEGylated paclitaxel prodrugs forming free-paclitaxel-loaded pH-responsive micelles with high drug loading capacity and improved drug delivery. Mater. Sci. Eng. C, 2018, 82, 60-68.
[http://dx.doi.org/10.1016/j.msec.2017.08.063] [PMID: 29025675]
[40]
Tang, S.; Meng, Q.; Sun, H.; Su, J.; Yin, Q.; Zhang, Z.; Yu, H.; Chen, L.; Gu, W.; Li, Y. Dual pH-sensitive micelles with charge-switch for controlling cellular uptake and drug release to treat metastatic breast cancer. Biomaterials, 2017, 114, 44-53.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.005] [PMID: 27842234]
[41]
Chen, G.; Wang, Y.; Xie, R.; Gong, S. Tumor-targeted pH/redox dual-sensitive unimolecular nanoparticles for efficient siRNA delivery. J. Control. Release, 2017, 259, 105-114.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.042] [PMID: 28159516]
[42]
Zuo, T.; Guan, Y.; Chang, M.; Zhang, F.; Lu, S.; Wei, T.; Shao, W.; Lin, G. RGD(Arg-Gly-Asp) internalized docetaxel-loaded pH sensitive liposomes: Preparation, characterization and antitumor efficacy in vivo and in vitro. Colloids Surf. B Biointerfaces, 2016, 147, 90-99.
[http://dx.doi.org/10.1016/j.colsurfb.2016.07.056] [PMID: 27497073]
[43]
Wang, Z.; Li, X.; Wang, D.; Zou, Y.; Qu, X.; He, C.; Deng, Y.; Jin, Y.; Zhou, Y.; Zhou, Y.; Liu, Y. Concurrently suppressing multidrug resistance and metastasis of breast cancer by co-delivery of paclitaxel and honokiol with pH-sensitive polymeric micelles. Acta Biomater., 2017, 62, 144-156.
[http://dx.doi.org/10.1016/j.actbio.2017.08.027] [PMID: 28842335]
[44]
Li, Z.; Qiu, L.; Chen, Q.; Hao, T.; Qiao, M.; Zhao, H.; Zhang, J.; Hu, H.; Zhao, X.; Chen, D.; Mei, L. pH-sensitive nanoparticles of poly(L-histidine)-poly(lactide-co-glycolide)-tocopheryl polyethylene glycol succinate for anti-tumor drug delivery. Acta Biomater., 2015, 11, 137-150.
[http://dx.doi.org/10.1016/j.actbio.2014.09.014] [PMID: 25242647]
[45]
Shalviri, A.; Raval, G.; Prasad, P.; Chan, C.; Liu, Q.; Heerklotz, H.; Rauth, A.M.; Wu, X.Y. pH-Dependent doxorubicin release from terpolymer of starch, polymethacrylic acid and polysorbate 80 nanoparticles for overcoming multi-drug resistance in human breast cancer cells. Eur. J. Pharm. Biopharm., 2012, 82(3), 587-597.
[http://dx.doi.org/10.1016/j.ejpb.2012.09.001] [PMID: 22995704]
[46]
She, W.; Luo, K.; Zhang, C.; Wang, G.; Geng, Y.; Li, L.; He, B.; Gu, Z. The potential of self-assembled, pH-responsive nanoparticles of mPEGylated peptide dendron-doxorubicin conjugates for cancer therapy. Biomaterials, 2013, 34(5), 1613-1623.
[http://dx.doi.org/10.1016/j.biomaterials.2012.11.007] [PMID: 23195490]
[47]
Adimoolam, M.G.; Amreddy, N.; Nalam, M.R.; Sunkara, M.V. A simple approach to design chitosan functionalized Fe3O4nanoparticles for pH responsive delivery of doxorubicin for cancer therapy. J. Magn. Magn. Mater., 2018, 448, 199-207.
[http://dx.doi.org/10.1016/j.jmmm.2017.09.018]
[48]
Lee, S.J.; Koo, H.; Lee, D.E.; Min, S.; Lee, S.; Chen, X.; Choi, Y.; Leary, J.F.; Park, K.; Jeong, S.Y.; Kwon, I.C.; Kim, K.; Choi, K. Tumor-homing photosensitizer-conjugated glycol chitosan nanoparticles for synchronous photodynamic imaging and therapy based on cellular on/off system. Biomaterials, 2011, 32(16), 4021-4029.
[http://dx.doi.org/10.1016/j.biomaterials.2011.02.009] [PMID: 21376388]
[49]
Dong, Z.; Feng, L.; Zhu, W.; Sun, X.; Gao, M.; Zhao, H.; Chao, Y.; Liu, Z. CaCO3 nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy. Biomaterials, 2016, 110, 60-70.
[http://dx.doi.org/10.1016/j.biomaterials.2016.09.025] [PMID: 27710833]
[50]
Ghorbani, M.; Hamishehkar, H. Decoration of gold nanoparticles with thiolated pH-responsive polymeric (PEG-b-p(2-dimethylamio ethyl methacrylate-co-itaconic acid) shell: A novel platform for targeting of anticancer agent. Mater. Sci. Eng. C, 2017, 81, 561-570.
[http://dx.doi.org/10.1016/j.msec.2017.08.021] [PMID: 28888010]
[51]
Axelstad, M.; Boberg, J.; Hougaard, K.S.; Christiansen, S.; Jacobsen, P.R.; Mandrup, K.R.; Nellemann, C.; Lund, S.P.; Hass, U. Effects of pre- and postnatal exposure to the UV-filter octyl methoxycinnamate (OMC) on the reproductive, auditory and neurological development of rat offspring. Toxicol. Appl. Pharmacol., 2011, 250(3), 278-290.
[http://dx.doi.org/10.1016/j.taap.2010.10.031] [PMID: 21059369]
[52]
Hou, J.; Guo, C.; Shi, Y.; Liu, E.; Dong, W.; Yu, B.; Liu, S.; Gong, J. A novel high drug loading mussel-inspired polydopamine hybrid nanoparticle as a pH-sensitive vehicle for drug delivery. Int. J. Pharm., 2017, 533(1), 73-83.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.058] [PMID: 28943209]
[53]
Wang, X.; Liu, Y.; Wang, S.; Shi, D.; Zhou, X.; Wang, C. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer. Appl. Surf. Sci., 2015, 332, 308-317.
[http://dx.doi.org/10.1016/j.apsusc.2015.01.204]
[54]
Yan, T.; Cheng, J.; Liu, Z.; Cheng, F.; Wei, X.; He, J. pH-Sensitive mesoporous silica nanoparticles for chemo-photodynamic combination therapy. Colloids Surf. B Biointerfaces, 2018, 161, 442-448.
[http://dx.doi.org/10.1016/j.colsurfb.2017.11.006] [PMID: 29121617]
[55]
Tang, S.; Meng, Q.; Sun, H.; Su, J.; Yin, Q.; Zhang, Z. Tumor-microenvironment-adaptive nanoparticles codeliver paclitaxel and siRNA to inhibit growth and lung metastasis of breast cancer. Adv. Funct. Mater., 2016, 26, 6033-6046.
[http://dx.doi.org/10.1002/adfm.201601703]
[56]
Tang, S.; Yin, Q.; Su, J.; Sun, H.; Meng, Q.; Chen, Y.; Chen, L.; Huang, Y.; Gu, W.; Xu, M.; Yu, H.; Zhang, Z.; Li, Y. Inhibition of metastasis and growth of breast cancer by pH-sensitive poly (β-amino ester) nanoparticles co-delivering two siRNA and paclitaxel. Biomaterials, 2015, 48, 1-15.
[http://dx.doi.org/10.1016/j.biomaterials.2015.01.049] [PMID: 25701027]
[57]
Eloy, J.O.; Petrilli, R.; Trevizan, L.N.F.; Chorilli, M. Immunoliposomes: A review on functionalization strategies and targets for drug delivery. Colloids Surf. B Biointerfaces, 2017, 159, 454-467.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.085] [PMID: 28837895]
[58]
Deng, Z.; Zhen, Z.; Hu, X.; Wu, S.; Xu, Z.; Chu, P.K. Hollow chitosan-silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials, 2011, 32(21), 4976-4986.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.050] [PMID: 21486679]
[59]
Gu, Z.; Chang, M.; Fan, Y.; Shi, Y.; Lin, G. NGR-modified pH-sensitive liposomes for controlled release and tumor target delivery of docetaxel. Colloids Surf. B Biointerfaces, 2017, 160, 395-405.
[http://dx.doi.org/10.1016/j.colsurfb.2017.09.052] [PMID: 28965079]
[60]
He, Y.J.; Xing, L.; Cui, P.F.; Zhang, J.L.; Zhu, Y.; Qiao, J.B.; Lyu, J.Y.; Zhang, M.; Luo, C.Q.; Zhou, Y.X.; Lu, N.; Jiang, H.L. Transferrin-inspired vehicles based on pH-responsive coordination bond to combat multidrug-resistant breast cancer. Biomaterials, 2017, 113, 266-278.
