Abstract
Protein degradation in eukaryotic cells is important for regulation of metabolism, progression through the division cycle, in cell signalling pathways, and in mammals also for generation of antigen fragments for presentation on the major histocompatibility complex (MHC) class I. Most cell proteins are degraded via the ubiquitin / proteasome pathway where an elaborate enzyme system recognises the protein substrates and marks them for destruction by attachment of a chain of ubiquitin. The substrates are then bound to 26S proteasomes, unfolded, and threaded into the cylindrical central part of the 26S proteasome, where they are cleaved to peptides. Recently many proteins, which associate with proteasomes, have been found. One of them controls the cellular contents of proteasomes by regulating their synthesis. Others ubiquitylate substrates or transfer substrates to proteasomes. Others again seem to unfold the substrates or release ubiquitin and glycans from them during degradation, stabilise proteasomes, regulate their cellular localisation, and modify their activity. It therefore appears that proteasomes are centres in macromolecular clusters, which degrade cell proteins in a tightly regulated manner.
Keywords: proteasomes, major histocompatibility complex, 26s proteasome
Current Protein & Peptide Science
Title: Proteasomes: A Complex Story
Volume: 5 Issue: 3
Author(s): Klavs B. Hendil and Rasmus Hartmann-Petersen
Affiliation:
Keywords: proteasomes, major histocompatibility complex, 26s proteasome
Abstract: Protein degradation in eukaryotic cells is important for regulation of metabolism, progression through the division cycle, in cell signalling pathways, and in mammals also for generation of antigen fragments for presentation on the major histocompatibility complex (MHC) class I. Most cell proteins are degraded via the ubiquitin / proteasome pathway where an elaborate enzyme system recognises the protein substrates and marks them for destruction by attachment of a chain of ubiquitin. The substrates are then bound to 26S proteasomes, unfolded, and threaded into the cylindrical central part of the 26S proteasome, where they are cleaved to peptides. Recently many proteins, which associate with proteasomes, have been found. One of them controls the cellular contents of proteasomes by regulating their synthesis. Others ubiquitylate substrates or transfer substrates to proteasomes. Others again seem to unfold the substrates or release ubiquitin and glycans from them during degradation, stabilise proteasomes, regulate their cellular localisation, and modify their activity. It therefore appears that proteasomes are centres in macromolecular clusters, which degrade cell proteins in a tightly regulated manner.
Export Options
About this article
Cite this article as:
Hendil B. Klavs and Hartmann-Petersen Rasmus, Proteasomes: A Complex Story, Current Protein & Peptide Science 2004; 5 (3) . https://dx.doi.org/10.2174/1389203043379747
DOI https://dx.doi.org/10.2174/1389203043379747 |
Print ISSN 1389-2037 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5550 |
Call for Papers in Thematic Issues
Advancements in Proteomic and Peptidomic Approaches in Cancer Immunotherapy: Unveiling the Immune Microenvironment
The scope of this thematic issue centers on the integration of proteomic and peptidomic technologies into the field of cancer immunotherapy, with a particular emphasis on exploring the tumor immune microenvironment. This issue aims to gather contributions that illustrate the application of these advanced methodologies in unveiling the complex interplay ...read more
Artificial Intelligence for Protein Research
Protein research, essential for understanding biological processes and creating therapeutics, faces challenges due to the intricate nature of protein structures and functions. Traditional methods are limited in exploring the vast protein sequence space efficiently. Artificial intelligence (AI) and machine learning (ML) offer promising solutions by improving predictions and speeding up ...read more
Nutrition and Metabolism in Musculoskeletal Diseases
The musculoskeletal system consists mainly of cartilage, bone, muscles, tendons, connective tissue and ligaments. Balanced metabolism is of vital importance for the homeostasis of the musculoskeletal system. A series of musculoskeletal diseases (for example, sarcopenia, osteoporosis) are resulted from the dysregulated metabolism of the musculoskeletal system. Furthermore, metabolic diseases (such ...read more
Protein Folding, Aggregation and Liquid-Liquid Phase Separation
Protein folding, misfolding and aggregation remain one of the main problems of interdisciplinary science not only because many questions are still open, but also because they are important from the point of view of practical application. Protein aggregation and formation of fibrillar structures, for example, is a hallmark of a ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
DNA Methylation in Colon Cancer: Challenges and Opportunities
Epigenetic Diagnosis & Therapy (Discontinued) Chemotherapy and Target Therapy in the Management of Adult High- Grade Gliomas
Current Cancer Drug Targets Chromatin Modification and Senescence
Current Pharmaceutical Design Small and Long Non-Coding RNAs: Novel Targets in Perspective Cancer Therapy
Current Genomics Liposomes as Versatile Platform for Cancer Theranostics: Therapy, Bio-imaging, and Toxicological Aspects
Current Pharmaceutical Design Pharmacological Modulation of Diacylglycerol-Sensitive TRPC3/6/7 Channels
Current Pharmaceutical Biotechnology Epigenetic and Disease Targets by Polyphenols
Current Pharmaceutical Design Epigallocatechin-3-Gallate Prevents Autoimmune-Associated Down- Regulation of p21 in Salivary Gland Cells Through a p53-Independent Pathway
Inflammation & Allergy - Drug Targets (Discontinued) The Role of Cellular Senescence During Vascular Calcification: A Key Paradigm in Aging Research
Current Aging Science Advances in Imaging Gene-Directed Enzyme Prodrug Therapy
Current Pharmaceutical Biotechnology Indole Derivatives as Anticancer Agents for Breast Cancer Therapy: A Review
Anti-Cancer Agents in Medicinal Chemistry CD26/Dipeptidyl Peptidase IV as a Novel Therapeutic Target for Cancer and Immune Disorders
Mini-Reviews in Medicinal Chemistry Genetics, Gene Expression, and Targeted Therapies in Chronic Lymphocytic Leukemia
Current Drug Targets NK-1 Receptor Antagonists: A New Generation of Anticancer Drugs
Mini-Reviews in Medicinal Chemistry Targeting MDM2 and MDMX in Retinoblastoma
Current Cancer Drug Targets Cyclin-Dependent Kinase Inhibitors as Anticancer Drugs
Current Drug Targets Analysis of the Potential for HIV-1 Vpr as an Anti-Cancer Agent
Current HIV Research Protein Kinase C Inhibitors in the Treatment of Diabetic Retinopathy. Review
Current Pharmaceutical Biotechnology The Pros and Cons of Targeting Protein Kinase c (PKC) in the Management of Cancer Patients
Current Pharmaceutical Biotechnology Systemic DNA Damage Response and Metabolic Syndrome as a Premalignant State
Current Molecular Medicine