Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Stimuli-responsive Drug Delivery Nanocarriers in the Treatment of Breast Cancer

Author(s): João A. Oshiro-Júnior , Camila Rodero, Gilmar Hanck-Silva , Mariana R. Sato, Renata Carolina Alves, Josimar O. Eloy* and Marlus Chorilli*

Volume 27, Issue 15, 2020

Page: [2494 - 2513] Pages: 20

DOI: 10.2174/0929867325666181009120610

Price: $65

conference banner
Abstract

Stimuli-responsive drug-delivery nanocarriers (DDNs) have been increasingly reported in the literature as an alternative for breast cancer therapy. Stimuli-responsive DDNs are developed with materials that present a drastic change in response to intrinsic/chemical stimuli (pH, redox and enzyme) and extrinsic/physical stimuli (ultrasound, Near-infrared (NIR) light, magnetic field and electric current). In addition, they can be developed using different strategies, such as functionalization with signaling molecules, leading to several advantages, such as (a) improved pharmaceutical properties of liposoluble drugs, (b) selectivity with the tumor tissue decreasing systemic toxic effects, (c) controlled release upon different stimuli, which are all fundamental to improving the therapeutic effectiveness of breast cancer treatment. Therefore, this review summarizes the use of stimuli-responsive DDNs in the treatment of breast cancer. We have divided the discussions into intrinsic and extrinsic stimuli and have separately detailed them regarding their definitions and applications. Finally, we aim to address the ability of these stimuli-responsive DDNs to control the drug release in vitro and the influence on breast cancer therapy, evaluated in vivo in breast cancer models.

Keywords: Stimuli-responsive drug delivery nanocarriers, intrinsic/chemical stimuli, extrinsic/physical stimuli, breast cancer treatment, near-infrared light (NIR), liposoluble drugs.

[1]
Medeiros, G.C.; Bergmann, A.; Aguiar, S.S.; Thuler, L.C.S. Análise dos determinantes que influenciam o tempo para o início do tratamento de mulheres com câncer de mama no Brasil. Cad. Saude Publica, 2015, 31(6), 1269-1282.
[http://dx.doi.org/10.1590/0102-311X00048514] [PMID: 26200374]
[2]
Wild, C.P. International Agency for Research on Cancer. Encycl Toxicol, 2014, 33, 1067-1069.
[http://dx.doi.org/10.1016/B978-0-12-386454-3.00402-4]
[3]
Ma, Y.; Bai, R.K.; Trieu, R.; Wong, L.J.C. Mitochondrial dysfunction in human breast cancer cells and their transmitochondrial cybrids. Biochim. Biophys. Acta, 2010, 1797(1), 29-37.
[http://dx.doi.org/10.1016/j.bbabio.2009.07.008] [PMID: 19647716]
[4]
Brandon, M.; Baldi, P.; Wallace, D.C. Mitochondrial mutations in cancer. Oncogene, 2006, 25(34), 4647-4662.
[http://dx.doi.org/10.1038/sj.onc.1209607] [PMID: 16892079]
[5]
Santidrian, A.F.; Matsuno-Yagi, A.; Ritland, M.; Seo, B.B.; LeBoeuf, S.E.; Gay, L.J.; Yagi, T.; Felding-Habermann, B. Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. J. Clin. Invest., 2013, 123(3), 1068-1081.
[http://dx.doi.org/10.1172/JCI64264] [PMID: 23426180]
[6]
Gozzo, T de O.; de Souza, S.G.; Moysés, A.M.; Panobianco, M.S.; de Almeida, A.M. [Incidence and management of chemotherapy-induced nausea and vomiting in women with breast cancer]. Rev. Gaúcha Enferm., 2014, 35(3), 117-123.
[http://dx.doi.org/10.1590/1983-1447.2014.03.42068] [PMID: 25474850]
[7]
Darvishi, B.; Farahmand, L.; Majidzadeh-A, K. Stimuli-responsive mesoporous silica NPs as non-viral dual siRNA/chemotherapy carriers for triple negative breast cancer. Mol. Ther. Nucleic Acids, 2017, 7, 164-180.
[http://dx.doi.org/10.1016/j.omtn.2017.03.007] [PMID: 28624192]
[8]
Karimi, M.; Ghasemi, A.; Sahandi Zangabad, P.; Rahighi, R.; Moosavi Basri, S.M.; Mirshekari, H. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev., 2016, 45(5), 1457-1501.
[9]
Zhang, P.; An, K.; Duan, X.; Xu, H.; Li, F.; Xu, F. Recent advances in siRNA delivery for cancer therapy using smart nanocarriers. Drug Discov. Today, 2018, 23(4), 900-911.
[http://dx.doi.org/10.1016/j.drudis.2018.01.042] [PMID: 29373841]
[10]
Greenberg, P.A.; Hortobagyi, G.N.; Smith, T.L.; Ziegler, L.D.; Frye, D.K.; Buzdar, A.U. Long-term follow-up of patients with complete remission following combination chemotherapy for metastatic breast cancer. J. Clin. Oncol., 1996, 14(8), 2197-2205.
[http://dx.doi.org/10.1200/JCO.1996.14.8.2197] [PMID: 8708708]
[11]
Yamamoto, N.; Katsumata, N.; Watanabe, T.; Omuro, Y.; Ando, M.; Narabayashi, M. Clinical characteristics of patients with metastatic breast cancer with complete remission following systemic treatment. Jpn. J. Clin. Oncol., 1993, 28, 368-373.
[http://dx.doi.org/10.1093/jjco/28.6.368] [PMID: 9730151]
[12]
Zhang, X.G.; Miao, J.; Dai, Y.Q.; Du, Y.Z.; Yuan, H.; Hu, F.Q. Reversal activity of nanostructured lipid carriers loading cytotoxic drug in multi-drug resistant cancer cells. Int. J. Pharm., 2008, 361(1-2), 239-244.
[http://dx.doi.org/10.1016/j.ijpharm.2008.06.002] [PMID: 18586075]
[13]
Oshiro, J.A.; Sato, M.R.; Scardueli, C.R.; Lopes de Oliveira, G.J.P.; Abucafy, M.P.; Chorilli, M. Bioactive Molecule-loaded Drug Delivery Systems to Optimize Bone Tissue Repair. Curr. Protein Pept. Sci., 2017, 18(8), 850-863.
