Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

99mTc-labeled Small Molecules for Diagnosis of Alzheimer’s Disease: Past, Recent and Future Perspectives

Author(s): Sajjad Molavipordanjani, Saeed Emami and Seyed Jalal Hosseinimehr*

Volume 26, Issue 12, 2019

Page: [2166 - 2189] Pages: 24

DOI: 10.2174/0929867325666180410104023

Price: $65

conference banner
Abstract

Background: Alzheimer’s disease (AD) is an age-related progressive neurodegenerative disease. Its prominent hallmarks are extracellular deposition of β-amyloids (amyloid plaques), intracellular neurofibrillary tangles (NTFs), neurodegeneration and finally loss of cognitive function. Hence, AD diagnosis in the early stage and monitoring of the disease are of great importance.

Methods: In this review article, we have reviewed recent efforts for design, synthesis and evaluation of 99mTc labeled small molecule for AD imaging purposes.

Results: These small molecules include derivatives of Congo red, benzothiazole, benzofuran, benzoxazole, naphthalene, biphenyl, chalcone, flavone, aurone, stilbene, curcumin, dibenzylideneacetone, quinoxaline, etc. The different aspects of 99mTc-labeled small molecules including chemical structure, their affinity toward amyloid plaques, BBB permeation and in vivo/vitro stability will be discussed.

Conclusion: The findings of this review confirm the importance of 99mTc-labeled small molecules for AD imaging. Future studies based on the pharmacophore of these designed compounds are needed for improvement of these molecules for clinical application.

Keywords: Alzheimer's disease, 99mTc, small molecule, AD imaging, β-Amyloid plaques, SPECT.

[1]
Masters, C.L.; Bateman, R.; Blennow, K.; Rowe, C.C.; Sperling, R.A.; Cummings, J.L. Alzheimer’s disease. Nat. Rev. Dis. Primers, 2015, 1, 15056.
[http://dx.doi.org/10.1038/nrdp.2015.56] [PMID: 27188934]
[2]
Wiseman, F.K.; Al-Janabi, T.; Hardy, J.; Karmiloff-Smith, A.; Nizetic, D.; Tybulewicz, V.L.; Fisher, E.M.; Strydom, A. A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome. Nat. Rev. Neurosci., 2015, 16(9), 564-574.
[http://dx.doi.org/10.1038/nrn3983] [PMID: 26243569]
[3]
Riek, R.; Eisenberg, D.S. The activities of amyloids from a structural perspective. Nature, 2016, 539(7628), 227-235.
[http://dx.doi.org/10.1038/nature20416] [PMID: 27830791]
[4]
El Haj, M.; Kapogiannis, D. Time distortions in Alzheimer’s disease: a systematic review and theoretical integration. npj Aging and Mechanisms of Disease., 2, (1). 2016.
[5]
Iqbal, K.; Liu, F.; Gong, C-X. Tau and neurodegenerative disease: the story so far. Nat. Rev. Neurol., 2016, 12(1), 15-27.
[http://dx.doi.org/10.1038/nrneurol.2015.225] [PMID: 26635213]
[6]
Bishop, N.A.; Lu, T.; Yankner, B.A. Neural mechanisms of ageing and cognitive decline. Nature, 2010, 464(7288), 529-535.
[http://dx.doi.org/10.1038/nature08983] [PMID: 20336135]
[7]
Liu, J.; Costantino, I.; Venugopalan, N.; Fischetti, R.F.; Hyman, B.T.; Frosch, M.P.; Gomez-Isla, T.; Makowski, L. Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue. Sci. Rep., 2016, 6, 33079.
[http://dx.doi.org/10.1038/srep33079] [PMID: 27629394]
[8]
Mullard, A. Alzheimer amyloid hypothesis lives on. Nat. Rev. Drug Discov., 2016, 16(1), 3-5.
[http://dx.doi.org/10.1038/nrd.2016.281] [PMID: 28031570]
[9]
Karran, E.; Mercken, M.; De Strooper, B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov., 2011, 10(9), 698-712.
[http://dx.doi.org/10.1038/nrd3505] [PMID: 21852788]
[10]
Canter, R.G.; Penney, J.; Tsai, L-H. The road to restoring neural circuits for the treatment of Alzheimer’s disease. Nature, 2016, 539(7628), 187-196.
[http://dx.doi.org/10.1038/nature20412] [PMID: 27830780]
[11]
Herrup, K. The case for rejecting the amyloid cascade hypothesis. Nat. Neurosci., 2015, 18(6), 794-799.
[http://dx.doi.org/10.1038/nn.4017] [PMID: 26007212]
[12]
Shafiei, S.S.; Guerrero-Muñoz, M.J.; Castillo-Carranza, D.L. Tau Oligomers: Cytotoxicity, Propagation, and Mitochondrial Damage. Front. Aging Neurosci., 2017, 9, 83.
[http://dx.doi.org/10.3389/fnagi.2017.00083] [PMID: 28420982]
[13]
Jiao, S.S.; Shen, L.L.; Zhu, C.; Bu, X.L.; Liu, Y.H.; Liu, C.H.; Yao, X.Q.; Zhang, L.L.; Zhou, H.D.; Walker, D.G.; Tan, J.; Götz, J.; Zhou, X.F.; Wang, Y.J. Brain-derived neurotrophic factor protects against tau-related neurodegeneration of Alzheimer’s disease. Transl. Psychiatry, 2016, 6(10), e907.
[http://dx.doi.org/10.1038/tp.2016.186] [PMID: 27701410]
[14]
Ando, K.; Laborde, Q.; Lazar, A.; Godefroy, D.; Youssef, I.; Amar, M.; Pooler, A.; Potier, M.C.; Delatour, B.; Duyckaerts, C. Inside Alzheimer brain with CLARITY: senile plaques, neurofibrillary tangles and axons in 3-D. Acta Neuropathol., 2014, 128(3), 457-459.
[http://dx.doi.org/10.1007/s00401-014-1322-y] [PMID: 25069432]
[15]
Xu, M.M.; Ren, W.M.; Tang, X.C.; Hu, Y.H.; Zhang, H.Y. Advances in development of fluorescent probes for detecting amyloid-β aggregates. Acta Pharmacol. Sin., 2016, 37(6), 719-730.
[http://dx.doi.org/10.1038/aps.2015.155] [PMID: 26997567]
[16]
Baumann, B.; Woehrer, A.; Ricken, G.; Augustin, M.; Mitter, C.; Pircher, M.; Kovacs, G.G.; Hitzenberger, C.K. Visualization of neuritic plaques in Alzheimer’s disease by polarization-sensitive optical coherence microscopy. Sci. Rep., 2017, 7, 43477.
[http://dx.doi.org/10.1038/srep43477] [PMID: 28262719]
[17]
Ueda, M.; Horibata, Y.; Shono, M.; Misumi, Y.; Oshima, T.; Su, Y.; Tasaki, M.; Shinriki, S.; Kawahara, S.; Jono, H.; Obayashi, K.; Ogawa, H.; Ando, Y. Clinicopathological features of senile systemic amyloidosis: an ante- and post-mortem study. Mod. Pathol., 2011, 24(12), 1533-1544.
[http://dx.doi.org/10.1038/modpathol.2011.117] [PMID: 21822203]
[18]
Klunk, W.E.; Debnath, M.L.; Pettegrew, J.W. Chrysamine-G binding to Alzheimer and control brain: autopsy study of a new amyloid probe. Neurobiol. Aging, 1995, 16(4), 541-548.