[http://dx.doi.org/10.1016/j.biomaterials.2016.11.001] [PMID: 27842254]
[61]
Li, T.; Amari, T.; Semba, K.; Yamamoto, T.; Takeoka, S. Construction and evaluation of pH-sensitive immunoliposomes for enhanced delivery of anticancer drug to ErbB2 over-expressing breast cancer cells. Nanomedicine (Lond.), 2017, 13(3), 1219-1227.
[http://dx.doi.org/10.1016/j.nano.2016.11.018] [PMID: 27965166]
[62]
Zhou, Z.; Badkas, A.; Stevenson, M.; Lee, J.Y.; Leung, Y.K. Herceptin conjugated PLGA-PHis-PEG pH sensitive nanoparticles for targeted and controlled drug delivery. Int. J. Pharm., 2015, 487(1-2), 81-90.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.081] [PMID: 25865568]
[63]
Chiang, C.S.; Hu, S.H.; Liao, B.J.; Chang, Y.C.; Chen, S.Y. Enhancement of cancer therapy efficacy by trastuzumab-conjugated and pH-sensitive nanocapsules with the simultaneous encapsulation of hydrophilic and hydrophobic compounds. Nanomedicine (Lond.), 2014, 10(1), 99-107.
[http://dx.doi.org/10.1016/j.nano.2013.07.009] [PMID: 23891983]
[64]
Li, J.; Huo, M.; Wang, J.; Zhou, J.; Mohammad, J.M.; Zhang, Y.; Zhu, Q.; Waddad, A.Y.; Zhang, Q. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Biomaterials, 2012, 33(7), 2310-2320.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.022] [PMID: 22166223]
[65]
Raina, S.; Missiakas, D. Making and breaking disulfide bonds. Annu. Rev. Microbiol., 1997, 51, 179-202.
[http://dx.doi.org/10.1146/annurev.micro.51.1.179] [PMID: 9343348]
[66]
Wen, H-Y.; Dong, H-Q.; Xie, W.J.; Li, Y-Y.; Wang, K.; Pauletti, G.M.; Shi, D.L. Rapidly disassembling nanomicelles with disulfide-linked PEG shells for glutathione-mediated intracellular drug delivery. Chem. Commun. (Camb.), 2011, 47(12), 3550-3552.
[http://dx.doi.org/10.1039/c0cc04983b] [PMID: 21327187]
[67]
Li, J.; Yin, T.; Wang, L.; Yin, L.; Zhou, J.; Huo, M. Biological evaluation of redox-sensitive micelles based on hyaluronic acid-deoxycholic acid conjugates for tumor-specific delivery of paclitaxel. Int. J. Pharm., 2015, 483(1-2), 38-48.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.002] [PMID: 25655715]
[68]
Deng, X.; Cao, M.; Zhang, J.; Hu, K.; Yin, Z.; Zhou, Z.; Xiao, X.; Yang, Y.; Sheng, W.; Wu, Y.; Zeng, Y. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials, 2014, 35(14), 4333-4344.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.006] [PMID: 24565525]
[69]
Yin, S.; Huai, J.; Chen, X.; Yang, Y.; Zhang, X.; Gan, Y.; Wang, G.; Gu, X.; Li, J. Intracellular delivery and antitumor effects of a redox-responsive polymeric paclitaxel conjugate based on hyaluronic acid. Acta Biomater., 2015, 26, 274-285.
[http://dx.doi.org/10.1016/j.actbio.2015.08.029] [PMID: 26300335]
[70]
Wu, M.; Meng, Q.; Chen, Y.; Zhang, L.; Li, M.; Cai, X.; Li, Y.; Yu, P.; Zhang, L.; Shi, J. Large pore-sized hollow mesoporous organosilica for redox-responsive gene delivery and synergistic cancer chemotherapy. Adv. Mater., 2016, 28(10), 1963-1969.
[http://dx.doi.org/10.1002/adma.201505524] [PMID: 26743228]
[71]
Asai, T. Nanoparticle-mediated delivery of anticancer agents to tumor angiogenic vessels. Biol. Pharm. Bull., 2012, 35(11), 1855-1861.