[http://dx.doi.org/10.2174/1389203718666170328111605] [PMID: 28355998]
[14]
Tran, T.H.; Nguyen, H.T.; Pham, T.T.; Choi, J.Y.; Choi, H.G.; Yong, C.S.; Kim, J.O. Development of a graphene oxide nanocarrier for dual-drug chemo-phototherapy to overcome drug resistance in cancer. ACS Appl. Mater. Interfaces, 2015, 7(51), 28647-28655.
[http://dx.doi.org/10.1021/acsami.5b10426] [PMID: 26641922]
[15]
Voliani, V.; Signore, G.; Vittorio, O.; Faraci, P.; Luin, S.; Peréz-Prieto, J. Cancer phototherapy in living cells by multiphoton release of doxorubicin from gold nanospheres. J. Mater. Chem. B Mater. Biol. Med., 2013, 1, 4225.
[http://dx.doi.org/10.1039/c3tb20798f]
[16]
Wang, J.; Wang, L.; Zhou, Z.; Lai, H.; Xu, P.; Liao, L.; Wei, J. Biodegradable polymer membranes applied in guided bone/tissue regeneration: A review. Polymers (Basel), 2016, 8(4), 1-20.
[http://dx.doi.org/10.3390/polym8040115] [PMID: 30979206]
[17]
Oshiro, J.A; Nasser, N.J; Chiari-andréo, B.G. Study of triamcinolone release and mucoadhesive properties of macroporous hybrid films for oral disease treatment., 2018, 8-10.
[http://dx.doi.org/10.1088/2057-1976/aaa84b]
[18]
Alphandéry, E.; Grand-Dewyse, P.; Lefèvre, R.; Mandawala, C.; Durand-Dubief, M. Cancer therapy using nanoformulated substances: scientific, regulatory and financial aspects. Expert Rev. Anticancer Ther., 2015, 15(10), 1233-1255.
[http://dx.doi.org/10.1586/14737140.2015.1086647] [PMID: 26402250]
[19]
Gross, N.; Ranjbar, M.; Evers, C.; Hua, J.; Martin, G.; Schulze, B.; Michaelis, U.; Hansen, L.L.; Agostini, H.T. Choroidal neovascularization reduced by targeted drug delivery with cationic liposome-encapsulated paclitaxel or targeted photodynamic therapy with verteporfin encapsulated in cationic liposomes. Mol. Vis., 2013, 19, 54-61.
[PMID: 23335851]
[20]
Sato, M.R.; Oshiro Junior, J.A.; Machado, R.T.; de Souza, P.C.; Campos, D.L.; Pavan, F.R.; da Silva, P.B.; Chorilli, M. Nanostructured lipid carriers for incorporation of copper(II) complexes to be used against Mycobacterium tuberculosis. Drug Des. Devel. Ther., 2017, 11, 909-921.
[http://dx.doi.org/10.2147/DDDT.S127048] [PMID: 28356717]
[21]
Oshiro, J.A.; Scardueli, C.R.; José, G.; Lopes, P.; Adriana, R.; Marcantonio, C. Development of ureasil - polyether membranes for guided bone regeneration 1976, 5-7.
[22]
Oshiro, J.A. Junior; Mortari, G.R.; de Freitas, R.M.; Marcantonio-Junior, E.; Lopes, L.; Spolidorio, L.C. Assessment of biocompatibility of ureasil-polyether hybrid membranes for future use in implantodontology. Int. J. Polym. Mater. Polym. Biomater., 2016, 65, 647-652.
[http://dx.doi.org/10.1080/00914037.2016.1157796]
[23]
Shi, S.; Han, L.; Deng, L.; Zhang, Y.; Shen, H.; Gong, T.; Zhang, Z.; Sun, X. Dual drugs (microRNA-34a and paclitaxel)-loaded functional solid lipid nanoparticles for synergistic cancer cell suppression. J. Control. Release, 2014, 194, 228-237.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.005] [PMID: 25220161]
[24]
Techawanitchai, P.; Yamamoto, K.; Ebara, M.; Aoyagi, T. Surface design with self-heating smart polymers for on-off switchable traps. Sci. Technol. Adv. Mater., 2011, 12(4), 044609
[http://dx.doi.org/10.1088/1468-6996/12/4/044609] [PMID: 27877417]
[25]
Eloy, J.O.; Petrilli, R.; Lopez, R.F.V.; Lee, R.J. Stimuli-responsive nanoparticles for siRNA delivery. Curr. Pharm. Des., 2015, 21(29), 4131-4144.
[http://dx.doi.org/10.2174/1381612821666150901095349] [PMID: 26323434]
[26]
Wu, C.J.; Gaharwar, A.K.; Schexnailder, P.J.; Schmidt, G. Development of biomedical polymer-silicate nanocomposites: A materials science perspective. Materials (Basel), 2010, 3, 2986-3005.
[http://dx.doi.org/10.3390/ma3052986]
[27]
Kumar, A.; Srivastava, A.; Galaev, I.Y.; Mattiasson, B. Smart polymers: Physical forms and bioengineering applications. Prog. Polym. Sci., 2007, 32, 1205-1237.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.003]
[28]
Zhou, L.; Wang, H.; Li, Y. Stimuli-responsive nanomedicines for overcoming cancer multidrug resistance. Theranostics, 2018, 8(4), 1059-1074.
[http://dx.doi.org/10.7150/thno.22679] [PMID: 29463999]
[29]
Allinen, M.; Beroukhim, R.; Cai, L.; Brennan, C.; Lahti-Domenici, J.; Huang, H.; Porter, D.; Hu, M.; Chin, L.; Richardson, A.; Schnitt, S.; Sellers, W.R.; Polyak, K. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 2004, 6(1), 17-32.
[http://dx.doi.org/10.1016/j.ccr.2004.06.010] [PMID: 15261139]
[30]
Begum, M.; Karim, S.; Malik, A.; Khurshid, R.; Asif, M.; Salim, A.; Nagra, S.A.; Zaheer, A.; Iqbal, Z.; Abuzenadah, A.M.; Alqahtani, M.H.; Rasool, M. CA 15-3 (Mucin-1) and physiological characteristics of breast cancer from Lahore, Pakistan. Asian Pac. J. Cancer Prev., 2012, 13(10), 5257-5261.
