Abstract
Conventional cancer treatments are often hampered by a lack of tumour selectivity, resulting in toxicity to healthy tissue. Gene-directed enzyme prodrug therapy (GDEPT) is a suicide gene therapy approach that aims to improve the selectivity of chemotherapy by enabling cancer cells to convert non-cytotoxic prodrugs to cytotoxic drugs. Many enzyme/ prodrug systems have been described, some of which have already been tested in clinical trials. A key component of GDEPT is a foreign enzyme that is expressed selectively at the tumour site where it converts the prodrug into the cytotoxic agent. The gene encoding the prodrug-activating enzyme needs to be expressed selectively and efficiently in tumour cells in order to spare normal tissue from damage. Substantial efforts have been made to develop gene therapy vectors that are capable of targeting cancer cells. A large number of gene delivery systems have been described for GDEPT: Viral vectors are the most advanced. They include replication-deficient and replication-selective (oncolytic) viruses. Recent advances in engineering viruses for GDEPT are reviewed in this article and data from both preclinical studies and clinical trials are discussed.
Keywords: Cancer, gene therapy, suicide gene therapy, GDEPT, VDEPT, GPAT, prodrug, chemotherapy
Current Gene Therapy
Title: Viral Vectors for Gene-Directed Enzyme Prodrug Therapy
Volume: 6 Issue: 6
Author(s): Silke Schepelmann and Caroline J. Springer
Affiliation:
Keywords: Cancer, gene therapy, suicide gene therapy, GDEPT, VDEPT, GPAT, prodrug, chemotherapy
Abstract: Conventional cancer treatments are often hampered by a lack of tumour selectivity, resulting in toxicity to healthy tissue. Gene-directed enzyme prodrug therapy (GDEPT) is a suicide gene therapy approach that aims to improve the selectivity of chemotherapy by enabling cancer cells to convert non-cytotoxic prodrugs to cytotoxic drugs. Many enzyme/ prodrug systems have been described, some of which have already been tested in clinical trials. A key component of GDEPT is a foreign enzyme that is expressed selectively at the tumour site where it converts the prodrug into the cytotoxic agent. The gene encoding the prodrug-activating enzyme needs to be expressed selectively and efficiently in tumour cells in order to spare normal tissue from damage. Substantial efforts have been made to develop gene therapy vectors that are capable of targeting cancer cells. A large number of gene delivery systems have been described for GDEPT: Viral vectors are the most advanced. They include replication-deficient and replication-selective (oncolytic) viruses. Recent advances in engineering viruses for GDEPT are reviewed in this article and data from both preclinical studies and clinical trials are discussed.
Export Options
About this article
Cite this article as:
Schepelmann Silke and Springer J. Caroline, Viral Vectors for Gene-Directed Enzyme Prodrug Therapy, Current Gene Therapy 2006; 6 (6) . https://dx.doi.org/10.2174/156652306779010679
DOI https://dx.doi.org/10.2174/156652306779010679 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Melatonin Signaling in Health and Disease
Melatonin regulates a multitude of physiological functions, including circadian rhythms, acting as a scavenger of free radicals, an anti-inflammatory agent, a modulator of mitochondrial homeostasis, an antioxidant, and an enhancer of nitric oxide bioavailability. AANAT is the rate-limiting enzyme responsible for converting serotonin to NAS, which is further converted to ...read more
The now and future of gene transfer technologies
Gene and cell therapies rely on a gene delivery system which is safe and effective. Both viral and non-viral vector systems are available with specific pros and cons. The choice of a vector system is largely dependent on the application which is a balance between target tissue/disease and safety, efficacy ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Tumor-Associated Macrophages as Potential Targets for Anti-Cancer Activity of Marine Invertebrate-Derived Compounds
Current Pharmaceutical Design Extraction Methods for Obtaining Carotenoids from Vegetables - Review
Current Analytical Chemistry When BMP Signalling Goes Wrong: The Intracellular and Molecular Mechanisms of BMP Signalling in Cancer
Current Signal Transduction Therapy Therapeutic Antibodies
Current Molecular Medicine RNAi in Clinical Studies
Current Medicinal Chemistry Design of Combretastatin A-4 Analogs as Tubulin Targeted Vascular Disrupting Agent with Special Emphasis on Their Cis-Restricted Isomers
Current Pharmaceutical Design Fiber-Optic Technologies in Laser-Based Therapeutics: Threads for a Cure
Current Pharmaceutical Biotechnology Insight into Tumor Hypoxia: Radionuclide-based Biomarker as Diagnostic Tools
Current Topics in Medicinal Chemistry Efficacy of Pegylated Lyposomal Anthracyclines and of Intra-Arterial Carboplatin and Doxorubicin Combined with Local Hyperthermia in a Case of Malignant Endovascular Papillary Angioendothelioma
Current Drug Delivery Aloperine Induces Apoptosis by a Reactive Oxygen Species Activation Mechanism in Human Ovarian Cancer Cells
Protein & Peptide Letters Irradiation Toxicity and Inflammatory Bowel Diseases (IBD): Review
Reviews on Recent Clinical Trials Biological Modulation by Lectins and Their Ligands in Tumor Progression and Metastasis
Anti-Cancer Agents in Medicinal Chemistry An Agathokakological Tale of Δ<sup>9</sup>-THC: Exploration of Possible Biological Targets
Current Drug Targets Advances in Chemotherapy and Targeted Systemic Therapies for Urothelial Cancer
Current Drug Therapy Angiogenesis: A Target for Cancer Therapy
Current Pharmaceutical Design The Rational Design of Anticancer Platinum Complexes: The Importance of the Structure-Activity Relationship
Current Medicinal Chemistry Emerging Therapies Targeting Tumor Vasculature in Multiple Myeloma and other Hematologic and Solid Malignancies
Current Cancer Drug Targets Plant Extracts and Isolated Compounds Reduce Parameters of Oxidative Stress Induced by Heavy Metals: An up-to-Date Review on Animal Studies
Current Pharmaceutical Design Medicinal Treatments of Cholesterol Gallstones: Old, Current and New Perspectives
Current Medicinal Chemistry Potential Anti-cancer Drugs Commonly Used for Other Indications
Current Cancer Drug Targets