[http://dx.doi.org/10.1248/bpb.b212013] [PMID: 23123455]
[72]
Zhou, C.; Shen, H.; Guo, Y.; Xu, L.; Niu, J.; Zhang, Z.; Du, Z.; Chen, J.; Li, L.S. A versatile method for the preparation of water-soluble amphiphilic oligomer-coated semiconductor quantum dots with high fluorescence and stability. J. Colloid Interface Sci., 2010, 344(2), 279-285.
[http://dx.doi.org/10.1016/j.jcis.2010.01.015] [PMID: 20129617]
[73]
Pan, Y-J.; Li, D.; Jin, S.; Wei, C.; Wu, K-Y.; Guo, J. Folate-conjugated poly(N-(2-hydroxypropyl)methacrylamide-co-methacrylic acid) nanohydrogels with pH/redox dual-stimuli response for controlled drug release. Polym. Chem., 2013, 4, 3545.
[http://dx.doi.org/10.1039/c3py00249g]
[74]
Son, S.; Shin, S.; Rao, N.V.; Um, W.; Jeon, J.; Ko, H.; Deepagan, V.G.; Kwon, S.; Lee, J.Y.; Park, J.H. Anti-Trop2 antibody-conjugated bioreducible nanoparticles for targeted triple negative breast cancer therapy. Int. J. Biol. Macromol., 2018, 110, 406-415.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.113] [PMID: 29055700]
[75]
Wang, Y.; Shim, M.S.; Levinson, N.S.; Sung, H.W.; Xia, Y. Stimuli-responsive materials for controlled release of theranostic agents. Adv. Funct. Mater., 2014, 24(27), 4206-4220.
[http://dx.doi.org/10.1002/adfm.201400279] [PMID: 25477774]
[76]
Xu, P.; Meng, Q.; Sun, H.; Yin, Q.; Yu, H.; Zhang, Z.; Cao, M.; Zhang, Y.; Li, Y. Shrapnel nanoparticles loading docetaxel inhibit metastasis and growth of breast cancer. Biomaterials, 2015, 64, 10-20.
[http://dx.doi.org/10.1016/j.biomaterials.2015.06.017] [PMID: 26106797]
[77]
Namgung, R.; Mi Lee, Y.; Kim, J.; Jang, Y.; Lee, B.H.; Kim, I.S.; Sokkar, P.; Rhee, Y.M.; Hoffman, A.S.; Kim, W.J. Poly-cyclodextrin and poly-paclitaxel nano-assembly for anticancer therapy. Nat. Commun., 2014, 5, 3702.
[http://dx.doi.org/10.1038/ncomms4702] [PMID: 24805848]
[78]
Karandish, F.; Froberg, J.; Borowicz, P.; Wilkinson, J.C.; Choi, Y.; Mallik, S. Peptide-targeted, stimuli-responsive polymersomes for delivering a cancer stemness inhibitor to cancer stem cell microtumors. Colloids Surf. B Biointerfaces, 2018, 163, 225-235.
[http://dx.doi.org/10.1016/j.colsurfb.2017.12.036] [PMID: 29304437]
[79]
Harnoy, A.J.; Rosenbaum, I.; Tirosh, E.; Ebenstein, Y.; Shaharabani, R.; Beck, R.; Amir, R.J. Enzyme-responsive amphiphilic PEG-dendron hybrids and their assembly into smart micellar nanocarriers. J. Am. Chem. Soc., 2014, 136(21), 7531-7534.
[http://dx.doi.org/10.1021/ja413036q] [PMID: 24568366]
[80]
Qin, S.Y.; Feng, J.; Rong, L.; Jia, H.Z.; Chen, S.; Liu, X.J.; Luo, G.F.; Zhuo, R.X.; Zhang, X.Z. Theranostic GO-based nanohybrid for tumor induced imaging and potential combinational tumor therapy. Small, 2014, 10(3), 599-608.
[http://dx.doi.org/10.1002/smll.201301613] [PMID: 24000121]
[81]
Liu, Y.; Zhang, D.; Qiao, Z.Y.; Qi, G.B.; Liang, X.J.; Chen, X.G.; Wang, H. A peptide-network weaved nanoplatform with tumor microenvironment responsiveness and deep tissue penetration capability for cancer therapy. Adv. Mater., 2015, 27(34), 5034-5042.
[http://dx.doi.org/10.1002/adma.201501502] [PMID: 26198072]
[82]
Dai, Z.; Yao, Q.; Zhu, L. MMP2-sensitive PEG-lipid copolymers: A new type of tumor-targeted P-glycoprotein inhibitor. ACS Appl. Mater. Interfaces, 2016, 8(20), 12661-12673.