[http://dx.doi.org/10.7314/APJCP.2012.13.10.5257] [PMID: 23244146]
[31]
Jena, M.K.; Janjanam, J. Role of extracellular matrix in breast cancer development: a brief update. F1000 Res., 2018, 7, 274.
[http://dx.doi.org/10.12688/f1000research.14133.2] [PMID: 29983921]
[32]
Overchuk, M.; Zheng, G. Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics. Biomaterials, 2018, 156, 217-237.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.024] [PMID: 29207323]
[33]
Sakhrani, N.M.; Padh, H. Organelle targeting: third level of drug targeting. Drug Des. Devel. Ther., 2013, 7, 585-599.
[PMID: 23898223]
[34]
Biswas, S.; Kumari, P.; Lakhani, P.M.; Ghosh, B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur. J. Pharm. Sci., 2016, 83, 184-202.
[http://dx.doi.org/10.1016/j.ejps.2015.12.031] [PMID: 26747018]
[35]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[36]
Roy, D.; Cambre, J.N.; Sumerlin, B.S. Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci., 2010, 35, 278-301.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.10.008]
[37]
Liu, J.; Huang, Y.; Kumar, A.; Tan, A.; Jin, S.; Mozhi, A.; Liang, X.J. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol. Adv., 2014, 32(4), 693-710.
[http://dx.doi.org/10.1016/j.biotechadv.2013.11.009] [PMID: 24309541]
[38]
Wang, T.; Yang, S.; Petrenko, V.A.; Torchilin, V.P. Cytoplasmic delivery of liposomes into MCF-7 breast cancer cells mediated by cell-specific phage fusion coat protein. Mol. Pharm., 2010, 7(4), 1149-1158.
[http://dx.doi.org/10.1021/mp1000229] [PMID: 20438086]
[39]
Huang, D.; Zhuang, Y.; Shen, H.; Yang, F.; Wang, X.; Wu, D. Acetal-linked PEGylated paclitaxel prodrugs forming free-paclitaxel-loaded pH-responsive micelles with high drug loading capacity and improved drug delivery. Mater. Sci. Eng. C, 2018, 82, 60-68.
[http://dx.doi.org/10.1016/j.msec.2017.08.063] [PMID: 29025675]
[40]
Tang, S.; Meng, Q.; Sun, H.; Su, J.; Yin, Q.; Zhang, Z.; Yu, H.; Chen, L.; Gu, W.; Li, Y. Dual pH-sensitive micelles with charge-switch for controlling cellular uptake and drug release to treat metastatic breast cancer. Biomaterials, 2017, 114, 44-53.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.005] [PMID: 27842234]
[41]
Chen, G.; Wang, Y.; Xie, R.; Gong, S. Tumor-targeted pH/redox dual-sensitive unimolecular nanoparticles for efficient siRNA delivery. J. Control. Release, 2017, 259, 105-114.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.042] [PMID: 28159516]
[42]
Zuo, T.; Guan, Y.; Chang, M.; Zhang, F.; Lu, S.; Wei, T.; Shao, W.; Lin, G. RGD(Arg-Gly-Asp) internalized docetaxel-loaded pH sensitive liposomes: Preparation, characterization and antitumor efficacy in vivo and in vitro. Colloids Surf. B Biointerfaces, 2016, 147, 90-99.
[http://dx.doi.org/10.1016/j.colsurfb.2016.07.056] [PMID: 27497073]
[43]
Wang, Z.; Li, X.; Wang, D.; Zou, Y.; Qu, X.; He, C.; Deng, Y.; Jin, Y.; Zhou, Y.; Zhou, Y.; Liu, Y. Concurrently suppressing multidrug resistance and metastasis of breast cancer by co-delivery of paclitaxel and honokiol with pH-sensitive polymeric micelles. Acta Biomater., 2017, 62, 144-156.
[http://dx.doi.org/10.1016/j.actbio.2017.08.027] [PMID: 28842335]
[44]
Li, Z.; Qiu, L.; Chen, Q.; Hao, T.; Qiao, M.; Zhao, H.; Zhang, J.; Hu, H.; Zhao, X.; Chen, D.; Mei, L. pH-sensitive nanoparticles of poly(L-histidine)-poly(lactide-co-glycolide)-tocopheryl polyethylene glycol succinate for anti-tumor drug delivery. Acta Biomater., 2015, 11, 137-150.
[http://dx.doi.org/10.1016/j.actbio.2014.09.014] [PMID: 25242647]
[45]
Shalviri, A.; Raval, G.; Prasad, P.; Chan, C.; Liu, Q.; Heerklotz, H.; Rauth, A.M.; Wu, X.Y. pH-Dependent doxorubicin release from terpolymer of starch, polymethacrylic acid and polysorbate 80 nanoparticles for overcoming multi-drug resistance in human breast cancer cells. Eur. J. Pharm. Biopharm., 2012, 82(3), 587-597.
[http://dx.doi.org/10.1016/j.ejpb.2012.09.001] [PMID: 22995704]
[46]
She, W.; Luo, K.; Zhang, C.; Wang, G.; Geng, Y.; Li, L.; He, B.; Gu, Z. The potential of self-assembled, pH-responsive nanoparticles of mPEGylated peptide dendron-doxorubicin conjugates for cancer therapy. Biomaterials, 2013, 34(5), 1613-1623.
[http://dx.doi.org/10.1016/j.biomaterials.2012.11.007] [PMID: 23195490]
[47]
Adimoolam, M.G.; Amreddy, N.; Nalam, M.R.; Sunkara, M.V. A simple approach to design chitosan functionalized Fe3O4nanoparticles for pH responsive delivery of doxorubicin for cancer therapy. J. Magn. Magn. Mater., 2018, 448, 199-207.
[http://dx.doi.org/10.1016/j.jmmm.2017.09.018]
[48]
Lee, S.J.; Koo, H.; Lee, D.E.; Min, S.; Lee, S.; Chen, X.; Choi, Y.; Leary, J.F.; Park, K.; Jeong, S.Y.; Kwon, I.C.; Kim, K.; Choi, K. Tumor-homing photosensitizer-conjugated glycol chitosan nanoparticles for synchronous photodynamic imaging and therapy based on cellular on/off system. Biomaterials, 2011, 32(16), 4021-4029.
[http://dx.doi.org/10.1016/j.biomaterials.2011.02.009] [PMID: 21376388]
[49]
Dong, Z.; Feng, L.; Zhu, W.; Sun, X.; Gao, M.; Zhao, H.; Chao, Y.; Liu, Z. CaCO3 nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy. Biomaterials, 2016, 110, 60-70.
[http://dx.doi.org/10.1016/j.biomaterials.2016.09.025] [PMID: 27710833]
[50]
Ghorbani, M.; Hamishehkar, H. Decoration of gold nanoparticles with thiolated pH-responsive polymeric (PEG-b-p(2-dimethylamio ethyl methacrylate-co-itaconic acid) shell: A novel platform for targeting of anticancer agent. Mater. Sci. Eng. C, 2017, 81, 561-570.
[http://dx.doi.org/10.1016/j.msec.2017.08.021] [PMID: 28888010]
[51]
Axelstad, M.; Boberg, J.; Hougaard, K.S.; Christiansen, S.; Jacobsen, P.R.; Mandrup, K.R.; Nellemann, C.; Lund, S.P.; Hass, U. Effects of pre- and postnatal exposure to the UV-filter octyl methoxycinnamate (OMC) on the reproductive, auditory and neurological development of rat offspring. Toxicol. Appl. Pharmacol., 2011, 250(3), 278-290.
[http://dx.doi.org/10.1016/j.taap.2010.10.031] [PMID: 21059369]
[52]
Hou, J.; Guo, C.; Shi, Y.; Liu, E.; Dong, W.; Yu, B.; Liu, S.; Gong, J. A novel high drug loading mussel-inspired polydopamine hybrid nanoparticle as a pH-sensitive vehicle for drug delivery. Int. J. Pharm., 2017, 533(1), 73-83.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.058] [PMID: 28943209]
[53]
Wang, X.; Liu, Y.; Wang, S.; Shi, D.; Zhou, X.; Wang, C. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer. Appl. Surf. Sci., 2015, 332, 308-317.
[http://dx.doi.org/10.1016/j.apsusc.2015.01.204]
[54]
Yan, T.; Cheng, J.; Liu, Z.; Cheng, F.; Wei, X.; He, J. pH-Sensitive mesoporous silica nanoparticles for chemo-photodynamic combination therapy. Colloids Surf. B Biointerfaces, 2018, 161, 442-448.
[http://dx.doi.org/10.1016/j.colsurfb.2017.11.006] [PMID: 29121617]
[55]
Tang, S.; Meng, Q.; Sun, H.; Su, J.; Yin, Q.; Zhang, Z. Tumor-microenvironment-adaptive nanoparticles codeliver paclitaxel and siRNA to inhibit growth and lung metastasis of breast cancer. Adv. Funct. Mater., 2016, 26, 6033-6046.
[http://dx.doi.org/10.1002/adfm.201601703]
[56]
Tang, S.; Yin, Q.; Su, J.; Sun, H.; Meng, Q.; Chen, Y.; Chen, L.; Huang, Y.; Gu, W.; Xu, M.; Yu, H.; Zhang, Z.; Li, Y. Inhibition of metastasis and growth of breast cancer by pH-sensitive poly (β-amino ester) nanoparticles co-delivering two siRNA and paclitaxel. Biomaterials, 2015, 48, 1-15.
[http://dx.doi.org/10.1016/j.biomaterials.2015.01.049] [PMID: 25701027]
[57]
Eloy, J.O.; Petrilli, R.; Trevizan, L.N.F.; Chorilli, M. Immunoliposomes: A review on functionalization strategies and targets for drug delivery. Colloids Surf. B Biointerfaces, 2017, 159, 454-467.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.085] [PMID: 28837895]
[58]
Deng, Z.; Zhen, Z.; Hu, X.; Wu, S.; Xu, Z.; Chu, P.K. Hollow chitosan-silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials, 2011, 32(21), 4976-4986.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.050] [PMID: 21486679]
[59]
Gu, Z.; Chang, M.; Fan, Y.; Shi, Y.; Lin, G. NGR-modified pH-sensitive liposomes for controlled release and tumor target delivery of docetaxel. Colloids Surf. B Biointerfaces, 2017, 160, 395-405.
[http://dx.doi.org/10.1016/j.colsurfb.2017.09.052] [PMID: 28965079]
[60]
He, Y.J.; Xing, L.; Cui, P.F.; Zhang, J.L.; Zhu, Y.; Qiao, J.B.; Lyu, J.Y.; Zhang, M.; Luo, C.Q.; Zhou, Y.X.; Lu, N.; Jiang, H.L. Transferrin-inspired vehicles based on pH-responsive coordination bond to combat multidrug-resistant breast cancer. Biomaterials, 2017, 113, 266-278.
[http://dx.doi.org/10.1016/j.biomaterials.2016.11.001] [PMID: 27842254]
[61]
Li, T.; Amari, T.; Semba, K.; Yamamoto, T.; Takeoka, S. Construction and evaluation of pH-sensitive immunoliposomes for enhanced delivery of anticancer drug to ErbB2 over-expressing breast cancer cells. Nanomedicine (Lond.), 2017, 13(3), 1219-1227.
[http://dx.doi.org/10.1016/j.nano.2016.11.018] [PMID: 27965166]
[62]
Zhou, Z.; Badkas, A.; Stevenson, M.; Lee, J.Y.; Leung, Y.K. Herceptin conjugated PLGA-PHis-PEG pH sensitive nanoparticles for targeted and controlled drug delivery. Int. J. Pharm., 2015, 487(1-2), 81-90.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.081] [PMID: 25865568]
[63]
Chiang, C.S.; Hu, S.H.; Liao, B.J.; Chang, Y.C.; Chen, S.Y. Enhancement of cancer therapy efficacy by trastuzumab-conjugated and pH-sensitive nanocapsules with the simultaneous encapsulation of hydrophilic and hydrophobic compounds. Nanomedicine (Lond.), 2014, 10(1), 99-107.
[http://dx.doi.org/10.1016/j.nano.2013.07.009] [PMID: 23891983]
[64]
Li, J.; Huo, M.; Wang, J.; Zhou, J.; Mohammad, J.M.; Zhang, Y.; Zhu, Q.; Waddad, A.Y.; Zhang, Q. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Biomaterials, 2012, 33(7), 2310-2320.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.022] [PMID: 22166223]
[65]
Raina, S.; Missiakas, D. Making and breaking disulfide bonds. Annu. Rev. Microbiol., 1997, 51, 179-202.
[http://dx.doi.org/10.1146/annurev.micro.51.1.179] [PMID: 9343348]
[66]
Wen, H-Y.; Dong, H-Q.; Xie, W.J.; Li, Y-Y.; Wang, K.; Pauletti, G.M.; Shi, D.L. Rapidly disassembling nanomicelles with disulfide-linked PEG shells for glutathione-mediated intracellular drug delivery. Chem. Commun. (Camb.), 2011, 47(12), 3550-3552.
[http://dx.doi.org/10.1039/c0cc04983b] [PMID: 21327187]
[67]
Li, J.; Yin, T.; Wang, L.; Yin, L.; Zhou, J.; Huo, M. Biological evaluation of redox-sensitive micelles based on hyaluronic acid-deoxycholic acid conjugates for tumor-specific delivery of paclitaxel. Int. J. Pharm., 2015, 483(1-2), 38-48.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.002] [PMID: 25655715]
[68]
Deng, X.; Cao, M.; Zhang, J.; Hu, K.; Yin, Z.; Zhou, Z.; Xiao, X.; Yang, Y.; Sheng, W.; Wu, Y.; Zeng, Y. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials, 2014, 35(14), 4333-4344.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.006] [PMID: 24565525]
[69]
Yin, S.; Huai, J.; Chen, X.; Yang, Y.; Zhang, X.; Gan, Y.; Wang, G.; Gu, X.; Li, J. Intracellular delivery and antitumor effects of a redox-responsive polymeric paclitaxel conjugate based on hyaluronic acid. Acta Biomater., 2015, 26, 274-285.
[http://dx.doi.org/10.1016/j.actbio.2015.08.029] [PMID: 26300335]
[70]
Wu, M.; Meng, Q.; Chen, Y.; Zhang, L.; Li, M.; Cai, X.; Li, Y.; Yu, P.; Zhang, L.; Shi, J. Large pore-sized hollow mesoporous organosilica for redox-responsive gene delivery and synergistic cancer chemotherapy. Adv. Mater., 2016, 28(10), 1963-1969.
[http://dx.doi.org/10.1002/adma.201505524] [PMID: 26743228]
[71]
Asai, T. Nanoparticle-mediated delivery of anticancer agents to tumor angiogenic vessels. Biol. Pharm. Bull., 2012, 35(11), 1855-1861.
[http://dx.doi.org/10.1248/bpb.b212013] [PMID: 23123455]
[72]
Zhou, C.; Shen, H.; Guo, Y.; Xu, L.; Niu, J.; Zhang, Z.; Du, Z.; Chen, J.; Li, L.S. A versatile method for the preparation of water-soluble amphiphilic oligomer-coated semiconductor quantum dots with high fluorescence and stability. J. Colloid Interface Sci., 2010, 344(2), 279-285.
[http://dx.doi.org/10.1016/j.jcis.2010.01.015] [PMID: 20129617]
[73]
Pan, Y-J.; Li, D.; Jin, S.; Wei, C.; Wu, K-Y.; Guo, J. Folate-conjugated poly(N-(2-hydroxypropyl)methacrylamide-co-methacrylic acid) nanohydrogels with pH/redox dual-stimuli response for controlled drug release. Polym. Chem., 2013, 4, 3545.
[http://dx.doi.org/10.1039/c3py00249g]
[74]
Son, S.; Shin, S.; Rao, N.V.; Um, W.; Jeon, J.; Ko, H.; Deepagan, V.G.; Kwon, S.; Lee, J.Y.; Park, J.H. Anti-Trop2 antibody-conjugated bioreducible nanoparticles for targeted triple negative breast cancer therapy. Int. J. Biol. Macromol., 2018, 110, 406-415.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.113] [PMID: 29055700]
[75]
Wang, Y.; Shim, M.S.; Levinson, N.S.; Sung, H.W.; Xia, Y. Stimuli-responsive materials for controlled release of theranostic agents. Adv. Funct. Mater., 2014, 24(27), 4206-4220.
[http://dx.doi.org/10.1002/adfm.201400279] [PMID: 25477774]
[76]
Xu, P.; Meng, Q.; Sun, H.; Yin, Q.; Yu, H.; Zhang, Z.; Cao, M.; Zhang, Y.; Li, Y. Shrapnel nanoparticles loading docetaxel inhibit metastasis and growth of breast cancer. Biomaterials, 2015, 64, 10-20.
[http://dx.doi.org/10.1016/j.biomaterials.2015.06.017] [PMID: 26106797]
[77]
Namgung, R.; Mi Lee, Y.; Kim, J.; Jang, Y.; Lee, B.H.; Kim, I.S.; Sokkar, P.; Rhee, Y.M.; Hoffman, A.S.; Kim, W.J. Poly-cyclodextrin and poly-paclitaxel nano-assembly for anticancer therapy. Nat. Commun., 2014, 5, 3702.
[http://dx.doi.org/10.1038/ncomms4702] [PMID: 24805848]
[78]
Karandish, F.; Froberg, J.; Borowicz, P.; Wilkinson, J.C.; Choi, Y.; Mallik, S. Peptide-targeted, stimuli-responsive polymersomes for delivering a cancer stemness inhibitor to cancer stem cell microtumors. Colloids Surf. B Biointerfaces, 2018, 163, 225-235.
[http://dx.doi.org/10.1016/j.colsurfb.2017.12.036] [PMID: 29304437]
[79]
Harnoy, A.J.; Rosenbaum, I.; Tirosh, E.; Ebenstein, Y.; Shaharabani, R.; Beck, R.; Amir, R.J. Enzyme-responsive amphiphilic PEG-dendron hybrids and their assembly into smart micellar nanocarriers. J. Am. Chem. Soc., 2014, 136(21), 7531-7534.
[http://dx.doi.org/10.1021/ja413036q] [PMID: 24568366]
[80]
Qin, S.Y.; Feng, J.; Rong, L.; Jia, H.Z.; Chen, S.; Liu, X.J.; Luo, G.F.; Zhuo, R.X.; Zhang, X.Z. Theranostic GO-based nanohybrid for tumor induced imaging and potential combinational tumor therapy. Small, 2014, 10(3), 599-608.
[http://dx.doi.org/10.1002/smll.201301613] [PMID: 24000121]
[81]
Liu, Y.; Zhang, D.; Qiao, Z.Y.; Qi, G.B.; Liang, X.J.; Chen, X.G.; Wang, H. A peptide-network weaved nanoplatform with tumor microenvironment responsiveness and deep tissue penetration capability for cancer therapy. Adv. Mater., 2015, 27(34), 5034-5042.
[http://dx.doi.org/10.1002/adma.201501502] [PMID: 26198072]
[82]
Dai, Z.; Yao, Q.; Zhu, L. MMP2-sensitive PEG-lipid copolymers: A new type of tumor-targeted P-glycoprotein inhibitor. ACS Appl. Mater. Interfaces, 2016, 8(20), 12661-12673.
[http://dx.doi.org/10.1021/acsami.6b03064] [PMID: 27145021]
[83]
Taylor, M.J.; Tomlins, P.; Sahota, T.S. Thermoresponsive Gels. Gels, 2017, 3(1), 4.
[http://dx.doi.org/10.3390/gels3010004] [PMID: 30920501]
[84]
Gandhi, A.; Paul, A.; Sen, S.O.; Sen, K.K. Studies on thermoresponsive polymers: Phase behaviour, drug delivery and biomedical applications. Asian J Pharm Sci, 2015, 10, 99-107.
[http://dx.doi.org/10.1016/j.ajps.2014.08.010]
[85]
Abulateefeh, S.R.; Spain, S.G.; Aylott, J.W.; Chan, W.C.; Garnett, M.C.; Alexander, C. Thermoresponsive polymer colloids for drug delivery and cancer therapy. Macromol. Biosci., 2011, 11(12), 1722-1734.
[http://dx.doi.org/10.1002/mabi.201100252] [PMID: 22012834]
[86]
Zhang, Z.; Wang, J.; Nie, X.; Wen, T.; Ji, Y.; Wu, X.; Zhao, Y.; Chen, C. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J. Am. Chem. Soc., 2014, 136(20), 7317-7326.
[http://dx.doi.org/10.1021/ja412735p] [PMID: 24773323]
[87]
Qu, Y.; Chu, B.Y.; Peng, J.R.; Liao, J.F.; Qi, T.T.; Shi, K. A biodegradable thermo-responsive hybrid hydrogel: Therapeutic applications in preventing the post-operative recurrence of breast cancer. NPG Asia Mater., 2015, 7, e207-e210.
[http://dx.doi.org/10.1038/am.2015.83]
[88]
Li, H-F.; Wu, C.; Xia, M.; Zhao, H.; Zhao, M-X.; Hou, J. Targeted and controlled drug delivery using a temperature and ultra-violet responsive liposome with excellent breast cancer suppressing ability. RSC Advances, 2015, 5, 27630-27639.
[http://dx.doi.org/10.1039/C5RA01553G]
[89]
Su, S.; Tian, Y.; Li, Y.; Ding, Y.; Ji, T.; Wu, M.; Wu, Y.; Nie, G. “Triple-punch” strategy for triple negative breast cancer therapy with minimized drug dosage and improved antitumor efficacy. ACS Nano, 2015, 9(2), 1367-1378.
[http://dx.doi.org/10.1021/nn505729m] [PMID: 25611071]
[90]
Ou, Y.C.; Webb, J.A.; Faley, S.; Shae, D.; Talbert, E.M.; Lin, S.; Cutright, C.C.; Wilson, J.T.; Bellan, L.M.; Bardhan, R. Gold nanoantenna-mediated photothermal drug delivery from thermosensitive liposomes in breast cancer. ACS Omega, 2016, 1(2), 234-243.
[http://dx.doi.org/10.1021/acsomega.6b00079] [PMID: 27656689]
[91]
Rehman, M.; Ihsan, A.; Madni, A.; Bajwa, S.Z.; Shi, D.; Webster, T.J.; Khan, W.S. Solid lipid nanoparticles for thermoresponsive targeting: evidence from spectrophotometry, electrochemical, and cytotoxicity studies. Int. J. Nanomedicine, 2017, 12, 8325-8336.
[http://dx.doi.org/10.2147/IJN.S147506] [PMID: 29200845]
[92]
Su, Y.; Huang, N.; Chen, D.; Zhang, L.; Dong, X.; Sun, Y.; Zhu, X.; Zhang, F.; Gao, J.; Wang, Y.; Fan, K.; Lo, P.; Li, W.; Ling, C. Successful in vivo hyperthermal therapy toward breast cancer by Chinese medicine shikonin-loaded thermosensitive micelle. Int. J. Nanomedicine, 2017, 12, 4019-4035.
[http://dx.doi.org/10.2147/IJN.S132639] [PMID: 28603416]
[93]
Needham, D; Anyarambhatla, G; Kong, G New temperature- sensitive liposome for use with mild hyperthermia: Characterization and testing in a human tumor xenograft model advances in brief a new temperature-sensitive liposome for use with mild hyperthermia, 1, 60(5), 1197-201.
[PMID: 10728674]
[94]
Hauck, M.L.; LaRue, S.M.; Petros, W.P.; Poulson, J.M.; Yu, D.; Spasojevic, I.; Pruitt, A.F.; Klein, A.; Case, B.; Thrall, D.E.; Needham, D.; Dewhirst, M.W. Phase I trial of doxorubicin-containing low temperature sensitive liposomes in spontaneous canine tumors. Clin. Cancer Res., 2006, 12(13), 4004-4010.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0226] [PMID: 16818699]
[95]
Celsion Corporation. https://celsion.com/thermodox (Accessed March 20, 2020).
[96]
McBain, S.C.; Yiu, H.H.P.; Dobson, J. Magnetic nanoparticles for gene and drug delivery. Int. J. Nanomedicine, 2008, 3(2), 169-180.
[PMID: 18686777]
[97]
Estelrich, J.; Escribano, E.; Queralt, J.; Busquets, M.A. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int. J. Mol. Sci., 2015, 16(4), 8070-8101.
[http://dx.doi.org/10.3390/ijms16048070] [PMID: 25867479]
[98]
Yao, J.; Feng, J.; Chen, J. External-stimuli responsive systems for cancer theranostic. Asian J Pharm Sci, 2016, 11, 585-595.
[http://dx.doi.org/10.1016/j.ajps.2016.06.001]
[99]
Yallapu, M.M.; Othman, S.F.; Curtis, E.T.; Bauer, N.A.; Chauhan, N.; Kumar, D.; Jaggi, M.; Chauhan, S.C. Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. Int. J. Nanomedicine, 2012, 7, 1761-1779.
[PMID: 22619526]
[100]
Parsian, M.; Unsoy, G.; Mutlu, P.; Yalcin, S.; Tezcaner, A.; Gunduz, U. Loading of Gemcitabine on chitosan magnetic nanoparticles increases the anti-cancer efficacy of the drug. Eur. J. Pharmacol., 2016, 784, 121-128.
[http://dx.doi.org/10.1016/j.ejphar.2016.05.016] [PMID: 27181067]
[101]
Natesan, S.; Ponnusamy, C.; Sugumaran, A.; Chelladurai, S.; Shanmugam Palaniappan, S.; Palanichamy, R. Artemisinin loaded chitosan magnetic nanoparticles for the efficient targeting to the breast cancer. Int. J. Biol. Macromol, 2017, 104(Pt B), 1853-1859.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.137]
[102]
Chomoucka, J.; Drbohlavova, J.; Huska, D.; Adam, V.; Kizek, R.; Hubalek, J. Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res., 2010, 62(2), 144-149.
[http://dx.doi.org/10.1016/j.phrs.2010.01.014] [PMID: 20149874]
[103]
Wu, J.; Wang, Y.; Jiang, W.; Xu, S.; Tian, R. Synthesis and characterization of recyclable clusters of magnetic nanoparticles as doxorubicin carriers for cancer therapy. Appl. Surf. Sci., 2014, 321, 43-49.
[http://dx.doi.org/10.1016/j.apsusc.2014.09.184]
[104]
Zou, Y.; Liu, P.; Liu, C.H.; Zhi, X.T. Doxorubicin-loaded mesoporous magnetic nanoparticles to induce apoptosis in breast cancer cells. Biomed. Pharmacother., 2015, 69, 355-360.
[http://dx.doi.org/10.1016/j.biopha.2014.12.012] [PMID: 25661382]
[105]
Tung, W.L.; Hu, S.H.; Liu, D.M. Synthesis of nanocarriers with remote magnetic drug release control and enhanced drug delivery for intracellular targeting of cancer cells. Acta Biomater., 2011, 7(7), 2873-2882.
[http://dx.doi.org/10.1016/j.actbio.2011.03.021] [PMID: 21439410]
[106]
Tarvirdipour, S.; Vasheghani-Farahani, E.; Soleimani, M.; Bardania, H. Functionalized magnetic dextran-spermine nanocarriers for targeted delivery of doxorubicin to breast cancer cells. Int. J. Pharm., 2016, 501(1-2), 331-341.
[http://dx.doi.org/10.1016/j.ijpharm.2016.02.012] [PMID: 26875475]
[107]
Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161-171.
[http://dx.doi.org/10.1038/nrc1566] [PMID: 15738981]
[108]
Zhao, Y-Z.; Du, L-N.; Lu, C-T.; Jin, Y-G.; Ge, S-P. Potential and problems in ultrasound-responsive drug delivery systems. Int. J. Nanomedicine, 2013, 8, 1621-1633.
[PMID: 23637531]
[109]
Baghbani, F.; Moztarzadeh, F.; Mohandesi, J.A.; Yazdian, F.; Mokhtari-Dizaji, M. Novel alginate-stabilized doxorubicin-loaded nanodroplets for ultrasounic theranosis of breast cancer. Int. J. Biol. Macromol, 2016, 93(Pt A), 512-519.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.09.008]
[110]
Baghbani, F.; Chegeni, M.; Moztarzadeh, F.; Mohandesi, J.A.; Mokhtari-Dizaji, M. Ultrasonic nanotherapy of breast cancer using novel ultrasound-responsive alginate-shelled perfluorohexane nanodroplets: In vitro and in vivo evaluation. Mater. Sci. Eng. C, 2017, 77, 698-707.
[http://dx.doi.org/10.1016/j.msec.2017.02.017] [PMID: 28532082]
[111]
Marshalek, J.P.; Sheeran, P.S.; Ingram, P.; Dayton, P.A.; Witte, R.S.; Matsunaga, T.O. Intracellular delivery and ultrasonic activation of folate receptor-targeted phase-change contrast agents in breast cancer cells in vitro. J. Control. Release, 2016, 243, 69-77.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.010] [PMID: 27686582]
[112]
Milgroom, A.; Intrator, M.; Madhavan, K.; Mazzaro, L.; Shandas, R.; Liu, B.; Park, D. Mesoporous silica nanoparticles as a breast-cancer targeting ultrasound contrast agent. Colloids Surf. B Biointerfaces, 2014, 116, 652-657.
[http://dx.doi.org/10.1016/j.colsurfb.2013.10.038] [PMID: 24269054]
[113]
Yan, F.; Li, L.; Deng, Z.; Jin, Q.; Chen, J.; Yang, W.; Yeh, C.K.; Wu, J.; Shandas, R.; Liu, X.; Zheng, H. Paclitaxel-liposome-microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers. J. Control. Release, 2013, 166(3), 246-255.
[http://dx.doi.org/10.1016/j.jconrel.2012.12.025] [PMID: 23306023]
[114]
Hong, G.; Antaris, A.L.; Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng., 2017, 1, 1-22.
[http://dx.doi.org/10.1038/s41551-016-0010]
[115]
Ntziachristos, V.; Ripoll, J.; Wang, L.V.; Weissleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol., 2005, 23(3), 313-320.
[http://dx.doi.org/10.1038/nbt1074] [PMID: 15765087]
[116]
Tian, J.; Ding, L.; Ju, H.; Yang, Y.; Li, X.; Shen, Z.; Zhu, Z.; Yu, J.S.; Yang, C.J. A multifunctional nanomicelle for real-time targeted imaging and precise near-infrared cancer therapy. Angew. Chem. Int. Ed. Engl., 2014, 53(36), 9544-9549.
[http://dx.doi.org/10.1002/anie.201405490] [PMID: 25045069]
[117]
Song, G.; Liang, C.; Yi, X.; Zhao, Q.; Cheng, L.; Yang, K.; Liu, Z. Perfluorocarbon-loaded hollow Bi2Se3 nanoparticles for timely supply of oxygen under near-infrared light to enhance the radiotherapy of cancer. Adv. Mater., 2016, 28(14), 2716-2723.
[http://dx.doi.org/10.1002/adma.201504617] [PMID: 26848553]
[118]
Feng, B.; Xu, Z.; Zhou, F.; Yu, H.; Sun, Q.; Wang, D.; Tang, Z.; Yu, H.; Yin, Q.; Zhang, Z.; Li, Y. Near infrared light-actuated gold nanorods with cisplatin-polypeptide wrapping for targeted therapy of triple negative breast cancer. Nanoscale, 2015, 7(36), 14854-14864.
[http://dx.doi.org/10.1039/C5NR03693C] [PMID: 26222373]
[119]
Zeng, L.; Pan, Y.; Tian, Y.; Wang, X.; Ren, W.; Wang, S.; Lu, G.; Wu, A. Doxorubicin-loaded NaYF4:Yb/Tm-TiO2 inorganic photosensitizers for NIR-triggered photodynamic therapy and enhanced chemotherapy in drug-resistant breast cancers. Biomaterials, 2015, 57, 93-106.
[http://dx.doi.org/10.1016/j.biomaterials.2015.04.006] [PMID: 25913254]
[120]
Tzoneva, R.; Uzunova, V.; Apostolova, S.; Krüger-Genge, A.; Neffe, A.T.; Jung, F.; Lendlein, A. Angiogenic potential of endothelial and tumor cells seeded on gelatin-based hydrogels in response to electrical stimulations. Clin. Hemorheol. Microcirc., 2016, 64(4), 941-949.
[http://dx.doi.org/10.3233/CH-168040] [PMID: 27792001]
[121]
Ge, J.; Neofytou, E.; Cahill, T.J., III; Beygui, R.E.; Zare, R.N. Drug release from electric-field-responsive nanoparticles. ACS Nano, 2012, 6(1), 227-233.
[http://dx.doi.org/10.1021/nn203430m] [PMID: 22111891]
[122]
Xu, H.; Yang, D.; Cai, C.; Gou, J.; Zhang, Y.; Wang, L.; Zhong, H.; Tang, X. Dual-responsive mPEG-PLGA-PGlu hybrid-core nanoparticles with a high drug loading to reverse the multidrug resistance of breast cancer: an in vitro and in vivo evaluation. Acta Biomater., 2015, 16, 156-168.
[http://dx.doi.org/10.1016/j.actbio.2015.01.039] [PMID: 25662165]
[123]
Anirudhan, T.S.; Christa, J. Binusreejayan. pH and magnetic field sensitive folic acid conjugated protein-polyelectrolyte complex for the controlled and targeted delivery of 5-fluorouracil. J. Ind. Eng. Chem., 2018, 57, 199-207.
[http://dx.doi.org/10.1016/j.jiec.2017.08.024]
[124]
Verma, N.K.; Purohit, M.P.; Equbal, D.; Dhiman, N.; Singh, A.; Kar, A.K.; Shankar, J.; Tehlan, S.; Patnaik, S. Targeted Smart pH and thermoresponsive N,O-carboxymethyl chitosan conjugated nanogels for enhanced therapeutic efficacy of doxorubicin in MCF-7 breast cancer cells. Bioconjug. Chem., 2016, 27(11), 2605-2619.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00366] [PMID: 27643823]
[125]
Ahmed, M.; Douek, M. The role of magnetic nanoparticles in the localization and treatment of breast cancer. BioMed Res. Int., 2013, 2013, 281230
[http://dx.doi.org/10.1155/2013/281230] [PMID: 23936784]
[126]
Tziveleka, L.A.; Bilalis, P.; Chatzipavlidis, A.; Boukos, N.; Kordas, G. Development of multiple stimuli responsive magnetic polymer nanocontainers as efficient drug delivery systems. Macromol. Biosci., 2014, 14(1), 131-141.
[http://dx.doi.org/10.1002/mabi.201300212] [PMID: 24106236]
[127]
Kim, D.H.; Vitol, E.A.; Liu, J.; Balasubramanian, S.; Gosztola, D.J.; Cohen, E.E.; Novosad, V.; Rozhkova, E.A. Stimuli-responsive magnetic nanomicelles as multifunctional heat and cargo delivery vehicles. Langmuir, 2013, 29(24), 7425-7432.
[http://dx.doi.org/10.1021/la3044158] [PMID: 23351096]
[128]
Fang, K.; Song, L.; Gu, Z.; Yang, F.; Zhang, Y.; Gu, N. Magnetic field activated drug release system based on magnetic PLGA microspheres for chemo-thermal therapy. Colloids Surf. B Biointerfaces, 2015, 136, 712-720.
[http://dx.doi.org/10.1016/j.colsurfb.2015.10.014] [PMID: 26513754]
[129]
Patra, S.; Roy, E.; Karfa, P.; Kumar, S.; Madhuri, R.; Sharma, P.K. Dual-responsive polymer coated superparamagnetic nanoparticle for targeted drug delivery and hyperthermia treatment. ACS Appl. Mater. Interfaces, 2015, 7(17), 9235-9246.
[http://dx.doi.org/10.1021/acsami.5b01786] [PMID: 25893447]
[130]
Feng, Q.; Zhang, W.; Yang, X.; Li, Y.; Hao, Y.; Zhang, H.; Hou, L.; Zhang, Z. pH/Ultrasound dual-responsive gas generator for ultrasound imaging-guided therapeutic inertial cavitation and sonodynamic therapy. Adv. Healthc. Mater., 2018, 7(5), 1-10.
[http://dx.doi.org/10.1002/adhm.201700957] [PMID: 29141114]
[131]
Kang, B.; Kukreja, A.; Song, D.; Huh, Y.M.; Haam, S. Strategies for using nanoprobes to perceive and treat cancer activity: a review. J. Biol. Eng., 2017, 11, 13.
[http://dx.doi.org/10.1186/s13036-016-0044-1] [PMID: 28344644]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy