Abstract
Emx2 encodes for a transcription factor controlling several aspects of cerebral cortex development. Its overexpression promotes self-renewal of young cortico-cerebral precursors, it promotes neuronal rather than gliogenic fates and it protects neuronal progenitors from cell death. These are all key activities for purposes of gene-promoted brain repair.
Artificial pri-miRNAs targeting non-coding cis-active modules and/or conserved sequences of the Emx2 locus were delivered to embryonic cortico-cerebral precursors, by lentiviral vectors. A subset of these pri-miRNAs upregulated Emx2, possibly stimulating its transcription. That led to enhanced self-renewal, delayed differentiation and reduced death of neuronally committed precursors, resulting in an appreciable expansion of the neuronogenic precursors pool. This method makes Emx2 overexpression for purposes of brain repair a more feasible goal, avoiding the drawbacks of exogenous gene copies introduction.
Interestingly, the two genomic enhancers targeted by these pri-miRNAs were discovered to be naturally transcribed. Their expression profile suggests their possible involvement in regulation of Emx2 transcription.
Keywords: Emx2, cerebral cortex, RNAa, neural stem cell, neuronal progenitor, lentivector
Current Gene Therapy
Title:Promotion of Cortico-Cerebral Precursors Expansion by Artificial pri-miRNAs Targeted Against the Emx2 Locus
Volume: 13 Issue: 2
Author(s): Assunta Diodato, Moira Pinzan, Marilena Granzotto and Antonello Mallamaci
Affiliation:
Keywords: Emx2, cerebral cortex, RNAa, neural stem cell, neuronal progenitor, lentivector
Abstract: Emx2 encodes for a transcription factor controlling several aspects of cerebral cortex development. Its overexpression promotes self-renewal of young cortico-cerebral precursors, it promotes neuronal rather than gliogenic fates and it protects neuronal progenitors from cell death. These are all key activities for purposes of gene-promoted brain repair.
Artificial pri-miRNAs targeting non-coding cis-active modules and/or conserved sequences of the Emx2 locus were delivered to embryonic cortico-cerebral precursors, by lentiviral vectors. A subset of these pri-miRNAs upregulated Emx2, possibly stimulating its transcription. That led to enhanced self-renewal, delayed differentiation and reduced death of neuronally committed precursors, resulting in an appreciable expansion of the neuronogenic precursors pool. This method makes Emx2 overexpression for purposes of brain repair a more feasible goal, avoiding the drawbacks of exogenous gene copies introduction.
Interestingly, the two genomic enhancers targeted by these pri-miRNAs were discovered to be naturally transcribed. Their expression profile suggests their possible involvement in regulation of Emx2 transcription.
Export Options
About this article
Cite this article as:
Diodato Assunta, Pinzan Moira, Granzotto Marilena and Mallamaci Antonello, Promotion of Cortico-Cerebral Precursors Expansion by Artificial pri-miRNAs Targeted Against the Emx2 Locus, Current Gene Therapy 2013; 13 (2) . https://dx.doi.org/10.2174/1566523211313020009
DOI https://dx.doi.org/10.2174/1566523211313020009 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Melatonin Signaling in Health and Disease
Melatonin regulates a multitude of physiological functions, including circadian rhythms, acting as a scavenger of free radicals, an anti-inflammatory agent, a modulator of mitochondrial homeostasis, an antioxidant, and an enhancer of nitric oxide bioavailability. AANAT is the rate-limiting enzyme responsible for converting serotonin to NAS, which is further converted to ...read more
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers.
Programmed cell death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
The now and future of gene transfer technologies
Gene and cell therapies rely on a gene delivery system which is safe and effective. Both viral and non-viral vector systems are available with specific pros and cons. The choice of a vector system is largely dependent on the application which is a balance between target tissue/disease and safety, efficacy ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Molecular Response to Hypericin-Induced Photodamage
Current Medicinal Chemistry Multiple Functions of Generic Drugs: Future Perspectives of Aureolic Acid Group of Anti-Cancer Antibiotics and Non-Steroidal Anti-Inflammatory Drugs
Mini-Reviews in Medicinal Chemistry Monoclonal Antobodies: Application in Radiopharmacy
Current Radiopharmaceuticals Bee Venom: Its Potential Use in Alternative Medicine
Anti-Infective Agents Immunological Aspects of the Prostate Gland and Related Diseases
Current Immunology Reviews (Discontinued) The Role of the Osteoimmune Axis in the Inflammation of the Inner Auditory Ear and with Regard to the Putative Anticarcinogenetic Principle: Part 2
Inflammation & Allergy - Drug Targets (Discontinued) Mass Spectrometry Characterization of Plant Phosphoproteins
Current Protein & Peptide Science Genetic Factors and MicroRNAs in the Development of Gallbladder Cancer: The Prospective Clinical Targets
Current Drug Targets Epi-Drugs and Epi-miRs: Moving Beyond Current Cancer Therapies
Current Cancer Drug Targets Reposition of the Fungicide Ciclopirox for Cancer Treatment
Recent Patents on Anti-Cancer Drug Discovery Individualized Treatment Planning in Oncology: Role of PET and Radiolabelled Anticancer Drugs in Predicting Tumour Resistance
Current Pharmaceutical Design Modulation of Doxorubicin Mediated Growth Inhibition of Hepatocellular Carcinoma Cells by Platelet Lysates
Anti-Cancer Agents in Medicinal Chemistry Recombinant Human p53 Adenovirus Injection (rAd-p53) Combined with Chemotherapy for 4 Cases of High-grade Serous Ovarian Cancer
Current Gene Therapy Patent Selections
Recent Patents on Anti-Cancer Drug Discovery Recent Developments of Platinum-based Anticancer Drugs- Detection and Analysis in Biological Samples
Current Organic Chemistry Multi-Target QSAR Approaches for Modeling Protein Inhibitors. Simultaneous Prediction of Activities Against Biomacromolecules Present in Gram-Negative Bacteria
Current Topics in Medicinal Chemistry Imaging with Raman Spectroscopy
Current Pharmaceutical Biotechnology Silencing of Disease-related Genes by Small Interfering RNAs
Current Molecular Medicine Recent Insights into COVID-19 in Children and Clinical Recommendations
Current Pediatric Reviews Therapeutic Applications of Capsaicin in Upper Airways
Current Drug Targets