[http://dx.doi.org/10.1021/acsami.6b03064] [PMID: 27145021]
[83]
Taylor, M.J.; Tomlins, P.; Sahota, T.S. Thermoresponsive Gels. Gels, 2017, 3(1), 4.
[http://dx.doi.org/10.3390/gels3010004] [PMID: 30920501]
[84]
Gandhi, A.; Paul, A.; Sen, S.O.; Sen, K.K. Studies on thermoresponsive polymers: Phase behaviour, drug delivery and biomedical applications. Asian J Pharm Sci, 2015, 10, 99-107.
[http://dx.doi.org/10.1016/j.ajps.2014.08.010]
[85]
Abulateefeh, S.R.; Spain, S.G.; Aylott, J.W.; Chan, W.C.; Garnett, M.C.; Alexander, C. Thermoresponsive polymer colloids for drug delivery and cancer therapy. Macromol. Biosci., 2011, 11(12), 1722-1734.
[http://dx.doi.org/10.1002/mabi.201100252] [PMID: 22012834]
[86]
Zhang, Z.; Wang, J.; Nie, X.; Wen, T.; Ji, Y.; Wu, X.; Zhao, Y.; Chen, C. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J. Am. Chem. Soc., 2014, 136(20), 7317-7326.
[http://dx.doi.org/10.1021/ja412735p] [PMID: 24773323]
[87]
Qu, Y.; Chu, B.Y.; Peng, J.R.; Liao, J.F.; Qi, T.T.; Shi, K. A biodegradable thermo-responsive hybrid hydrogel: Therapeutic applications in preventing the post-operative recurrence of breast cancer. NPG Asia Mater., 2015, 7, e207-e210.
[http://dx.doi.org/10.1038/am.2015.83]
[88]
Li, H-F.; Wu, C.; Xia, M.; Zhao, H.; Zhao, M-X.; Hou, J. Targeted and controlled drug delivery using a temperature and ultra-violet responsive liposome with excellent breast cancer suppressing ability. RSC Advances, 2015, 5, 27630-27639.
[http://dx.doi.org/10.1039/C5RA01553G]
[89]
Su, S.; Tian, Y.; Li, Y.; Ding, Y.; Ji, T.; Wu, M.; Wu, Y.; Nie, G. “Triple-punch” strategy for triple negative breast cancer therapy with minimized drug dosage and improved antitumor efficacy. ACS Nano, 2015, 9(2), 1367-1378.
[http://dx.doi.org/10.1021/nn505729m] [PMID: 25611071]
[90]
Ou, Y.C.; Webb, J.A.; Faley, S.; Shae, D.; Talbert, E.M.; Lin, S.; Cutright, C.C.; Wilson, J.T.; Bellan, L.M.; Bardhan, R. Gold nanoantenna-mediated photothermal drug delivery from thermosensitive liposomes in breast cancer. ACS Omega, 2016, 1(2), 234-243.
[http://dx.doi.org/10.1021/acsomega.6b00079] [PMID: 27656689]
[91]
Rehman, M.; Ihsan, A.; Madni, A.; Bajwa, S.Z.; Shi, D.; Webster, T.J.; Khan, W.S. Solid lipid nanoparticles for thermoresponsive targeting: evidence from spectrophotometry, electrochemical, and cytotoxicity studies. Int. J. Nanomedicine, 2017, 12, 8325-8336.
[http://dx.doi.org/10.2147/IJN.S147506] [PMID: 29200845]
[92]
Su, Y.; Huang, N.; Chen, D.; Zhang, L.; Dong, X.; Sun, Y.; Zhu, X.; Zhang, F.; Gao, J.; Wang, Y.; Fan, K.; Lo, P.; Li, W.; Ling, C. Successful in vivo hyperthermal therapy toward breast cancer by Chinese medicine shikonin-loaded thermosensitive micelle. Int. J. Nanomedicine, 2017, 12, 4019-4035.
[http://dx.doi.org/10.2147/IJN.S132639] [PMID: 28603416]
[93]
Needham, D; Anyarambhatla, G; Kong, G New temperature- sensitive liposome for use with mild hyperthermia: Characterization and testing in a human tumor xenograft model advances in brief a new temperature-sensitive liposome for use with mild hyperthermia, 1, 60(5), 1197-201.
[PMID: 10728674]
[94]
Hauck, M.L.; LaRue, S.M.; Petros, W.P.; Poulson, J.M.; Yu, D.; Spasojevic, I.; Pruitt, A.F.; Klein, A.; Case, B.; Thrall, D.E.; Needham, D.; Dewhirst, M.W. Phase I trial of doxorubicin-containing low temperature sensitive liposomes in spontaneous canine tumors. Clin. Cancer Res., 2006, 12(13), 4004-4010.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0226] [PMID: 16818699]
[95]
Celsion Corporation. https://celsion.com/thermodox (Accessed March 20, 2020).
[96]
McBain, S.C.; Yiu, H.H.P.; Dobson, J. Magnetic nanoparticles for gene and drug delivery. Int. J. Nanomedicine, 2008, 3(2), 169-180.
[PMID: 18686777]
[97]
Estelrich, J.; Escribano, E.; Queralt, J.; Busquets, M.A. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int. J. Mol. Sci., 2015, 16(4), 8070-8101.
[http://dx.doi.org/10.3390/ijms16048070] [PMID: 25867479]
[98]
Yao, J.; Feng, J.; Chen, J. External-stimuli responsive systems for cancer theranostic. Asian J Pharm Sci, 2016, 11, 585-595.
[http://dx.doi.org/10.1016/j.ajps.2016.06.001]
[99]
Yallapu, M.M.; Othman, S.F.; Curtis, E.T.; Bauer, N.A.; Chauhan, N.; Kumar, D.; Jaggi, M.; Chauhan, S.C. Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. Int. J. Nanomedicine, 2012, 7, 1761-1779.
[PMID: 22619526]
[100]
Parsian, M.; Unsoy, G.; Mutlu, P.; Yalcin, S.; Tezcaner, A.; Gunduz, U. Loading of Gemcitabine on chitosan magnetic nanoparticles increases the anti-cancer efficacy of the drug. Eur. J. Pharmacol., 2016, 784, 121-128.
[http://dx.doi.org/10.1016/j.ejphar.2016.05.016] [PMID: 27181067]
[101]
Natesan, S.; Ponnusamy, C.; Sugumaran, A.; Chelladurai, S.; Shanmugam Palaniappan, S.; Palanichamy, R. Artemisinin loaded chitosan magnetic nanoparticles for the efficient targeting to the breast cancer. Int. J. Biol. Macromol, 2017, 104(Pt B), 1853-1859.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.137]
[102]
Chomoucka, J.; Drbohlavova, J.; Huska, D.; Adam, V.; Kizek, R.; Hubalek, J. Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res., 2010, 62(2), 144-149.
[http://dx.doi.org/10.1016/j.phrs.2010.01.014] [PMID: 20149874]
[103]
Wu, J.; Wang, Y.; Jiang, W.; Xu, S.; Tian, R. Synthesis and characterization of recyclable clusters of magnetic nanoparticles as doxorubicin carriers for cancer therapy. Appl. Surf. Sci., 2014, 321, 43-49.
[http://dx.doi.org/10.1016/j.apsusc.2014.09.184]
[104]
Zou, Y.; Liu, P.; Liu, C.H.; Zhi, X.T. Doxorubicin-loaded mesoporous magnetic nanoparticles to induce apoptosis in breast cancer cells. Biomed. Pharmacother., 2015, 69, 355-360.
[http://dx.doi.org/10.1016/j.biopha.2014.12.012] [PMID: 25661382]
[105]
Tung, W.L.; Hu, S.H.; Liu, D.M. Synthesis of nanocarriers with remote magnetic drug release control and enhanced drug delivery for intracellular targeting of cancer cells. Acta Biomater., 2011, 7(7), 2873-2882.
[http://dx.doi.org/10.1016/j.actbio.2011.03.021] [PMID: 21439410]
[106]
Tarvirdipour, S.; Vasheghani-Farahani, E.; Soleimani, M.; Bardania, H. Functionalized magnetic dextran-spermine nanocarriers for targeted delivery of doxorubicin to breast cancer cells. Int. J. Pharm., 2016, 501(1-2), 331-341.
[http://dx.doi.org/10.1016/j.ijpharm.2016.02.012] [PMID: 26875475]
[107]
Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161-171.
[http://dx.doi.org/10.1038/nrc1566] [PMID: 15738981]
[108]
Zhao, Y-Z.; Du, L-N.; Lu, C-T.; Jin, Y-G.; Ge, S-P. Potential and problems in ultrasound-responsive drug delivery systems. Int. J. Nanomedicine, 2013, 8, 1621-1633.
[PMID: 23637531]
[109]
Baghbani, F.; Moztarzadeh, F.; Mohandesi, J.A.; Yazdian, F.; Mokhtari-Dizaji, M. Novel alginate-stabilized doxorubicin-loaded nanodroplets for ultrasounic theranosis of breast cancer. Int. J. Biol. Macromol, 2016, 93(Pt A), 512-519.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.09.008]
[110]
Baghbani, F.; Chegeni, M.; Moztarzadeh, F.; Mohandesi, J.A.; Mokhtari-Dizaji, M. Ultrasonic nanotherapy of breast cancer using novel ultrasound-responsive alginate-shelled perfluorohexane nanodroplets: In vitro and in vivo evaluation. Mater. Sci. Eng. C, 2017, 77, 698-707.
[http://dx.doi.org/10.1016/j.msec.2017.02.017] [PMID: 28532082]
[111]
Marshalek, J.P.; Sheeran, P.S.; Ingram, P.; Dayton, P.A.; Witte, R.S.; Matsunaga, T.O. Intracellular delivery and ultrasonic activation of folate receptor-targeted phase-change contrast agents in breast cancer cells in vitro. J. Control. Release, 2016, 243, 69-77.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.010] [PMID: 27686582]
[112]
Milgroom, A.; Intrator, M.; Madhavan, K.; Mazzaro, L.; Shandas, R.; Liu, B.; Park, D. Mesoporous silica nanoparticles as a breast-cancer targeting ultrasound contrast agent. Colloids Surf. B Biointerfaces, 2014, 116, 652-657.
[http://dx.doi.org/10.1016/j.colsurfb.2013.10.038] [PMID: 24269054]
[113]
Yan, F.; Li, L.; Deng, Z.; Jin, Q.; Chen, J.; Yang, W.; Yeh, C.K.; Wu, J.; Shandas, R.; Liu, X.; Zheng, H. Paclitaxel-liposome-microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers. J. Control. Release, 2013, 166(3), 246-255.
[http://dx.doi.org/10.1016/j.jconrel.2012.12.025] [PMID: 23306023]
[114]
Hong, G.; Antaris, A.L.; Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng., 2017, 1, 1-22.
[http://dx.doi.org/10.1038/s41551-016-0010]
[115]
Ntziachristos, V.; Ripoll, J.; Wang, L.V.; Weissleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol., 2005, 23(3), 313-320.
[http://dx.doi.org/10.1038/nbt1074] [PMID: 15765087]
[116]
Tian, J.; Ding, L.; Ju, H.; Yang, Y.; Li, X.; Shen, Z.; Zhu, Z.; Yu, J.S.; Yang, C.J. A multifunctional nanomicelle for real-time targeted imaging and precise near-infrared cancer therapy. Angew. Chem. Int. Ed. Engl., 2014, 53(36), 9544-9549.
[http://dx.doi.org/10.1002/anie.201405490] [PMID: 25045069]
[117]
Song, G.; Liang, C.; Yi, X.; Zhao, Q.; Cheng, L.; Yang, K.; Liu, Z. Perfluorocarbon-loaded hollow Bi2Se3 nanoparticles for timely supply of oxygen under near-infrared light to enhance the radiotherapy of cancer. Adv. Mater., 2016, 28(14), 2716-2723.
[http://dx.doi.org/10.1002/adma.201504617] [PMID: 26848553]
[118]
Feng, B.; Xu, Z.; Zhou, F.; Yu, H.; Sun, Q.; Wang, D.; Tang, Z.; Yu, H.; Yin, Q.; Zhang, Z.; Li, Y. Near infrared light-actuated gold nanorods with cisplatin-polypeptide wrapping for targeted therapy of triple negative breast cancer. Nanoscale, 2015, 7(36), 14854-14864.
[http://dx.doi.org/10.1039/C5NR03693C] [PMID: 26222373]
[119]
Zeng, L.; Pan, Y.; Tian, Y.; Wang, X.; Ren, W.; Wang, S.; Lu, G.; Wu, A. Doxorubicin-loaded NaYF4:Yb/Tm-TiO2 inorganic photosensitizers for NIR-triggered photodynamic therapy and enhanced chemotherapy in drug-resistant breast cancers. Biomaterials, 2015, 57, 93-106.
[http://dx.doi.org/10.1016/j.biomaterials.2015.04.006] [PMID: 25913254]
[120]
Tzoneva, R.; Uzunova, V.; Apostolova, S.; Krüger-Genge, A.; Neffe, A.T.; Jung, F.; Lendlein, A. Angiogenic potential of endothelial and tumor cells seeded on gelatin-based hydrogels in response to electrical stimulations. Clin. Hemorheol. Microcirc., 2016, 64(4), 941-949.
[http://dx.doi.org/10.3233/CH-168040] [PMID: 27792001]
[121]
Ge, J.; Neofytou, E.; Cahill, T.J., III; Beygui, R.E.; Zare, R.N. Drug release from electric-field-responsive nanoparticles. ACS Nano, 2012, 6(1), 227-233.
[http://dx.doi.org/10.1021/nn203430m] [PMID: 22111891]
[122]
Xu, H.; Yang, D.; Cai, C.; Gou, J.; Zhang, Y.; Wang, L.; Zhong, H.; Tang, X. Dual-responsive mPEG-PLGA-PGlu hybrid-core nanoparticles with a high drug loading to reverse the multidrug resistance of breast cancer: an in vitro and in vivo evaluation. Acta Biomater., 2015, 16, 156-168.
[http://dx.doi.org/10.1016/j.actbio.2015.01.039] [PMID: 25662165]
[123]
Anirudhan, T.S.; Christa, J. Binusreejayan. pH and magnetic field sensitive folic acid conjugated protein-polyelectrolyte complex for the controlled and targeted delivery of 5-fluorouracil. J. Ind. Eng. Chem., 2018, 57, 199-207.
[http://dx.doi.org/10.1016/j.jiec.2017.08.024]
[124]
Verma, N.K.; Purohit, M.P.; Equbal, D.; Dhiman, N.; Singh, A.; Kar, A.K.; Shankar, J.; Tehlan, S.; Patnaik, S. Targeted Smart pH and thermoresponsive N,O-carboxymethyl chitosan conjugated nanogels for enhanced therapeutic efficacy of doxorubicin in MCF-7 breast cancer cells. Bioconjug. Chem., 2016, 27(11), 2605-2619.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00366] [PMID: 27643823]
[125]
Ahmed, M.; Douek, M. The role of magnetic nanoparticles in the localization and treatment of breast cancer. BioMed Res. Int., 2013, 2013, 281230
[http://dx.doi.org/10.1155/2013/281230] [PMID: 23936784]
[126]
Tziveleka, L.A.; Bilalis, P.; Chatzipavlidis, A.; Boukos, N.; Kordas, G. Development of multiple stimuli responsive magnetic polymer nanocontainers as efficient drug delivery systems. Macromol. Biosci., 2014, 14(1), 131-141.
[http://dx.doi.org/10.1002/mabi.201300212] [PMID: 24106236]
[127]
Kim, D.H.; Vitol, E.A.; Liu, J.; Balasubramanian, S.; Gosztola, D.J.; Cohen, E.E.; Novosad, V.; Rozhkova, E.A. Stimuli-responsive magnetic nanomicelles as multifunctional heat and cargo delivery vehicles. Langmuir, 2013, 29(24), 7425-7432.
[http://dx.doi.org/10.1021/la3044158] [PMID: 23351096]
[128]
Fang, K.; Song, L.; Gu, Z.; Yang, F.; Zhang, Y.; Gu, N. Magnetic field activated drug release system based on magnetic PLGA microspheres for chemo-thermal therapy. Colloids Surf. B Biointerfaces, 2015, 136, 712-720.
[http://dx.doi.org/10.1016/j.colsurfb.2015.10.014] [PMID: 26513754]
[129]
Patra, S.; Roy, E.; Karfa, P.; Kumar, S.; Madhuri, R.; Sharma, P.K. Dual-responsive polymer coated superparamagnetic nanoparticle for targeted drug delivery and hyperthermia treatment. ACS Appl. Mater. Interfaces, 2015, 7(17), 9235-9246.
[http://dx.doi.org/10.1021/acsami.5b01786] [PMID: 25893447]
[130]
Feng, Q.; Zhang, W.; Yang, X.; Li, Y.; Hao, Y.; Zhang, H.; Hou, L.; Zhang, Z. pH/Ultrasound dual-responsive gas generator for ultrasound imaging-guided therapeutic inertial cavitation and sonodynamic therapy. Adv. Healthc. Mater., 2018, 7(5), 1-10.
[http://dx.doi.org/10.1002/adhm.201700957] [PMID: 29141114]
[131]
Kang, B.; Kukreja, A.; Song, D.; Huh, Y.M.; Haam, S. Strategies for using nanoprobes to perceive and treat cancer activity: a review. J. Biol. Eng., 2017, 11, 13.
[http://dx.doi.org/10.1186/s13036-016-0044-1] [PMID: 28344644]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy