Abstract
Gene therapy suggests a promising approach to treat genetic diseases by applying genes as pharmaceuticals. Cancer is a complex disease, which strongly depends on a particular genetic make-up and hence can be treated with gene therapy. From about 2,000 clinical trials carried out so far, more than 60% were cancer targeted. Development of precise and effective gene therapy approaches is intimately connected with achievements in the molecular biology techniques. The field of gene therapy was recently revolutionized by the introduction of “programmable” nucleases, including ZFNs, TALENs, and CRISPR, which target specific genomic loci with high efficacy and precision. Furthermore, when combined with DNA transposons for the delivery purposes into cells, these programmable nucleases represent a promising alternative to the conventional viral-mediated gene delivery. In addition to “programmable” nucleases, a new class of TALE- and CRISPR-based “artificial transcription effectors” has been developed to mediate precise regulation of specific genes. In sum, these new molecular tools may be used in a wide plethora of gene therapy strategies. This review highlights the current status of novel genome editing tools and discusses their suitability and perspectives in respect to cancer gene therapy studies.
Keywords: Cancer gene therapy, Genome editing, Artificial transcriptional effectors, Sleeping beauty, PiggyBac, Mega nucleases, ZFNs, Tale, CRISPR/Cas9.
Current Gene Therapy
Title:Current Genome Editing Tools in Gene Therapy: New Approaches to Treat Cancer
Volume: 15 Issue: 5
Author(s): Oleg Shuvalov, Alexey Petukhov, Alexandra Daks, Olga Fedorova, Alexander Ermakov, Gerry Melino and Nickolai A Barlev
Affiliation:
Keywords: Cancer gene therapy, Genome editing, Artificial transcriptional effectors, Sleeping beauty, PiggyBac, Mega nucleases, ZFNs, Tale, CRISPR/Cas9.
Abstract: Gene therapy suggests a promising approach to treat genetic diseases by applying genes as pharmaceuticals. Cancer is a complex disease, which strongly depends on a particular genetic make-up and hence can be treated with gene therapy. From about 2,000 clinical trials carried out so far, more than 60% were cancer targeted. Development of precise and effective gene therapy approaches is intimately connected with achievements in the molecular biology techniques. The field of gene therapy was recently revolutionized by the introduction of “programmable” nucleases, including ZFNs, TALENs, and CRISPR, which target specific genomic loci with high efficacy and precision. Furthermore, when combined with DNA transposons for the delivery purposes into cells, these programmable nucleases represent a promising alternative to the conventional viral-mediated gene delivery. In addition to “programmable” nucleases, a new class of TALE- and CRISPR-based “artificial transcription effectors” has been developed to mediate precise regulation of specific genes. In sum, these new molecular tools may be used in a wide plethora of gene therapy strategies. This review highlights the current status of novel genome editing tools and discusses their suitability and perspectives in respect to cancer gene therapy studies.
Export Options
About this article
Cite this article as:
Shuvalov Oleg, Petukhov Alexey, Daks Alexandra, Fedorova Olga, Ermakov Alexander, Melino Gerry and Barlev A Nickolai, Current Genome Editing Tools in Gene Therapy: New Approaches to Treat Cancer, Current Gene Therapy 2015; 15 (5) . https://dx.doi.org/10.2174/1566523215666150818110241
DOI https://dx.doi.org/10.2174/1566523215666150818110241 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Melatonin Signaling in Health and Disease
Melatonin regulates a multitude of physiological functions, including circadian rhythms, acting as a scavenger of free radicals, an anti-inflammatory agent, a modulator of mitochondrial homeostasis, an antioxidant, and an enhancer of nitric oxide bioavailability. AANAT is the rate-limiting enzyme responsible for converting serotonin to NAS, which is further converted to ...read more
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers.
Programmed cell death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
The now and future of gene transfer technologies
Gene and cell therapies rely on a gene delivery system which is safe and effective. Both viral and non-viral vector systems are available with specific pros and cons. The choice of a vector system is largely dependent on the application which is a balance between target tissue/disease and safety, efficacy ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Synthesis of New Antibacterial Cubane-based Nanocomposite and its Application in Combination Cancer Therapy
Anti-Cancer Agents in Medicinal Chemistry Regulation of Hypoxia-inducible Factor-1α and Vascular Endothelial Growth Factor Signaling by Plant Flavonoids
Mini-Reviews in Medicinal Chemistry Imaging Drug Resistance with Radiolabeled Molecules
Current Pharmaceutical Design Editorial [Hot Topic: Molecular Mechanisms and Therapeutic Reversal of Immune Suppression in Cancer (Guest Editor: Dmitry I. Gabrilovich)]
Current Cancer Drug Targets Meet Our Editor:
Reviews on Recent Clinical Trials Emerging Roles of P2X Receptors in Cancer
Current Medicinal Chemistry Can an Apple a Day Keep the Doctor Away?
Current Pharmaceutical Design Infection and Malignancy Risk in Patients Treated with TNF Inhibitors for Immune-Mediated Inflammatory Diseases
Current Drug Safety Formulation, Characterization and <i>In-vitro</i> and <i>In-vivo</i> Evaluation of Capecitabine Loaded Niosomes
Current Drug Delivery Nucleic Acid Sensing Machinery: Targeting Innate Immune System for Cancer Therapy
Recent Patents on Anti-Cancer Drug Discovery Reactive Oxygen Species in the Initiation of IL-4 Driven Autoimmunity as a Potential Therapeutic Target
Current Pharmaceutical Design Tyrosine Kinase Update: Role and Response in Cancer Therapy
Current Cancer Therapy Reviews Dietary Antioxidants: Immunity and Host Defense
Current Topics in Medicinal Chemistry Malaria Chemotherapy: Recent Advances in Drug Development
Recent Patents on Anti-Infective Drug Discovery Liver-Based In Vitro Technologies for Drug Biotransformation Studies - A Review
Current Drug Metabolism Relations between GPR4 Expression, Microvascular Density (MVD) and Clinical Pathological Characteristics of Patients with Epithelial Ovarian Carcinoma (EOC)
Current Pharmaceutical Design Interactions of Iron Oxide Nanoparticles with the Immune System: Challenges and Opportunities for their Use in Nano-oncology
Current Pharmaceutical Design Structural Design and Physicochemical Foundations of Hydrogels for Biomedical Applications
Current Medicinal Chemistry Recent Developments in Delivery of Nucleic Acid-Based Antiviral Agents
Current Pharmaceutical Design Monoclonal Antibodies in the Management of Solid Tumors
Current Topics in Medicinal Chemistry