Abstract
Folic acid (FA) has high affinity to folate receptors (FRs), which have three isoforms: FRα, FRβ and FRγ. Among them, FRα is a tumor specific receptor, as it is frequently over-expressed in diverse malignancies but not in normal tissues. In this study, we have conjugated FA to a chitosan-poly(ethylenimine) copolymer, and have confirmed the low cytotoxicity of the product (namely “CP1.3K-FA”) in cancer cells. The transfection efficiency of CP1.3K-FA has been shown by the EGFP transfection assay to be higher than that of the unmodified chitosan-poly(ethylenimine) copolymer under optimal conditions. Results of the luciferase activity assay have also indicated that the transfection efficiency of CP1.3K-FA is comparable to that of Fugene HD in B16 and U87 cells. Our results have suggested that CP1.3K-FA warrants further development as a vector for gene delivery in cancer cells.
Keywords: Chitosan, Folic acid, Gene transfer, Non-viral vectors, Poly(ethylenimine), Targeting.
Current Gene Therapy
Title:Folate-conjugated Chitosan-poly(ethylenimine) Copolymer As An Efficient and Safe Vector For Gene Delivery in Cancer Cells
Volume: 15 Issue: 5
Author(s): Wing-Fu Lai and Marie C. Lin
Affiliation:
Keywords: Chitosan, Folic acid, Gene transfer, Non-viral vectors, Poly(ethylenimine), Targeting.
Abstract: Folic acid (FA) has high affinity to folate receptors (FRs), which have three isoforms: FRα, FRβ and FRγ. Among them, FRα is a tumor specific receptor, as it is frequently over-expressed in diverse malignancies but not in normal tissues. In this study, we have conjugated FA to a chitosan-poly(ethylenimine) copolymer, and have confirmed the low cytotoxicity of the product (namely “CP1.3K-FA”) in cancer cells. The transfection efficiency of CP1.3K-FA has been shown by the EGFP transfection assay to be higher than that of the unmodified chitosan-poly(ethylenimine) copolymer under optimal conditions. Results of the luciferase activity assay have also indicated that the transfection efficiency of CP1.3K-FA is comparable to that of Fugene HD in B16 and U87 cells. Our results have suggested that CP1.3K-FA warrants further development as a vector for gene delivery in cancer cells.
Export Options
About this article
Cite this article as:
Lai Wing-Fu and Lin C. Marie, Folate-conjugated Chitosan-poly(ethylenimine) Copolymer As An Efficient and Safe Vector For Gene Delivery in Cancer Cells, Current Gene Therapy 2015; 15 (5) . https://dx.doi.org/10.2174/1566523215666150812120347
DOI https://dx.doi.org/10.2174/1566523215666150812120347 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Melatonin Signaling in Health and Disease
Melatonin regulates a multitude of physiological functions, including circadian rhythms, acting as a scavenger of free radicals, an anti-inflammatory agent, a modulator of mitochondrial homeostasis, an antioxidant, and an enhancer of nitric oxide bioavailability. AANAT is the rate-limiting enzyme responsible for converting serotonin to NAS, which is further converted to ...read more
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers.
Programmed cell death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
The now and future of gene transfer technologies
Gene and cell therapies rely on a gene delivery system which is safe and effective. Both viral and non-viral vector systems are available with specific pros and cons. The choice of a vector system is largely dependent on the application which is a balance between target tissue/disease and safety, efficacy ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
A Novel Fusicoccin Derivative Preferentially Targets Hypoxic Tumor Cells and Inhibits Tumor Growth in Xenografts
Anti-Cancer Agents in Medicinal Chemistry The Regulation of Differentiation of Mesenchymal Stem-cells into Skeletal Muscle: A Look at Signalling Molecules Involved in Myogenesis
Current Stem Cell Research & Therapy Attenuated Oncolytic Measles Virus Strains as Cancer Therapeutics
Current Pharmaceutical Biotechnology Genetic Surgery - A Right Strategy to Attack Cancer
Current Gene Therapy Impact of Leukemia Stem Cells Phenotype Expression on Response to Induction Therapy in Acute Myeloid Leukemia Patients
Cardiovascular & Hematological Disorders-Drug Targets IAPs as a Target for Anticancer Therapy
Current Cancer Drug Targets Role of the Non-Receptor Tyrosine Kinase Fes in Cancer
Current Medicinal Chemistry Novel and Emerging Drugs for Rarer Chronic Lymphoid Leukaemias
Current Cancer Drug Targets Adenosine Deaminase in the Modulation of Immune System and its Potential as a Novel Target for Treatment of Inflammatory Disorders
Current Drug Targets Safety Considerations Associated with Development and Clinical Application of Lentiviral Vector Systems for Gene Transfer
Current Genomics Signal Transduction and Photodynamic Therapy
Current Signal Transduction Therapy Glioma Stem Cell Maintenance: The Role of the Microenvironment
Current Pharmaceutical Design Hypoxia-Inducible Factors and Sphingosine 1-Phosphate Signaling
Anti-Cancer Agents in Medicinal Chemistry Current Perspectives on Anti-Aging Interventions
Letters in Drug Design & Discovery Redox Homeostasis, Bioactive Agents and Transduction Therapy
Current Signal Transduction Therapy Peptides as Potential Anticancer Agents
Current Topics in Medicinal Chemistry NADPH Oxidases NOXs and DUOXs as Putative Targets for Cancer Therapy
Anti-Cancer Agents in Medicinal Chemistry Environment-friendly Synthesis of Bioactive Pyrazoles
Current Organic Chemistry Antibodies as Crypts of Antiinfective and Antitumor Peptides
Current Medicinal Chemistry Mitochondrial DNA Mutations in Cancer: A Review
Current Topics in Medicinal Chemistry