Abstract
Signal transducer and activator of transcription (STAT) proteins are second messengers in the JAK/STAT signaling pathway. The activation mechanism of STAT proteins involves phosphorylation on a single tyrosine residue by Janus-activated family kinases (JAK) in response to the binding of a series of extracellular proteins, such as cytokines, growth factors, hormones and membrane receptors. Activated via phosphorylation, STATs dissociate from the receptor, undergo dimerization and translocate to the nucleus, where they induce the transcription of target genes, commonly referred to as Interferon stimulated genes (ISGs). The family of STAT proteins has been documented to participate in normal cellular events, such as differentiation, proliferation, cell survival, apoptosis and angiogenesis. Constitutively activated STATs are involved in an aberrant signaling pathway which has transforming properties and occurs in cancer development. This review describes the mechanisms of JAK/STAT activation in normal and cancer cells. Moreover, it outlines the role of the JAK/STAT pathway in the inflammatory process as well as in oncogenesis. Additionally, the contribution of STAT and JAK proteins in molecular targeted cancer therapy is discussed.
Keywords: STAT proteins, JAK/STAT signaling pathway, inflammation, targeted therapy, cancer development, dimerization, phosphorylation, oligomerization, β-isoform, docking site
Current Signal Transduction Therapy
Title:Review: The JAK/STAT Protein Activation – Role in Cancer Development and Targeted Therapy
Volume: 7 Issue: 3
Author(s): Daria Domanska and Ewa Brzezianska
Affiliation:
Keywords: STAT proteins, JAK/STAT signaling pathway, inflammation, targeted therapy, cancer development, dimerization, phosphorylation, oligomerization, β-isoform, docking site
Abstract: Signal transducer and activator of transcription (STAT) proteins are second messengers in the JAK/STAT signaling pathway. The activation mechanism of STAT proteins involves phosphorylation on a single tyrosine residue by Janus-activated family kinases (JAK) in response to the binding of a series of extracellular proteins, such as cytokines, growth factors, hormones and membrane receptors. Activated via phosphorylation, STATs dissociate from the receptor, undergo dimerization and translocate to the nucleus, where they induce the transcription of target genes, commonly referred to as Interferon stimulated genes (ISGs). The family of STAT proteins has been documented to participate in normal cellular events, such as differentiation, proliferation, cell survival, apoptosis and angiogenesis. Constitutively activated STATs are involved in an aberrant signaling pathway which has transforming properties and occurs in cancer development. This review describes the mechanisms of JAK/STAT activation in normal and cancer cells. Moreover, it outlines the role of the JAK/STAT pathway in the inflammatory process as well as in oncogenesis. Additionally, the contribution of STAT and JAK proteins in molecular targeted cancer therapy is discussed.
Export Options
About this article
Cite this article as:
Domanska Daria and Brzezianska Ewa, Review: The JAK/STAT Protein Activation – Role in Cancer Development and Targeted Therapy, Current Signal Transduction Therapy 2012; 7 (3) . https://dx.doi.org/10.2174/157436212802481619
DOI https://dx.doi.org/10.2174/157436212802481619 |
Print ISSN 1574-3624 |
Publisher Name Bentham Science Publisher |
Online ISSN 2212-389X |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Benzamides as Melanotropic Carriers for Radioisotopes, Metals, Cytotoxic Agents and as Enzyme Inhibitors
Current Medicinal Chemistry Dynamic Contrast-Enhanced MRI in Oncology Drug Development
Current Clinical Pharmacology Choosing the Right Protocol to Establish MCF-7 Tumor Xenograft in Nude Mice
Anti-Cancer Agents in Medicinal Chemistry In Vitro Regulatory Effect of Epididymal Serpin CRES on Protease Activity of Proprotein Convertase PC4/PCSK4
Current Molecular Medicine Current and Future Drugs for Appetite Regulation and Obesity Treatment
Recent Patents on Endocrine, Metabolic & Immune Drug Discovery (Discontinued) An Overview on the Importance of Combining Complementary Analytical Platforms in Metabolomic Research
Current Topics in Medicinal Chemistry Folate Based Radiopharmaceuticals for Imaging and Therapy of Cancer and Inflammation
Current Pharmaceutical Design Applications of Natural Compounds in the Photodynamic Therapy of Skin Cancer
Current Medicinal Chemistry Application of NMR Metabolomics to Search for Human Disease Biomarkers
Combinatorial Chemistry & High Throughput Screening Fibroblast Growth Factor 2: From Laboratory Evidence to Clinical Application
Current Vascular Pharmacology Molecular Recognition at Purine and Pyrimidine Nucleotide (P2) Receptors
Current Topics in Medicinal Chemistry Cellular Iron Homeostasis and Therapeutic Implications of Iron Chelators in Cancer
Current Pharmaceutical Biotechnology Chalcones Incorporated Pyrazole Ring Inhibit Proliferation, Cell Cycle Progression, Angiogenesis and Induce Apoptosis of MCF7 Cell Line
Anti-Cancer Agents in Medicinal Chemistry Purinergic (P2) Receptor Control of Lower Genitourinary Tract Function and New Avenues for Drug Action: An Overview
Current Pharmaceutical Design Exploring the Role of Phytochemicals as Potent Natural Photosensitizers in Photodynamic Therapy
Anti-Cancer Agents in Medicinal Chemistry ABC Pumps and Their Role in Active Drug Transport
Current Topics in Medicinal Chemistry Lipids at the Cross-road of Autoimmunity in Multiple Sclerosis
Current Medicinal Chemistry Patent Selections
Recent Patents on Biomarkers Angiotensin II Type 1 Receptor Antagonist as an Angiogenic Inhibitor in Urogenital Cancer
Reviews on Recent Clinical Trials UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase- 6 (pp-GalNAc-T6): Role in Cancer and Prospects as a Drug Target
Current Cancer Drug Targets