Abstract
Lentiviral vectors (LVs) represent suitable candidates to mediate gene therapy for muscular dystrophies as they infect dividing and non-dividing cells and integrate their genetic material into the host genome, thereby theoretically mediating longterm expression. We evaluated the ability of LVs where a GFP reporter gene was under the control of five different promoters, to transduce and mediate expression in myogenic and non-myogenic cells in vitro and in skeletal muscle fibres and stem (satellite) cells in vivo. We further analysed lentivirally-transduced satellite cell-derived myoblasts following their transplantation into dystrophic, immunodeficient mouse muscles. The spleen focus-forming virus promoter mediated the highest gene expression in all cell types; the CBX3-HNRPA2B1 ubiquitously-acting chromatin opening element (UCOE) promoter was also active in all cells, whereas the human desmin promoter in isolation or fused with UCOE had lower activity in non-muscle cells. Surprisingly, the human skeletal muscle actin promoter was also active in immune cells. The human desmin promoter mediated robust, persistent reporter gene expression in myogenic cells in vitro, and satellite cells and muscle fibres in vivo. The human desmin promoter combined with UCOE did not significantly increase transgene expression. Therefore, our data indicate that the desmin promoter is suitable for the development of therapeutic purposes.
Keywords: Human desmin promoter, Duchenne Muscular Dystrophy, lentiviral vector, myoblasts, mdx mouse, stem cells.
Current Gene Therapy
Title:The Human Desmin Promoter Drives Robust Gene Expression for Skeletal Muscle Stem Cell-Mediated Gene Therapy
Volume: 14 Issue: 4
Author(s): Jacqueline Jonuschies, Michael Antoniou, Simon Waddington, Luisa Boldrin, Francesco Muntoni, Adrian Thrasher and Jennifer Morgan
Affiliation:
Keywords: Human desmin promoter, Duchenne Muscular Dystrophy, lentiviral vector, myoblasts, mdx mouse, stem cells.
Abstract: Lentiviral vectors (LVs) represent suitable candidates to mediate gene therapy for muscular dystrophies as they infect dividing and non-dividing cells and integrate their genetic material into the host genome, thereby theoretically mediating longterm expression. We evaluated the ability of LVs where a GFP reporter gene was under the control of five different promoters, to transduce and mediate expression in myogenic and non-myogenic cells in vitro and in skeletal muscle fibres and stem (satellite) cells in vivo. We further analysed lentivirally-transduced satellite cell-derived myoblasts following their transplantation into dystrophic, immunodeficient mouse muscles. The spleen focus-forming virus promoter mediated the highest gene expression in all cell types; the CBX3-HNRPA2B1 ubiquitously-acting chromatin opening element (UCOE) promoter was also active in all cells, whereas the human desmin promoter in isolation or fused with UCOE had lower activity in non-muscle cells. Surprisingly, the human skeletal muscle actin promoter was also active in immune cells. The human desmin promoter mediated robust, persistent reporter gene expression in myogenic cells in vitro, and satellite cells and muscle fibres in vivo. The human desmin promoter combined with UCOE did not significantly increase transgene expression. Therefore, our data indicate that the desmin promoter is suitable for the development of therapeutic purposes.
Export Options
About this article
Cite this article as:
Jonuschies Jacqueline, Antoniou Michael, Waddington Simon, Boldrin Luisa, Muntoni Francesco, Thrasher Adrian and Morgan Jennifer, The Human Desmin Promoter Drives Robust Gene Expression for Skeletal Muscle Stem Cell-Mediated Gene Therapy, Current Gene Therapy 2014; 14 (4) . https://dx.doi.org/10.2174/1566523214666140612154521
DOI https://dx.doi.org/10.2174/1566523214666140612154521 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Melatonin Signaling in Health and Disease
Melatonin regulates a multitude of physiological functions, including circadian rhythms, acting as a scavenger of free radicals, an anti-inflammatory agent, a modulator of mitochondrial homeostasis, an antioxidant, and an enhancer of nitric oxide bioavailability. AANAT is the rate-limiting enzyme responsible for converting serotonin to NAS, which is further converted to ...read more
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers.
Programmed cell death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
The now and future of gene transfer technologies
Gene and cell therapies rely on a gene delivery system which is safe and effective. Both viral and non-viral vector systems are available with specific pros and cons. The choice of a vector system is largely dependent on the application which is a balance between target tissue/disease and safety, efficacy ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
AAVs Anatomy: Roadmap for Optimizing Vectors for Translational Success
Current Gene Therapy The Upshot of PI3K Inhibitors as Anticancer Arsenal: A Short Review
Current Bioactive Compounds “Momordica balsamina: A Medicinal and Neutraceutical Plant for Health care Management”. Comments: Biotechnological Potential of M. balsamina Revealed
Current Pharmaceutical Biotechnology p38 MAP Kinase Interacts with and Stabilizes Pancreatic and Duodenal Homeobox-1
Current Molecular Medicine Trends in Utilization of the Pharmacological Potential of Chalcones
Current Clinical Pharmacology Brain Targeted Drug Delivery: Factors, Approaches and Patents
Recent Patents on Nanomedicine From Basics of Coordination Chemistry to Understanding Cisplatin-analogue Pt Drugs
Current Pharmaceutical Design Biomarkers of Angiogenesis and their Role in Patient Selection for Antiangiogenic Therapy
Current Angiogenesis (Discontinued) Macromolecular Drug Targets in Cancer Treatment and Thiosemicarbazides as Anticancer Agents
Anti-Cancer Agents in Medicinal Chemistry Phytonutraceuticals in Cancer Prevention and Therapeutics
Current Nutrition & Food Science Adoptive Immunotherapy For Leukemia With Ex vivo Expanded T Cells
Current Drug Targets Cardio-vascular Activity of Catestatin: Interlocking the Puzzle Pieces
Current Medicinal Chemistry First Approval of Adagrasib for the Treatment of Non-Small Cell Lung Cancer Harboring a <i>KRAS</i><sup>G12C</sup> Mutation
Current Medicinal Chemistry Protein Tyrosine Phosphatases, New Targets for Cancer Therapy
Current Cancer Drug Targets An Overview on Different Classes of Viral Entry and Respiratory Syncitial Virus (RSV) Fusion Inhibitors
Current Medicinal Chemistry Glycosidated Phospholipids – a Promising Group of Anti-Tumour Lipids
Anti-Cancer Agents in Medicinal Chemistry Potential Therapeutic Targets of Curcumin, Most Abundant Active Compound of Turmeric Spice: Role in the Management of Various Types of Cancer
Recent Patents on Anti-Cancer Drug Discovery Advances and Challenges in the Synthesis of Highly Oxidised Natural Phenols with Antiviral, Antioxidant and Cytotoxic Activities
Current Medicinal Chemistry Recent Advances in the Development of Dual Topoisomerase I and II Inhibitors as Anticancer Drugs
Current Medicinal Chemistry Antiproliferative and Antioxidant Potential of Leaf and Leaf Derived Callus Extracts of Aerva lanata (L.) Juss. Ex Schult. Against Human Breast Cancer (MCF-7) Cell Lines
The Natural Products Journal