Abstract
CD6 immunotherapy to treat psoriasis and rheumatoid arthritis has reached the clinical trial stage with apparent success, and targeting CD6 with mAbs is being used in several animal models of autoimmunity and neuroinflammation with promising indications. However, the mode of action of the therapeutic CD6 mAbs is far from being understood, reflecting the uncertainties and controversy surrounding the mechanistic and biological functions of CD6. Initially regarded as a co-stimulatory receptor of T lymphocytes, recent studies suggest that CD6 can instead modulate early as well as late T cell responses. Also, opposing the contribution of CD6 adhesiveness in the establishment and stabilization of immunological synapses, the actual triggering of CD6 might induce anti-proliferative signals to the T lymphocyte. CD6 has an unusually long cytoplasmic tail and its gene undergoes peculiar patterns of activation-dependent alternative splicing that can on one hand determine whether or not the CD6 protein binds to its ligand, and on the other include or exclude intracellular sequences that may transduce positive or negative signaling. In this review we discuss the multiple aspects that determine the nature of the signals transmitted via CD6 and the context that may define a dual role for this important T cell surface molecule.
Keywords: CD6, immunological synapse, T lymphocyte activation, inhibitory receptors, alternative splicing, immunotherapy.