[http://dx.doi.org/10.1016/0197-4580(95)00058-M] [PMID: 8544903]
[19]
Yang, Y.; Cui, M. Radiolabeled bioactive benzoheterocycles for imaging β-amyloid plaques in Alzheimer’s disease. Eur. J. Med. Chem., 2014, 87, 703-721.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.012] [PMID: 25305715]
[20]
Camus, V.; Payoux, P.; Barré, L.; Desgranges, B.; Voisin, T.; Tauber, C.; La Joie, R.; Tafani, M.; Hommet, C.; Chételat, G.; Mondon, K.; de La Sayette, V.; Cottier, J.P.; Beaufils, E.; Ribeiro, M.J.; Gissot, V.; Vierron, E.; Vercouillie, J.; Vellas, B.; Eustache, F.; Guilloteau, D. Using PET with 18F-AV-45 (florbetapir) to quantify brain amyloid load in a clinical environment. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(4), 621-631.
[http://dx.doi.org/10.1007/s00259-011-2021-8] [PMID: 22252372]
[21]
Okamura, N.; Yanai, K. Florbetapir (18F), a PET imaging agent that binds to amyloid plaques for the potential detection of Alzheimer’s disease. IDrugs, 2010, 13(12), 890-899.
[PMID: 21154149]
[22]
Mountz, J.M.; Laymon, C.M.; Cohen, A.D.; Zhang, Z.; Price, J.C.; Boudhar, S.; McDade, E.; Aizenstein, H.J.; Klunk, W.E.; Mathis, C.A. Comparison of qualitative and quantitative imaging characteristics of [11C]PiB and [18F]flutemetamol in normal control and Alzheimer’s subjects. Neuroimage Clin., 2015, 9, 592-598.
[http://dx.doi.org/10.1016/j.nicl.2015.10.007] [PMID: 26640770]
[23]
Heurling, K.; Leuzy, A.; Zimmer, E.R.; Lubberink, M.; Nordberg, A. Imaging β-amyloid using [(18)F]flutemetamol positron emission tomography: from dosimetry to clinical diagnosis. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43(2), 362-373.
[http://dx.doi.org/10.1007/s00259-015-3208-1] [PMID: 26440450]
[24]
Koole, M.; Lewis, D.M.; Buckley, C.; Nelissen, N.; Vandenbulcke, M.; Brooks, D.J.; Vandenberghe, R.; Van Laere, K. Whole-body biodistribution and radiation dosimetry of 18F-GE067: a radioligand for in vivo brain amyloid imaging. J. Nucl. Med., 2009, 50(5), 818-822.
[http://dx.doi.org/10.2967/jnumed.108.060756] [PMID: 19372469]
[25]
Zhang, W.; Oya, S.; Kung, M.P.; Hou, C.; Maier, D.L.; Kung, H.F. F-18 stilbenes as PET imaging agents for detecting beta-amyloid plaques in the brain. J. Med. Chem., 2005, 48(19), 5980-5988.
[http://dx.doi.org/10.1021/jm050166g] [PMID: 16162001]
[26]
Zhang, W.; Oya, S.; Kung, M.P.; Hou, C.; Maier, D.L.; Kung, H.F. F-18 Polyethyleneglycol stilbenes as PET imaging agents targeting Abeta aggregates in the brain. Nucl. Med. Biol., 2005, 32(8), 799-809.
[http://dx.doi.org/10.1016/j.nucmedbio.2005.06.001] [PMID: 16253804]
[27]
Newberg, A.B.; Wintering, N.A.; Plössl, K.; Hochold, J.; Stabin, M.G.; Watson, M.; Skovronsky, D.; Clark, C.M.; Kung, M.P.; Kung, H.F. Safety, biodistribution, and dosimetry of 123I-IMPY: a novel amyloid plaque-imaging agent for the diagnosis of Alzheimer’s disease. J. Nucl. Med., 2006, 47(5), 748-754.
[PMID: 16644743]
[28]
[123I/125I]6-Iodo-2-(4´-dimethylamino)-phenyl-imidazo[1,2-a] pyridine. Molecular Imaging and Contrast Agent Database (MICAD) [Internet], 2004.
[29]
Jia, J.; Cui, M.; Dai, J.; Liu, B. 99mTc(CO)3-Labeled Benzothiazole Derivatives Preferentially Bind Cerebrovascular Amyloid: Potential Use as Imaging Agents for Cerebral Amyloid Angiopathy. Mol. Pharm., 2015, 12(8), 2937-2946.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00209] [PMID: 26065726]
[30]
Satpati, D. Synthesis and evaluation of a phenylbenzothiazole-based 99mTc(CO)3-radiotracer for possible application in imaging of β-amyloid plaques in Alzheimer’s disease. J. Radioanal. Nucl. Chem., 2014, 302(3), 1339-1344.
[http://dx.doi.org/10.1007/s10967-014-3548-5]
[31]
Zhang, X. 99mTc-Labeled 2-Arylbenzothiazoles: Abeta Imaging Probes with Favorable Brain Pharmacokinetics for Single-Photon Emission Computed Tomography. Bioconjug. Chem., 2016.
[32]
Saha, G.B. Fundamentals of nuclear pharmacy. In:; Springer Science & Business Media, 2010.
[http://dx.doi.org/10.1007/978-1-4419-5860-0]
[33]
Willem, M.; Tahirovic, S.; Busche, M.A.; Ovsepian, S.V.; Chafai, M.; Kootar, S.; Hornburg, D.; Evans, L.D.; Moore, S.; Daria, A.; Hampel, H.; Müller, V.; Giudici, C.; Nuscher, B.; Wenninger-Weinzierl, A.; Kremmer, E.; Heneka, M.T.; Thal, D.R.; Giedraitis, V.; Lannfelt, L.; Müller, U.; Livesey, F.J.; Meissner, F.; Herms, J.; Konnerth, A.; Marie, H.; Haass, C. η-Secretase processing of APP inhibits neuronal activity in the hippocampus. Nature, 2015, 526(7573), 443-447.
[http://dx.doi.org/10.1038/nature14864] [PMID: 26322584]
[34]
Godoy, J.A.; Rios, J.A.; Zolezzi, J.M.; Braidy, N.; Inestrosa, N.C. Signaling pathway cross talk in Alzheimer’s disease. Cell Commun. Signal., 2014, 12(1), 23.
[http://dx.doi.org/10.1186/1478-811X-12-23] [PMID: 24679124]
[35]
Spires-Jones, T.L.; Hyman, B.T. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron, 2014, 82(4), 756-771.
[http://dx.doi.org/10.1016/j.neuron.2014.05.004] [PMID: 24853936]
[36]
Laurén, J.; Gimbel, D.A.; Nygaard, H.B.; Gilbert, J.W.; Strittmatter, S.M. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature, 2009, 457(7233), 1128-1132.
[http://dx.doi.org/10.1038/nature07761] [PMID: 19242475]
[37]
Manocha, G.D.; Puig, K.L.; Austin, S.A.; Seyb, K.; Glicksman, M.A.; Combs, C.K. Characterization of Novel Src Family Kinase Inhibitors to Attenuate Microgliosis. PLoS One, 2015, 10(7), e0132604.
[http://dx.doi.org/10.1371/journal.pone.0132604] [PMID: 26161952]
[38]
Tong, L.M.; Fong, H.; Huang, Y. Stem cell therapy for Alzheimer’s disease and related disorders: current status and future perspectives. Exp. Mol. Med, 2015. 47e151
[39]
Takeda, S.; Wegmann, S.; Cho, H.; DeVos, S.L.; Commins, C.; Roe, A.D.; Nicholls, S.B.; Carlson, G.A.; Pitstick, R.; Nobuhara, C.K.; Costantino, I.; Frosch, M.P.; Müller, D.J.; Irimia, D.; Hyman, B.T. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer’s disease brain. Nat. Commun., 2015, 6, 8490.
[http://dx.doi.org/10.1038/ncomms9490] [PMID: 26458742]
[40]
Waterhouse, R.N. Determination of lipophilicity and its use as a predictor of blood-brain barrier penetration of molecular imaging agents. Mol. Imaging Biol., 2003, 5(6), 376-389.
[http://dx.doi.org/10.1016/j.mibio.2003.09.014] [PMID: 14667492]
[41]
Hansch, C.; Leo, A. Substituent constants for correlation analysis in chemistry and biology; In: Wiley, 1979.
[42]
Dishino, D.D.; Welch, M.J.; Kilbourn, M.R.; Raichle, M.E. Relationship between lipophilicity and brain extraction of C-11-labeled radiopharmaceuticals. J. Nucl. Med., 1983, 24(11), 1030-1038.
[PMID: 6605416]
[43]
Cui, M. Past and recent progress of molecular imaging probes for β-amyloid plaques in the brain. Curr. Med. Chem., 2014, 21(1), 82-112.
[http://dx.doi.org/10.2174/09298673113209990216] [PMID: 23992340]
[44]
Ametamey, S.M.; Honer, M.; Schubiger, P.A. Molecular imaging with PET. Chem. Rev., 2008, 108(5), 1501-1516.
[http://dx.doi.org/10.1021/cr0782426] [PMID: 18426240]
[45]
Zeng, F.; Goodman, M.M. Fluorine-18 radiolabeled heterocycles as PET tracers for imaging β-amyloid plaques in Alzheimer’s disease. Curr. Top. Med. Chem., 2013, 13(8), 909-919.
[http://dx.doi.org/10.2174/1568026611313080004] [PMID: 23590167]
[46]
Ni, R.; Gillberg, P.G.; Bergfors, A.; Marutle, A.; Nordberg, A. Amyloid tracers detect multiple binding sites in Alzheimer’s disease brain tissue. Brain, 2013, 136(Pt 7), 2217-2227.
[http://dx.doi.org/10.1093/brain/awt142] [PMID: 23757761]
[47]
Dezutter, N.A.; Dom, R.J.; de Groot, T.J.; Bormans, G.M.; Verbruggen, A.M. 99mTc-MAMA-chrysamine G, a probe for beta-amyloid protein of Alzheimer’s disease. Eur. J. Nucl. Med., 1999, 26(11), 1392-1399.
[http://dx.doi.org/10.1007/s002590050470] [PMID: 10552079]
[48]
Dezutter, N.A.; Sciot, R.M.; de Groot, T.J.; Bormans, G.M.; Verbruggen, A.M. In vitro affinity of 99Tcm-labelled N2S2 conjugates of chrysamine G for amyloid deposits of systemic amyloidosis. Nucl. Med. Commun., 2001, 22(5), 553-558.
[http://dx.doi.org/10.1097/00006231-200105000-00014] [PMID: 11388578]
[49]
Banerjee, S.R.; Maresca, K.P.; Francesconi, L.; Valliant, J.; Babich, J.W.; Zubieta, J. New directions in the coordination chemistry of 99mTc: a reflection on technetium core structures and a strategy for new chelate design. Nucl. Med. Biol., 2005, 32(1), 1-20.
[http://dx.doi.org/10.1016/j.nucmedbio.2004.09.001] [PMID: 15691657]
[50]
Carroll, V.; Demoin, D.W.; Hoffman, T.J.; Jurisson, S.S. Inorganic chemistry in nuclear imaging and radiotherapy: current and future directions. Radiochim. Acta, 2012, 100(8-9), 653-667.
[http://dx.doi.org/10.1524/ract.2012.1964] [PMID: 25382874]
[51]
Sarko, D.; Eisenhut, M.; Haberkorn, U.; Mier, W. Bifunctional chelators in the design and application of radiopharmaceuticals for oncological diseases. Curr. Med. Chem., 2012, 19(17), 2667-2688.
[http://dx.doi.org/10.2174/092986712800609751] [PMID: 22455579]
[52]
Price, E.W.; Orvig, C. Matching chelators to radiometals for radiopharmaceuticals. Chem. Soc. Rev., 2014, 43(1), 260-290.
[http://dx.doi.org/10.1039/C3CS60304K] [PMID: 24173525]
[53]
Bhattacharyya, S.; Dixit, M. Metallic radionuclides in the development of diagnostic and therapeutic radiopharmaceuticals. Dalton Trans., 2011, 40(23), 6112-6128.
[http://dx.doi.org/10.1039/c1dt10379b] [PMID: 21541393]
[54]
Kluba, C.A.; Mindt, T.L. Click-to-Chelate: development of technetium and rhenium-tricarbonyl labeled radiopharmaceuticals. Molecules, 2013, 18(3), 3206-3226.
[http://dx.doi.org/10.3390/molecules18033206] [PMID: 23481882]
[55]
Mindt, T.L.; Struthers, H.; Brans, L.; Anguelov, T.; Schweinsberg, C.; Maes, V.; Tourwé, D.; Schibli, R. “Click to chelate”: synthesis and installation of metal chelates into biomolecules in a single step. J. Am. Chem. Soc., 2006, 128(47), 15096-15097.
[http://dx.doi.org/10.1021/ja066779f] [PMID: 17117854]
[56]
Struthers, H.; Spingler, B.; Mindt, T.L.; Schibli, R. “Click-to-chelate”: design and incorporation of triazole-containing metal-chelating systems into biomolecules of diagnostic and therapeutic interest. Chemistry, 2008, 14(20), 6173-6183.
[http://dx.doi.org/10.1002/chem.200702024] [PMID: 18494020]
[57]
Agdeppa, E.D.; Kepe, V.; Liu, J.; Flores-Torres, S.; Satyamurthy, N.; Petric, A.; Cole, G.M.; Small, G.W.; Huang, S.C.; Barrio, J.R. Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for beta-amyloid plaques in Alzheimer’s disease. J. Neurosci., 2001, 21(24), RC189.
[http://dx.doi.org/10.1523/JNEUROSCI.21-24-j0004.2001] [PMID: 11734604]
[58]
Thompson, P.W.; Ye, L.; Morgenstern, J.L.; Sue, L.; Beach, T.G.; Judd, D.J.; Shipley, N.J.; Libri, V.; Lockhart, A. Interaction of the amyloid imaging tracer FDDNP with hallmark Alzheimer’s disease pathologies. J. Neurochem., 2009, 109(2), 623-630.
[http://dx.doi.org/10.1111/j.1471-4159.2009.05996.x] [PMID: 19226369]
[59]
Cui, M.; Tang, R.; Li, Z.; Ren, H.; Liu, B. 99mTc- and Re-labeled 6-dialkylamino-2-naphthylethylidene derivatives as imaging probes for β-amyloid plaques. Bioorg. Med. Chem. Lett., 2011, 21(3), 1064-1068.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.096] [PMID: 21216146]
[60]
Zhuang, Z.P.; Kung, M.P.; Hou, C.; Ploessl, K.; Kung, H.F. Biphenyls labeled with technetium 99m for imaging beta-amyloid plaques in the brain. Nucl. Med. Biol., 2005, 32(2), 171-184.
[http://dx.doi.org/10.1016/j.nucmedbio.2004.10.002] [PMID: 15721763]
[61]
Rivière, C.; Richard, T.; Quentin, L.; Krisa, S.; Mérillon, J.M.; Monti, J.P. Inhibitory activity of stilbenes on Alzheimer’s beta-amyloid fibrils in vitro. Bioorg. Med. Chem., 2007, 15(2), 1160-1167.
[http://dx.doi.org/10.1016/j.bmc.2006.09.069] [PMID: 17049256]
[62]
Kung, H.F.; Choi, S.R.; Qu, W.; Zhang, W.; Skovronsky, D. 18F stilbenes and styrylpyridines for PET imaging of A beta plaques in Alzheimer’s disease: a miniperspective. J. Med. Chem., 2010, 53(3), 933-941.
[http://dx.doi.org/10.1021/jm901039z] [PMID: 19845387]
[63]
Hayne, D.J.; North, A.J.; Fodero-Tavoletti, M.; White, J.M.; Hung, L.W.; Rigopoulos, A.; McLean, C.A.; Adlard, P.A.; Ackermann, U.; Tochon-Danguy, H.; Villemagne, V.L.; Barnham, K.J.; Donnelly, P.S. Rhenium and technetium complexes that bind to amyloid-β plaques. Dalton Trans., 2015, 44(11), 4933-4944.
[http://dx.doi.org/10.1039/C4DT02969K] [PMID: 25515141]
[64]
Iikuni, S.; Ono, M.; Watanabe, H.; Matsumura, K.; Yoshimura, M.; Harada, N.; Kimura, H.; Nakayama, M.; Saji, H. Enhancement of binding affinity for amyloid aggregates by multivalent interactions of 99mTc-hydroxamamide complexes. Mol. Pharm., 2014, 11(4), 1132-1139.
[http://dx.doi.org/10.1021/mp400499y] [PMID: 24673484]
[65]
Iikuni, S.; Ono, M.; Watanabe, H.; Matsumura, K.; Yoshimura, M.; Kimura, H.; Ishibashi-Ueda, H.; Okamoto, Y.; Ihara, M.; Saji, H. Imaging of Cerebral Amyloid Angiopathy with Bivalent (99m)Tc-Hydroxamamide Complexes. Sci. Rep., 2016, 6, 25990.
[http://dx.doi.org/10.1038/srep25990] [PMID: 27181612]
[66]
Iikuni, S.; Ono, M.; Watanabe, H.; Yoshimura, M.; Ishibashi-Ueda, H.; Ihara, M.; Saji, H. Novel Bivalent 99mTc-Complex with N-Methyl-Substituted Hydroxamamide as Probe for Imaging of Cerebral Amyloid Angiopathy. PLoS One, 2016, 11(9), e0163969.
[http://dx.doi.org/10.1371/journal.pone.0163969] [PMID: 27689870]
[67]
Jia, J. 99mTc-labeled benzothiazole and stilbene derivatives as imaging agents for Aβ plaques in cerebral amyloid angiopathy. MedChemComm, 2014, 5(2), 153-158.
[http://dx.doi.org/10.1039/C3MD00195D]
[68]
Xu, F.; Fu, Z.; Dass, S.; Kotarba, A.E.; Davis, J.; Smith, S.O.; Van Nostrand, W.E. Cerebral vascular amyloid seeds drive amyloid β-protein fibril assembly with a distinct anti-parallel structure. Nat. Commun., 2016, 7, 13527.
[http://dx.doi.org/10.1038/ncomms13527] [PMID: 27869115]
[69]
Jaunmuktane, Z.; Mead, S.; Ellis, M.; Wadsworth, J.D.; Nicoll, A.J.; Kenny, J.; Launchbury, F.; Linehan, J.; Richard-Loendt, A.; Walker, A.S.; Rudge, P.; Collinge, J.; Brandner, S. Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy. Nature, 2015, 525(7568), 247-250.
[http://dx.doi.org/10.1038/nature15369] [PMID: 26354483]
[70]
Kisler, K.; Nelson, A.R.; Montagne, A.; Zlokovic, B.V. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat. Rev. Neurosci., 2017, 18(7), 419-434.
[http://dx.doi.org/10.1038/nrn.2017.48] [PMID: 28515434]
[71]
Jellinger, K.A. Prevalence and impact of cerebrovascular lesions in Alzheimer and lewy body diseases. Neurodegener. Dis., 2010, 7(1-3), 112-115.
[http://dx.doi.org/10.1159/000285518] [PMID: 20173339]
[72]
Zhao, X.; Dong, W.; Gao, Y.; Shin, D.S.; Ye, Q.; Su, L.; Jiang, F.; Zhao, B.; Miao, J. Novel indolyl-chalcone derivatives inhibit A549 lung cancer cell growth through activating Nrf-2/HO-1 and inducing apoptosis in vitro and in vivo. Sci. Rep., 2017, 7(1), 3919.
[http://dx.doi.org/10.1038/s41598-017-04411-3] [PMID: 28634389]
[73]
Mori, M.; Tottone, L.; Quaglio, D.; Zhdanovskaya, N.; Ingallina, C.; Fusto, M.; Ghirga, F.; Peruzzi, G.; Crestoni, M.E.; Simeoni, F.; Giulimondi, F.; Talora, C.; Botta, B.; Screpanti, I.; Palermo, R. Identification of a novel chalcone derivative that inhibits Notch signaling in T-cell acute lymphoblastic leukemia. Sci. Rep., 2017, 7(1), 2213.
[http://dx.doi.org/10.1038/s41598-017-02316-9] [PMID: 28526832]
[74]
Nuti, E.; Bassani, B.; Camodeca, C.; Rosalia, L.; Cantelmo, A.; Gallo, C.; Baci, D.; Bruno, A.; Orlandini, E.; Nencetti, S.; Noonan, D.M.; Albini, A.; Rossello, A. Synthesis and antiangiogenic activity study of new hop chalcone Xanthohumol analogues. Eur. J. Med. Chem., 2017, 138, 890-899.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.024] [PMID: 28750311]
[75]
Gomes, M.N.; Braga, R.C.; Grzelak, E.M.; Neves, B.J.; Muratov, E.; Ma, R.; Klein, L.L.; Cho, S.; Oliveira, G.R.; Franzblau, S.G.; Andrade, C.H. QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity. Eur. J. Med. Chem., 2017, 137, 126-138.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.026] [PMID: 28582669]
[76]
Ono, M.; Hori, M.; Haratake, M.; Tomiyama, T.; Mori, H.; Nakayama, M. Structure-activity relationship of chalcones and related derivatives as ligands for detecting of beta-amyloid plaques in the brain. Bioorg. Med. Chem., 2007, 15(19), 6388-6396.
[http://dx.doi.org/10.1016/j.bmc.2007.06.055] [PMID: 17644339]
[77]
Ono, M.; Haratake, M.; Mori, H.; Nakayama, M. Novel chalcones as probes for in vivo imaging of β-amyloid plaques in Alzheimer’s brains. Bioorg. Med. Chem., 2007, 15(21), 6802-6809.
[http://dx.doi.org/10.1016/j.bmc.2007.07.052] [PMID: 17826102]
[78]
Ono, M.; Watanabe, R.; Kawashima, H.; Cheng, Y.; Kimura, H.; Watanabe, H.; Haratake, M.; Saji, H.; Nakayama, M. Fluoro-pegylated chalcones as positron emission tomography probes for in vivo imaging of beta-amyloid plaques in Alzheimer’s disease. J. Med. Chem., 2009, 52(20), 6394-6401.
[http://dx.doi.org/10.1021/jm901057p] [PMID: 19757822]
[79]
Li, Z.; Cui, M.; Dai, J.; Wang, X.; Yu, P.; Yang, Y.; Jia, J.; Fu, H.; Ono, M.; Jia, H.; Saji, H.; Liu, B. Novel cyclopentadienyl tricarbonyl complexes of (99m)Tc mimicking chalcone as potential single-photon emission computed tomography imaging probes for β-amyloid plaques in brain. J. Med. Chem., 2013, 56(2), 471-482.
[http://dx.doi.org/10.1021/jm3014184] [PMID: 23240831]
[80]
Ono, M.; Ikeoka, R.; Watanabe, H.; Kimura, H.; Fuchigami, T.; Haratake, M.; Saji, H.; Nakayama, M. Synthesis and evaluation of novel chalcone derivatives with (99m)Tc/Re complexes as potential probes for detection of β-amyloid plaques. ACS Chem. Neurosci., 2010, 1(9), 598-607.
[http://dx.doi.org/10.1021/cn100042d] [PMID: 22778849]
[81]
Minutolo, F.; Katzenellenbogen, J.A. A convenient three-component synthesis of substituted cyclopentadienyl tricarbonyl rhenium complexes. J. Am. Chem. Soc., 1998, 120(18), 4514-4515.
[http://dx.doi.org/10.1021/ja980433q]
[82]
Wang, D.; Sun, Q.; Wu, J.; Wang, W.; Yao, G.; Li, T.; Li, X.; Li, L.; Zhang, Y.; Cui, W.; Song, S. A new Prenylated Flavonoid induces G0/G1 arrest and apoptosis through p38/JNK MAPK pathways in Human Hepatocellular Carcinoma cells. Sci. Rep., 2017, 7(1), 5736.
[http://dx.doi.org/10.1038/s41598-017-05955-0] [PMID: 28720813]
[83]
Mantawy, E.M.; Esmat, A.; El-Bakly, W.M.; Salah ElDin, R.A.; El-Demerdash, E. Mechanistic clues to the protective effect of chrysin against doxorubicin-induced cardiomyopathy: Plausible roles of p53, MAPK and AKT pathways. Sci. Rep., 2017, 7(1), 4795.
[http://dx.doi.org/10.1038/s41598-017-05005-9] [PMID: 28684738]
[84]
Arsalandeh, F.; Ahmadian, S.; Foolad, F.; Khodagholi, F.; Farimani, M.M.; Shaerzadeh, F. Beneficial Effect of Flavone Derivatives on Aβ-Induced Memory Deficit Is Mediated by Peroxisome Proliferator-Activated Receptor γ Coactivator 1α: A Comparative Study. Int. J. Toxicol., 2015, 34(3), 274-283.
[http://dx.doi.org/10.1177/1091581815584165] [PMID: 25972379]
[85]
Fuchigami, T.; Yamashita, Y.; Kawasaki, M.; Ogawa, A.; Haratake, M.; Atarashi, R.; Sano, K.; Nakagaki, T.; Ubagai, K.; Ono, M.; Yoshida, S.; Nishida, N.; Nakayama, M. Characterisation of radioiodinated flavonoid derivatives for SPECT imaging of cerebral prion deposits. Sci. Rep., 2015, 5, 18440.
[http://dx.doi.org/10.1038/srep18440] [PMID: 26669576]
[86]
Alsaif, G.; Almosnid, N.; Hawkins, I.; Taylor, Z.; Knott, D.L.T.; Handy, S.; Altman, E.; Gao, Y. Evaluation of fourteen aurone derivatives as potential anti-cancer agents. Curr. Pharm. Biotechnol., 2017, 18(5), 384-390.
[http://dx.doi.org/10.2174/1389201018666170502112303] [PMID: 28464771]
[87]
Bandgar, B.P.; Patil, S.A.; Korbad, B.L.; Biradar, S.C.; Nile, S.N.; Khobragade, C.N. Synthesis and biological evaluation of a novel series of 2,2-bisaminomethylated aurone analogues as anti-inflammatory and antimicrobial agents. Eur. J. Med. Chem., 2010, 45(7), 3223-3227.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.045] [PMID: 20430485]
[88]
Li, Y.; Qiang, X.; Luo, L.; Li, Y.; Xiao, G.; Tan, Z.; Deng, Y. Synthesis and evaluation of 4-hydroxyl aurone derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2016, 24(10), 2342-2351.
[http://dx.doi.org/10.1016/j.bmc.2016.04.012] [PMID: 27079124]
[89]
Li, Y.; Qiang, X.; Luo, L.; Yang, X.; Xiao, G.; Liu, Q.; Ai, J.; Tan, Z.; Deng, Y. Aurone Mannich base derivatives as promising multifunctional agents with acetylcholinesterase inhibition, anti-β-amyloid aggragation and neuroprotective properties for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 126, 762-775.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.009] [PMID: 27951485]
[90]
Espinosa-Bustos, C.; Cortés-Arriagada, D.; Soto-Arriaza, M.A.; Robinson-Duggon, J.; Pizarro, N.; Cabrera, A.R.; Fuentealba, D.; Salas, C.O. Fluorescence properties of aurone derivatives: an experimental and theoretical study with some preliminary biological applications. Photochem. Photobiol. Sci., 2017, 16(8), 1268-1276.
[http://dx.doi.org/10.1039/C7PP00078B] [PMID: 28636041]
[91]
Yang, Y.; Zhu, L.; Chen, X.; Zhang, H. Binding research on flavones as ligands of β-amyloid aggregates by fluorescence and their 3D-QSAR, docking studies. J. Mol. Graph. Model., 2010, 29(4), 538-545.
[http://dx.doi.org/10.1016/j.jmgm.2010.10.006] [PMID: 21094069]
[92]
Ono, M.; Maya, Y.; Haratake, M.; Ito, K.; Mori, H.; Nakayama, M. Aurones serve as probes of beta-amyloid plaques in Alzheimer’s disease. Biochem. Biophys. Res. Commun., 2007, 361(1), 116-121.
[http://dx.doi.org/10.1016/j.bbrc.2007.06.162] [PMID: 17644062]
[93]
Shan, L. 18F-Labeled fluoropegylated 6-fluoroethoxy-4′-dimethylaminoflavone, 6-(2-(2-fluoro-ethoxy)-ethoxy)-4′-dimethylaminoflavone, and 6-(2-(2-(2-fluoro-ethoxy)-ethoxy)ethoxy)-4′-dimethylaminoflavone. In:Molecular Imaging and Contrast Agent Database; MICAD, 2004.
[94]
Watanabe, H.; Ono, M.; Kimura, H.; Kagawa, S.; Nishii, R.; Fuchigami, T.; Haratake, M.; Nakayama, M.; Saji, H. A dual fluorinated and iodinated radiotracer for PET and SPECT imaging of β-amyloid plaques in the brain. Bioorg. Med. Chem. Lett., 2011, 21(21), 6519-6522.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.063] [PMID: 21920750]
[95]
Yang, Y.; Zhu, L.; Cui, M.; Tang, R.; Zhang, H. Preparation of classical Re/99mTc(CO)3(+) and novel 99mTc(CO)2(NO)2+ cores complexed with flavonol derivatives and their binding characteristics for Abeta(1-40) aggregates. Bioorg. Med. Chem. Lett., 2010, 20(17), 5337-5344.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.026] [PMID: 20675135]
[96]
Ono, M.; Ikeoka, R.; Watanabe, H.; Kimura, H.; Fuchigami, T.; Haratake, M.; Saji, H.; Nakayama, M. 99mTc/Re complexes based on flavone and aurone as SPECT probes for imaging cerebral β-amyloid plaques. Bioorg. Med. Chem. Lett., 2010, 20(19), 5743-5748.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.004] [PMID: 20797860]
[97]
Keri, R.S.; Patil, M.R.; Patil, S.A.; Budagumpi, S. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur. J. Med. Chem., 2015, 89, 207-251.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.059] [PMID: 25462241]
[98]
Keri, R.S.; Quintanova, C.; Marques, S.M.; Esteves, A.R.; Cardoso, S.M.; Santos, M.A. Design, synthesis and neuroprotective evaluation of novel tacrine-benzothiazole hybrids as multi-targeted compounds against Alzheimer’s disease. Bioorg. Med. Chem., 2013, 21(15), 4559-4569.
[http://dx.doi.org/10.1016/j.bmc.2013.05.028] [PMID: 23768661]
[99]
Dyrager, C. Synthesis and evaluation of benzothiazole-triazole and benzothiadiazole-triazole scaffolds as potential molecular probes for amyloid-[small beta] aggregation. New J. Chem., 2017, 41(4), 1566-1573.
[http://dx.doi.org/10.1039/C6NJ01703G]
[100]
Ma, J.; Bao, G.; Wang, L.; Li, W.; Xu, B.; Du, B.; Lv, J.; Zhai, X.; Gong, P. Design, synthesis, biological evaluation and preliminary mechanism study of novel benzothiazole derivatives bearing indole-based moiety as potent antitumor agents. Eur. J. Med. Chem., 2015, 96, 173-186.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.018] [PMID: 25874341]
[101]
Mintun, M.A.; Larossa, G.N.; Sheline, Y.I.; Dence, C.S.; Lee, S.Y.; Mach, R.H.; Klunk, W.E.; Mathis, C.A.; DeKosky, S.T.; Morris, J.C. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology, 2006, 67(3), 446-452.
[http://dx.doi.org/10.1212/01.wnl.0000228230.26044.a4] [PMID: 16894106]
[102]
Rabinovici, G.D.; Furst, A.J.; O’Neil, J.P.; Racine, C.A.; Mormino, E.C.; Baker, S.L.; Chetty, S.; Patel, P.; Pagliaro, T.A.; Klunk, W.E.; Mathis, C.A.; Rosen, H.J.; Miller, B.L.; Jagust, W.J. 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology, 2007, 68(15), 1205-1212.
[http://dx.doi.org/10.1212/01.wnl.0000259035.98480.ed] [PMID: 17420404]
[103]
Vandenberghe, R.; Van Laere, K.; Ivanoiu, A.; Salmon, E.; Bastin, C.; Triau, E.; Hasselbalch, S.; Law, I.; Andersen, A.; Korner, A.; Minthon, L.; Garraux, G.; Nelissen, N.; Bormans, G.; Buckley, C.; Owenius, R.; Thurfjell, L.; Farrar, G.; Brooks, D.J. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann. Neurol., 2010, 68(3), 319-329.
[http://dx.doi.org/10.1002/ana.22068] [PMID: 20687209]
[104]
Nelissen, N.; Van Laere, K.; Thurfjell, L.; Owenius, R.; Vandenbulcke, M.; Koole, M.; Bormans, G.; Brooks, D.J.; Vandenberghe, R. Phase 1 study of the Pittsburgh compound B derivative 18F-flutemetamol in healthy volunteers and patients with probable Alzheimer disease. J. Nucl. Med., 2009, 50(8), 1251-1259.
[http://dx.doi.org/10.2967/jnumed.109.063305] [PMID: 19617318]
[105]
Cifelli, J.L.; Chung, T.S.; Liu, H.; Prangkio, P.; Mayer, M.; Yang, J. Benzothiazole Amphiphiles Ameliorate Amyloid β-Related Cell Toxicity and Oxidative Stress. ACS Chem. Neurosci., 2016, 7(6), 682-688.
[http://dx.doi.org/10.1021/acschemneuro.6b00085] [PMID: 27055069]
[106]
Song, J.M.; DiBattista, A.M.; Sung, Y.M.; Ahn, J.M.; Turner, R.S.; Yang, J.; Pak, D.T.; Lee, H.K.; Hoe, H.S. A tetra(ethylene glycol) derivative of benzothiazole aniline ameliorates dendritic spine density and cognitive function in a mouse model of Alzheimer’s disease. Exp. Neurol., 2014, 252, 105-113.
[http://dx.doi.org/10.1016/j.expneurol.2013.11.023] [PMID: 24316432]
[107]
Serdons, K.; Verduyckt, T.; Cleynhens, J.; Terwinghe, C.; Mortelmans, L.; Bormans, G.; Verbruggen, A. Synthesis and evaluation of a (99m)Tc-BAT-phenylbenzothiazole conjugate as a potential in vivo tracer for visualization of amyloid beta. Bioorg. Med. Chem. Lett., 2007, 17(22), 6086-6090.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.055] [PMID: 17904367]
[108]
Serdons, K. Synthesis and evaluation of two uncharged99mTc-labeled derivatives of thioflavin-T as potential tracer agents for fibrillar brain amyloid. J. Labelled Comp. Radiopharm., 2009, 52(6), 227-235.
[http://dx.doi.org/10.1002/jlcr.1592]
[109]
Serdons, K. Development of99mTc-thioflavin-T derivatives for detection of systemic amyloidosis. J. Labelled Comp. Radiopharm., 2008, 51(10), 357-367.
[http://dx.doi.org/10.1002/jlcr.1536]
[110]
Sagnou, M. A Phenylbenzothiazole Conjugate with the Tricarbonyl fac-[M(I)(CO)3]+ (M = Re, 99Tc, 99mTc) Core for Imaging of β-Amyloid Plaques. Eur. J. Inorg. Chem., 2012, 2012(27), 4279-4286.
[http://dx.doi.org/10.1002/ejic.201200450]
[111]
Chen, X.; Yu, P.; Zhang, L.; Liu, B. Synthesis and biological evaluation of 99mTc, Re-monoamine-monoamide conjugated to 2-(4-aminophenyl)benzothiazole as potential probes for beta-amyloid plaques in the brain. Bioorg. Med. Chem. Lett., 2008, 18(4), 1442-1445.
[http://dx.doi.org/10.1016/j.bmcl.2007.12.071] [PMID: 18191400]
[112]
Jia, J.; Zhou, K.; Dai, J.; Liu, B.; Cui, M. 2-Arylbenzothiazoles labeled with [CpRe/99mTc(CO)3] and evaluated as β-amyloid imaging probes. Eur. J. Med. Chem., 2016, 124, 763-772.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.001] [PMID: 27639367]
[113]
Jia, J.; Cui, M.; Dai, J.; Liu, B. 2-Phenylbenzothiazole conjugated with cyclopentadienyl tricarbonyl [CpM(CO)3] (M = Re, (99m)Tc) complexes as potential imaging probes for β-amyloid plaques. Dalton Trans., 2015, 44(14), 6406-6415.
[http://dx.doi.org/10.1039/C5DT00023H] [PMID: 25747395]
[114]
Lin, K.S.; Debnath, M.L.; Mathis, C.A.; Klunk, W.E. Synthesis and beta-amyloid binding properties of rhenium 2-phenylbenzothiazoles. Bioorg. Med. Chem. Lett., 2009, 19(8), 2258-2262.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.096] [PMID: 19285394]
[115]
Khanam, H. Shamsuzzaman, Bioactive Benzofuran derivatives: A review. Eur. J. Med. Chem., 2015, 97, 483-504.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.039] [PMID: 25482554]
[116]
Watanabe, H.; Kawasaki, A.; Sano, K.; Ono, M.; Saji, H. Synthesis and evaluation of copper-64 labeled benzofuran derivatives targeting β-amyloid aggregates. Bioorg. Med. Chem., 2016, 24(16), 3618-3623.
[http://dx.doi.org/10.1016/j.bmc.2016.06.001] [PMID: 27301677]
[117]
Watanabe, H.; Ono, M.; Iikuni, S.; Yoshimura, M.; Matsumura, K.; Kimura, H.; Saji, H.A. (68)Ga complex based on benzofuran scaffold for the detection of β-amyloid plaques. Bioorg. Med. Chem. Lett., 2014, 24(20), 4834-4837.
[http://dx.doi.org/10.1016/j.bmcl.2014.08.058] [PMID: 25227717]
[118]
Ono, M.; Fuchi, Y.; Fuchigami, T.; Kobashi, N.; Kimura, H.; Haratake, M.; Saji, H.; Nakayama, M. Novel Benzofurans with (99m)Tc Complexes as Probes for Imaging Cerebral β-Amyloid Plaques. ACS Med. Chem. Lett., 2010, 1(8), 443-447.
[http://dx.doi.org/10.1021/ml100140d] [PMID: 24900230]
[119]
Ono, M.; Cheng, Y.; Kimura, H.; Cui, M.; Kagawa, S.; Nishii, R.; Saji, H. Novel 18F-labeled benzofuran derivatives with improved properties for positron emission tomography (PET) imaging of β-amyloid plaques in Alzheimer’s brains. J. Med. Chem., 2011, 54(8), 2971-2979.
[http://dx.doi.org/10.1021/jm200057u] [PMID: 21428407]
[120]
Klunk, W.E.; Mathis, C.A. Isotopically-labeled benzofuran compounds as imaging agents for amyloidogenic proteins. In:Google Patents; , 2012.
[121]
Oh, Y.J.; Kim, D.; Oh, S.; Jang, E.J.; Won, H.Y.; Jeong, H.; Jeong, M.G.; Choo, H.P.; Hwang, E.S. Novel benzoxazole derivatives DCPAB and HPAB attenuate Th1 cell-mediated inflammation through T-bet suppression. Sci. Rep., 2017, 7, 42144.
[http://dx.doi.org/10.1038/srep42144] [PMID: 28169371]
[122]
Yaghmaei, S.; Ghalayani, P.; Salami, S.; Nourmohammadian, F.; Koohestanimobarhan, S.; Imeni, V. Hybrid Benzoxazole-Coumarin Compounds Induce Death Receptor-Mediated Switchable Apoptotic and Necroptotic Cell Death on HN-5 Head and Neck Cancer Cell Line. Anticancer. Agents Med. Chem., 2017, 17(4), 608-614.
[http://dx.doi.org/10.2174/1871520616666160725110844] [PMID: 27456663]
[123]
Cui, M.; Ono, M.; Kimura, H.; Ueda, M.; Nakamoto, Y.; Togashi, K.; Okamoto, Y.; Ihara, M.; Takahashi, R.; Liu, B.; Saji, H. Novel 18F-labeled benzoxazole derivatives as potential positron emission tomography probes for imaging of cerebral β-amyloid plaques in Alzheimer’s disease. J. Med. Chem., 2012, 55(21), 9136-9145.
[http://dx.doi.org/10.1021/jm300251n] [PMID: 22690944]
[124]
Watanabe, H. Synthesis and biological evaluation of 123I-labeled pyridyl benzoxazole derivatives: novel [small beta]-amyloid imaging probes for single-photon emission computed tomography. RSC Advances, 2015, 5(2), 1009-1015.
[http://dx.doi.org/10.1039/C4RA10742J]
[125]
Wang, X.; Cui, M.; Yu, P.; Li, Z.; Yang, Y.; Jia, H.; Liu, B. Synthesis and biological evaluation of novel technetium-99m labeled phenylbenzoxazole derivatives as potential imaging probes for β-amyloid plaques in brain. Bioorg. Med. Chem. Lett., 2012, 22(13), 4327-4331.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.010] [PMID: 22652052]
[126]
Cui, M.; Wang, X.; Yu, P.; Zhang, J.; Li, Z.; Zhang, X.; Yang, Y.; Ono, M.; Jia, H.; Saji, H.; Liu, B. Synthesis and evaluation of novel 18F labeled 2-pyridinylbenzoxazole and 2-pyridinylbenzothiazole derivatives as ligands for positron emission tomography (PET) imaging of β-amyloid plaques. J. Med. Chem., 2012, 55(21), 9283-9296.
[http://dx.doi.org/10.1021/jm300973k] [PMID: 22974116]
[127]
Cheng, Y.; Ono, M.; Kimura, H.; Kagawa, S.; Nishii, R.; Saji, H. A novel 18F-labeled pyridyl benzofuran derivative for imaging of β-amyloid plaques in Alzheimer’s brains. Bioorg. Med. Chem. Lett., 2010, 20(20), 6141-6144.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.016] [PMID: 20817524]
[128]
Cheng, Y.; Ono, M.; Kimura, H.; Ueda, M.; Saji, H. Technetium-99m labeled pyridyl benzofuran derivatives as single photon emission computed tomography imaging probes for β-amyloid plaques in Alzheimer’s brains. J. Med. Chem., 2012, 55(5), 2279-2286.
[http://dx.doi.org/10.1021/jm201513c] [PMID: 22364445]
[129]
Wang, X.; Cui, M.; Jia, J.; Liu, B. (99m)Tc-labeled-2-arylbenzoxazole derivatives as potential Aβ imaging probes for single-photon emission computed tomography. Eur. J. Med. Chem., 2015, 89, 331-339.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.046] [PMID: 25462249]
[130]
Maheshwari, R.K.; Singh, A.K.; Gaddipati, J.; Srimal, R.C. Multiple biological activities of curcumin: a short review. Life Sci., 2006, 78(18), 2081-2087.
[http://dx.doi.org/10.1016/j.lfs.2005.12.007] [PMID: 16413584]
[131]
Anand, P.; Thomas, S.G.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Sung, B.; Tharakan, S.T.; Misra, K.; Priyadarsini, I.K.; Rajasekharan, K.N.; Aggarwal, B.B. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem. Pharmacol., 2008, 76(11), 1590-1611.
[http://dx.doi.org/10.1016/j.bcp.2008.08.008] [PMID: 18775680]
[132]
Prasad, S.; Gupta, S.C.; Tyagi, A.K.; Aggarwal, B.B. Curcumin, a component of golden spice: from bedside to bench and back. Biotechnol. Adv., 2014, 32(6), 1053-1064.
[http://dx.doi.org/10.1016/j.biotechadv.2014.04.004] [PMID: 24793420]
[133]
Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Ramirez-Tortosa, M. Curcumin and Health. Molecules, 2016, 21(3), 264.
[http://dx.doi.org/10.3390/molecules21030264] [PMID: 26927041]
[134]
Tang, M.; Taghibiglou, C. The Mechanisms of Action of Curcumin in Alzheimer’s Disease. J. Alzheimers Dis., 2017, 58(4), 1003-1016.
[http://dx.doi.org/10.3233/JAD-170188] [PMID: 28527218]
[135]
Goozee, K.G.; Shah, T.M.; Sohrabi, H.R.; Rainey-Smith, S.R.; Brown, B.; Verdile, G.; Martins, R.N. Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer’s disease. Br. J. Nutr., 2016, 115(3), 449-465.
[http://dx.doi.org/10.1017/S0007114515004687] [PMID: 26652155]
[136]
Rokka, J.; Snellman, A.; Zona, C.; La Ferla, B.; Nicotra, F.; Salmona, M.; Forloni, G.; Haaparanta-Solin, M.; Rinne, J.O.; Solin, O. Synthesis and evaluation of a (18)F-curcumin derivate for β-amyloid plaque imaging. Bioorg. Med. Chem., 2014, 22(9), 2753-2762.
[http://dx.doi.org/10.1016/j.bmc.2014.03.010] [PMID: 24702859]
[137]
Li, Y. Selective Imaging of Soluble Amyloid Beta Species Using Near Infrared Fluorescent Curcumin Analogues. J. Nucl. Med., 2015, 56(Suppl. 3), 389.
[138]
Sagnou, M.; Benaki, D.; Triantis, C.; Tsotakos, T.; Psycharis, V.; Raptopoulou, C.P.; Pirmettis, I.; Papadopoulos, M.; Pelecanou, M. Curcumin as the OO bidentate ligand in “2 + 1” complexes with the [M(CO)3]+ (M = Re, 99mTc) tricarbonyl core for radiodiagnostic applications. Inorg. Chem., 2011, 50(4), 1295-1303.
[http://dx.doi.org/10.1021/ic102228u] [PMID: 21250638]
[139]
Yang, Y.; Cui, M.; Jin, B.; Wang, X.; Li, Z.; Yu, P.; Jia, J.; Fu, H.; Jia, H.; Liu, B. (99m)Tc-labeled dibenzylideneacetone derivatives as potential SPECT probes for in vivo imaging of β-amyloid plaque. Eur. J. Med. Chem., 2013, 64, 90-98.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.057] [PMID: 23644192]
[140]
Ryu, E.K.; Choe, Y.S.; Lee, K.H.; Choi, Y.; Kim, B.T. Curcumin and dehydrozingerone derivatives: synthesis, radiolabeling, and evaluation for beta-amyloid plaque imaging. J. Med. Chem., 2006, 49(20), 6111-6119.
[http://dx.doi.org/10.1021/jm0607193] [PMID: 17004725]
[141]
Cui, M.; Ono, M.; Kimura, H.; Liu, B.; Saji, H. Synthesis and structure-affinity relationships of novel dibenzylideneacetone derivatives as probes for β-amyloid plaques. J. Med. Chem., 2011, 54(7), 2225-2240.
[http://dx.doi.org/10.1021/jm101404k] [PMID: 21417461]
[142]
Frid, P.; Anisimov, S.V.; Popovic, N. Congo red and protein aggregation in neurodegenerative diseases. Brain Res. Brain Res. Rev., 2007, 53(1), 135-160.
[http://dx.doi.org/10.1016/j.brainresrev.2006.08.001] [PMID: 16959325]
[143]
Frid, P.; Anisimov, S.V.; Popovic, N. Congo red and protein aggregation in neurodegenerative diseases. Brain Res. Brain Res. Rev., 2007, 53(1), 135-160.
[http://dx.doi.org/10.1016/j.brainresrev.2006.08.001] [PMID: 16959325]
[144]
Klunk, W.E.; Jacob, R.F.; Mason, R.P. Quantifying amyloid β-peptide (Abeta) aggregation using the Congo red-Abeta (CR-abeta) spectrophotometric assay. Anal. Biochem., 1999, 266(1), 66-76.
[http://dx.doi.org/10.1006/abio.1998.2933] [PMID: 9887214]
[145]
Girych, M.; Gorbenko, G.; Maliyov, I.; Trusova, V.; Mizuguchi, C.; Saito, H.; Kinnunen, P. Combined thioflavin T-Congo red fluorescence assay for amyloid fibril detection. Methods Appl. Fluoresc., 2016, 4(3), 034010.
[http://dx.doi.org/10.1088/2050-6120/4/3/034010] [PMID: 28355156]
[146]
Zemanek, G. Congo red fluorescence upon binding to macromolecules – a possible explanation for the enhanced intensity. Bio-Algorithms and Med-Systems., 13, (2)2017.
[147]
Lorenzo, A.; Yankner, B.A. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc. Natl. Acad. Sci. USA, 1994, 91(25), 12243-12247.
[http://dx.doi.org/10.1073/pnas.91.25.12243] [PMID: 7991613]
[148]
Dezutter, N.A.; Landman, W.J.; Jager, P.L.; de Groot, T.J.; Dupont, P.J.; Tooten, P.C.; Zekarias, B.; Gruys, E.; Verbruggen, A.M. Evaluation of 99mTc-MAMA-chrysamine G as an in vivo probe for amyloidosis. Amyloid, 2001, 8(3), 202-214.
[http://dx.doi.org/10.3109/13506120109007363] [PMID: 11676297]
[149]
Han, H.; Cho, C-G.; Lansbury, P.T. Technetium Complexes for the Quantitation of Brain Amyloid. J. Am. Chem. Soc., 1996, 118(18), 4506-4507.
[http://dx.doi.org/10.1021/ja960207l]
[150]
Ashburn, T.T.; Han, H.; McGuinness, B.F.; Lansbury, P.T. Jr Amyloid probes based on Congo Red distinguish between fibrils comprising different peptides. Chem. Biol., 1996, 3(5), 351-358.
[http://dx.doi.org/10.1016/S1074-5521(96)90118-0] [PMID: 8807864]
[151]
Dezutter, N.A. Preparation of 99mTc‐N2S2 conjugates of chrysamine G, potential probes for the beta‐amyloid protein of Alzheimer’s disease. J. Labelled Comp. Radiopharm., 1999, 42(4), 309-324.
[http://dx.doi.org/10.1002/(SICI)1099-1344(199904)42:4<309:AID-JLCR192>3.0.CO;2-O]
[152]
Cui, M.; Ono, M.; Kimura, H.; Liu, B.; Saji, H. Novel quinoxaline derivatives for in vivo imaging of β-amyloid plaques in the brain. Bioorg. Med. Chem. Lett., 2011, 21(14), 4193-4196.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.079] [PMID: 21684159]
[153]
Yoshimura, M.; Ono, M.; Matsumura, K.; Watanabe, H.; Kimura, H.; Cui, M.; Nakamoto, Y.; Togashi, K.; Okamoto, Y.; Ihara, M.; Takahashi, R.; Saji, H. Structure-Activity Relationships and in Vivo Evaluation of Quinoxaline Derivatives for PET Imaging of β-Amyloid Plaques. ACS Med. Chem. Lett., 2013, 4(7), 596-600.
[http://dx.doi.org/10.1021/ml4000707] [PMID: 24900717]
[154]
Iikuni, S. Synthesis and biological evaluation of novel technetium-99m-labeled phenylquinoxaline derivatives as single photon emission computed tomography imaging probes targeting β-amyloid plaques in Alzheimer’s disease. RSC Advances, 2017, 7(33), 20582-20590.
[http://dx.doi.org/10.1039/C6RA28395K]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy