Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Harnessing Natural Resources for Advancements in Dengue Virus Treatment

Author(s): Nur Aina Najiha Amin Hapis, Nurshamimi Nor Rashid and Yeun-Mun Choo*

Volume 24, Issue 27, 2024

Published on: 27 August, 2024

Page: [2337 - 2350] Pages: 14

DOI: 10.2174/0115680266312717240821062535

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Dengue fever, caused by the Dengue virus (DENV) and transmitted by Aedes aegypti mosquitoes, has become endemic in over 100 countries. Despite considerable research, there is a lack of specific drugs for clinical use against dengue. Hence, further exploration to identify antidengue compounds is essential. In recent years, natural products have gained attention for their antiviral properties. Plant-based medicines are particularly appealing due to their safety and low toxicity. This review summarizes natural compounds with potential antiviral activity against DENV, highlighting their mechanisms of action. Various compounds, from traditional herbal remedies to novel plant isolates, show promise against dengue, targeting crucial viral proteins like the envelope protein, proteases, and RNA polymerase. Exploring natural sources of antiviral agents against dengue is crucial. These compounds offer hope for effective treatments and mitigating dengue's global impact.

Keywords: Dengue, DENV, Natural products, E protein, NS1 protein, NS2B-NS3 protease, NS5 protein.

Next »
Graphical Abstract
[1]
Kronenberger, T.; Sá Magalhães Serafim, M.; Kumar Tonduru, A.; Gonçalves Maltarollo, V.; Poso, A. Ligand accessibility insights to the dengue virus NS3-NS2B protease assessed by long- timescale molecular dynamics simulations. ChemMedChem, 2021, 16(16), 2524-2534.
[http://dx.doi.org/10.1002/cmdc.202100246] [PMID: 33899341]
[2]
Organization, W.H. Update on the Dengue situation in the Western Pacific Region., 2022. Available from: https://www.who.int/docs/default-source/wpro---documents/emergency/surveillance/dengue/dengue-20220519.pdf?sfvrsn=5160e027_104 (June 8, 2022).
[3]
Abd Kadir, S.L.; Yaakob, H.; Mohamed Zulkifli, R. Potential anti-dengue medicinal plants: A review. J. Nat. Med., 2013, 67(4), 677-689.
[http://dx.doi.org/10.1007/s11418-013-0767-y] [PMID: 23591999]
[4]
Khetarpal, N.; Khanna, I. Dengue Fever: Causes, complications, and vaccine strategies. J. Immunol. Res., 2016, 2016, 1-14.
[http://dx.doi.org/10.1155/2016/6803098] [PMID: 27525287]
[5]
Gill, B.S. History and epidemiology of dengue. 2022. Available from: http://denggi.myhealth.gov.my/history-and-epidemiology-of-dengue/?lang=en (2022, August 1).
[6]
Wu, W.; Bai, Z.; Zhou, H.; Tu, Z.; Fang, M.; Tang, B.; Liu, J.; Liu, L.; Liu, J.; Chen, W. Molecular epidemiology of dengue viruses in southern China from 1978 to 2006. Virol. J., 2011, 8(1), 322.
[http://dx.doi.org/10.1186/1743-422X-8-322] [PMID: 21703015]
[7]
Gubler, D.J. Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev., 1998, 11(3), 480-496.
[http://dx.doi.org/10.1128/CMR.11.3.480] [PMID: 9665979]
[8]
Roy, S.K.; Bhattacharjee, S. Dengue virus: Epidemiology, biology, and disease aetiology. Can. J. Microbiol., 2021, 67(10), 687-702.
[http://dx.doi.org/10.1139/cjm-2020-0572] [PMID: 34171205]
[9]
Mustafa, M.S.; Rasotgi, V.; Jain, S.; Gupta, V. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Med. J. Armed Forces India, 2015, 71(1), 67-70.
[http://dx.doi.org/10.1016/j.mjafi.2014.09.011] [PMID: 25609867]
[10]
Shimizu, H.; Saito, A.; Mikuni, J.; Nakayama, E.E.; Koyama, H.; Honma, T.; Shirouzu, M.; Sekine, S.; Shioda, T. Discovery of a small molecule inhibitor targeting dengue virus NS5 RNA-dependent RNA polymerase. PLoS Negl. Trop. Dis., 2019, 13(11), e0007894.
[http://dx.doi.org/10.1371/journal.pntd.0007894] [PMID: 31738758]
[11]
Tarasuk, M.; Songprakhon, P.; Chimma, P.; Sratongno, P.; Na-Bangchang, K.; Yenchitsomanus, P. Alpha-mangostin inhibits both dengue virus production and cytokine/chemokine expression. Virus Res., 2017, 240, 180-189.
[http://dx.doi.org/10.1016/j.virusres.2017.08.011] [PMID: 28864423]
[12]
Faheem, M.; Barbosa Lima, J.C.; Jamal, S.B.; Silva, P.A.; Barbosa, J.A.R.G. An insight into dengue virus proteins as potential drug/vaccine targets. Future Virol., 2019, 14(10), 671-691.
[http://dx.doi.org/10.2217/fvl-2019-0107]
[13]
Teixeira, R.; Pereira, W.; Oliveira, A.; Da Silva, A.; De Oliveira, A.; Da Silva, M.; Da Silva, C.; De Paula, S. Natural products as source of potential dengue antivirals. Molecules, 2014, 19(6), 8151-8176.
[http://dx.doi.org/10.3390/molecules19068151] [PMID: 24941340]
[14]
Mohd Nawi, M.S. Ligand based drug discovery of novel dengue-2 NS2B-NS3 protease inhibitors; Universiti Sains Malaysia, 2015.
[15]
Dighe, S.N.; Ekwudu, O.; Dua, K.; Chellappan, D.K.; Katavic, P.L.; Collet, T.A. Recent update on anti-dengue drug discovery. Eur. J. Med. Chem., 2019, 176, 431-455.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.010] [PMID: 31128447]
[16]
Rothan, H.A.; Han, H.C.; Ramasamy, T.S.; Othman, S.; Rahman, N.A.; Yusof, R. Inhibition of dengue NS2B-NS3 protease and viral replication in Vero cells by recombinant retrocyclin-1. BMC Infect. Dis., 2012, 12(1), 314.
[http://dx.doi.org/10.1186/1471-2334-12-314] [PMID: 23171075]
[17]
Hai, N.A.; Khan, A.A.; Haq, F.; Khan, S. Proceedings of 2021 18th International Bhurban Conference on Applied Sciences & Technology (IBCAST), Islamabad, Pakistan, 12 – 16 January 2021, pp. 1-517.
[18]
Malaysia, W. Mosquito control methods. 2022. Available from: https://www.imr.gov.my/wolbachia/2017/01/22/mosquito-control-methods/ (June 26, 2022).
[20]
Trujillo-Correa, A.I.; Quintero-Gil, D.C.; Diaz-Castillo, F.; Quiñones, W.; Robledo, S.M.; Martinez-Gutierrez, M. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complement. Altern. Med., 2019, 19(1), 298.
[http://dx.doi.org/10.1186/s12906-019-2695-1] [PMID: 31694638]
[21]
Gurib-Fakim, A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Aspects Med., 2006, 27(1), 1-93.
[http://dx.doi.org/10.1016/j.mam.2005.07.008] [PMID: 16105678]
[22]
Hassan, S.T.S.; Masarčíková, R.; Berchová, K. Bioactive natural products with anti-herpes simplex virus properties. J. Pharm. Pharmacol., 2015, 67(10), 1325-1336.
[http://dx.doi.org/10.1111/jphp.12436] [PMID: 26060043]
[23]
Azzam, H.S.; Goertz, C.; Fritts, M.; Jonas, W.B. Natural products and chronic hepatitis C virus. Liver Int., 2007, 27(1), 17-25.
[http://dx.doi.org/10.1111/j.1478-3231.2006.01408.x] [PMID: 17241377]
[24]
Sencanski, M.; Radosevic, D.; Perovic, V.; Gemovic, B.; Stanojevic, M.; Veljkovic, N.; Glisic, S. Natural products as promising therapeutics for treatment of influenza disease. Curr. Pharm. Des., 2015, 21(38), 5573-5588.
[http://dx.doi.org/10.2174/1381612821666151002113426] [PMID: 26429712]
[25]
Bhakat, S.; Soliman, M.E.S. Chikungunya virus (CHIKV) inhibitors from natural sources: A medicinal chemistry perspective. J. Nat. Med., 2015, 69(4), 451-462.
[http://dx.doi.org/10.1007/s11418-015-0910-z] [PMID: 25921858]
[26]
Hernández-Castro, C.; Diaz-Castillo, F.; Martínez-Gutierrez, M. Ethanol extracts of Cassia grandis and Tabernaemontana cymosa inhibit the in vitro replication of dengue virus serotype 2. Asian Pac. J. Trop. Dis., 2015, 5(2), 98-106.
[http://dx.doi.org/10.1016/S2222-1808(14)60635-6]
[27]
Angelina, M.; Hanafi, M.; Suyatna, F.D.; Dewi, B.E. Drug of action cassia alata leaves extract as antiviral to dengue virus serotype-2 in vitro. Pharmacogn. J., 2020, 12(4), 864-871.
[http://dx.doi.org/10.5530/pj.2020.12.124]
[28]
Rothan, H.A.; Zulqarnain, M.; Ammar, Y.A.; Tan, E.C.; Rahman, N.A.; Yusof, R. Screening of antiviral activities in medicinal plants extracts against dengue virus using dengue NS2B-NS3 protease assay. Trop. Biomed., 2014, 31(2), 286-296.
[PMID: 25134897]
[29]
Leal, E.S.; Adler, N.S.; Fernández, G.A.; Gebhard, L.G.; Battini, L.; Aucar, M.G.; Videla, M.; Monge, M.E.; Hernández de los Ríos, A.; Acosta Dávila, J.A.; Morell, M.L.; Cordo, S.M.; García, C.C.; Gamarnik, A.V.; Cavasotto, C.N.; Bollini, M. De novo design approaches targeting an envelope protein pocket to identify small molecules against dengue virus. Eur. J. Med. Chem., 2019, 182, 111628.
[http://dx.doi.org/10.1016/j.ejmech.2019.111628] [PMID: 31472473]
[30]
Abdul Ahmad, S.A.; Palanisamy, U.D.; Khoo, J.J.; Dhanoa, A.; Syed Hassan, S. Efficacy of geraniin on dengue virus type-2 infected BALB/c mice. Virol. J., 2019, 16(1), 26.
[http://dx.doi.org/10.1186/s12985-019-1127-7] [PMID: 30813954]
[31]
Paes, M.V.; Pinhão, A.T.; Barreto, D.F.; Costa, S.M.; Oliveira, M.P.; Nogueira, A.C.; Takiya, C.M.; Farias-Filho, J.C.; Schatzmayr, H.G.; Alves, A.M.B.; Barth, O.M. Liver injury and viremia in mice infected with dengue-2 virus. Virology, 2005, 338(2), 236-246.
[http://dx.doi.org/10.1016/j.virol.2005.04.042] [PMID: 15961136]
[32]
Fisher, R.; Lustig, Y.; Sklan, E.H.; Schwartz, E. The role of NS1 protein in the diagnosis of flavivirus infections. Viruses, 2023, 15(2), 572.
[http://dx.doi.org/10.3390/v15020572] [PMID: 36851784]
[33]
Glasner, D.R.; Puerta-Guardo, H.; Beatty, P.R.; Harris, E. The good, the bad, and the shocking: The multiple roles of dengue virus nonstructural protein 1 in protection and pathogenesis. Annu. Rev. Virol., 2018, 5(1), 227-253.
[http://dx.doi.org/10.1146/annurev-virology-101416-041848] [PMID: 30044715]
[34]
Shukla, R.; Ahuja, R.; Beesetti, H.; Garg, A.; Aggarwal, C.; Chaturvedi, S.; Nayyar, K.; Arora, U.; Lal, A.A.; Khanna, N. Sinococuline, a bioactive compound of Cocculus hirsutus has potent anti-dengue activity. Sci. Rep., 2023, 13(1), 1026.
[http://dx.doi.org/10.1038/s41598-023-27927-3] [PMID: 36658277]
[35]
Yao, X.; Ling, Y.; Guo, S.; Wu, W.; He, S.; Zhang, Q.; Zou, M.; Nandakumar, K.S.; Chen, X.; Liu, S. Tatanan A from the Acorus calamus L. root inhibited dengue virus proliferation and infections. Phytomedicine, 2018, 42, 258-267.
[http://dx.doi.org/10.1016/j.phymed.2018.03.018] [PMID: 29655694]
[36]
Yusof, R.; Clum, S.; Wetzel, M.; Murthy, H.M.K.; Padmanabhan, R. Purified NS2B/NS3 serine protease of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro. J. Biol. Chem., 2000, 275(14), 9963-9969.
[http://dx.doi.org/10.1074/jbc.275.14.9963] [PMID: 10744671]
[37]
Tomlinson, S.; Malmstrom, R.; Watowich, S. New approaches to structure-based discovery of dengue protease inhibitors. Infect. Disord. Drug Targets, 2009, 9(3), 327-343.
[http://dx.doi.org/10.2174/1871526510909030327] [PMID: 19519486]
[38]
Lim, L.; Dang, M.; Roy, A.; Kang, J.; Song, J. Curcumin allosterically inhibits the dengue NS2B-NS3 protease by disrupting its active conformation. ACS Omega, 2020, 5(40), 25677-25686.
[http://dx.doi.org/10.1021/acsomega.0c00039] [PMID: 33073093]
[39]
Saleem, H.N.; Batool, F.; Mansoor, H.J.; Shahzad-ul-Hussan, S.; Saeed, M. Inhibition of dengue virus protease by eugeniin, isobiflorin, and biflorin isolated from the flower buds of syzygium aromaticum (cloves). ACS Omega, 2019, 4(1), 1525-1533.
[http://dx.doi.org/10.1021/acsomega.8b02861]
[40]
Sulaiman, S.N.; Hariono, M.; Salleh, H.M.; Chong, S.-L.; Yee, L.S.; Zahari, A.; Wahab, H.A.; Derbré, S.; Awang, K. Chemical constituents from endiandra kingiana (Lauraceae) as potential inhibitors for dengue type 2 NS2B/NS3 serine protease and its molecular docking. Nat. Prod. Commun., 2019, 14(9)
[41]
Kitani, S.; Yoshida, M.; Boonlucksanawong, O.; Panbangred, W.; Anuegoonpipat, A.; Kurosu, T.; Ikuta, K.; Igarashi, Y.; Nihira, T.; Cystargamide, B. Cystargamide B, a cyclic lipodepsipeptide with protease inhibitory activity from Streptomyces sp. J. Antibiot., 2018, 71(7), 662-666.
[http://dx.doi.org/10.1038/s41429-018-0044-0] [PMID: 29567952]
[42]
de Sousa, L.R.F.; Wu, H.; Nebo, L.; Fernandes, J.B.; da Silva, M.F.G.F.; Kiefer, W.; Kanitz, M.; Bodem, J.; Diederich, W.E.; Schirmeister, T.; Vieira, P.C. Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: Inhibition kinetics and docking studies. Bioorg. Med. Chem., 2015, 23(3), 466-470.
[http://dx.doi.org/10.1016/j.bmc.2014.12.015] [PMID: 25564380]
[43]
Wu, D.; Mao, F.; Ye, Y.; Li, J.; Xu, C.; Luo, X.; Chen, J.; Shen, X. Policresulen, a novel NS2B/NS3 protease inhibitor, effectively inhibits the replication of DENV2 virus in BHK-21 cells. Acta Pharmacol. Sin., 2015, 36(9), 1126-1136.
[http://dx.doi.org/10.1038/aps.2015.56] [PMID: 26279156]
[44]
Dang, M.; Lim, L.; Roy, A.; Song, J. Myricetin allosterically inhibits the dengue NS2B-NS3 protease by disrupting the active and locking the inactive conformations. ACS Omega, 2022, 7(3), 2798-2808.
[http://dx.doi.org/10.1021/acsomega.1c05569] [PMID: 35097276]
[45]
Lee, J.C.; Chang, F.R.; Chen, S.R.; Wu, Y.H.; Hu, H.C.; Wu, Y.C.; Backlund, A.; Cheng, Y.B. Anti-dengue virus constituents from formosan zoanthid palythoa mutuki. Mar. Drugs, 2016, 14(8), 151.
[http://dx.doi.org/10.3390/md14080151] [PMID: 27517937]
[46]
Lim, S.P.; Noble, C.G.; Shi, P.Y. The dengue virus NS5 protein as a target for drug discovery. Antiviral Res., 2015, 119, 57-67.
[http://dx.doi.org/10.1016/j.antiviral.2015.04.010] [PMID: 25912817]
[47]
Panya, A.; Songprakhon, P.; Panwong, S.; Jantakee, K.; Kaewkod, T.; Tragoolpua, Y.; Sawasdee, N.; Lee, V.S.; Nimmanpipug, P.; Yenchitsomanus, P. Cordycepin inhibits virus replication in dengue virus-infected vero cells. Molecules, 2021, 26(11), 3118.
[http://dx.doi.org/10.3390/molecules26113118] [PMID: 34071102]
[48]
Peyrat, L.A.; Eparvier, V.; Eydoux, C.; Guillemot, J.C.; Stien, D.; Litaudon, M. Chemical diversity and antiviral potential in the pantropical Diospyros genus. Fitoterapia, 2016, 112, 9-15.
[http://dx.doi.org/10.1016/j.fitote.2016.04.017] [PMID: 27126897]
[49]
Coulerie, P.; Eydoux, C.; Hnawia, E.; Stuhl, L.; Maciuk, A.; Lebouvier, N.; Canard, B.; Figadère, B.; Guillemot, J.C.; Nour, M. Biflavonoids of Dacrydium balansae with potent inhibitory activity on dengue 2 NS5 polymerase. Planta Med., 2012, 78(7), 672-677.
[http://dx.doi.org/10.1055/s-0031-1298355] [PMID: 22411725]
[50]
Coulerie, P.; Nour, M.; Maciuk, A.; Eydoux, C.; Guillemot, J.C.; Lebouvier, N.; Hnawia, E.; Leblanc, K.; Lewin, G.; Canard, B.; Figadère, B. Structure-activity relationship study of biflavonoids on the Dengue virus polymerase DENV-NS5 RdRp. Planta Med., 2013, 79(14), 1313-1318.
[http://dx.doi.org/10.1055/s-0033-1350672] [PMID: 23929244]
[51]
Bourjot, M.; Leyssen, P.; Eydoux, C.; Guillemot, J.C.; Canard, B.; Rasoanaivo, P.; Guéritte, F.; Litaudon, M.; Flacourtosides, A-F. Flacourtosides A-F, phenolic glycosides isolated from Flacourtia ramontchi. J. Nat. Prod., 2012, 75(4), 752-758.
[http://dx.doi.org/10.1021/np300059n] [PMID: 22439591]
[52]
Peyrat, L.A.; Eparvier, V.; Eydoux, C.; Guillemot, J.C.; Litaudon, M.; Stien, D. Carneic acids from an endophytic Phomopsis sp. as dengue virus polymerase inhibitors. J. Nat. Prod., 2020, 83(8), 2330-2336.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01169] [PMID: 32686414]
[53]
Ratanakomol, T.; Roytrakul, S.; Wikan, N.; Smith, D.R. Berberine inhibits dengue virus through dual mechanisms. Molecules, 2021, 26(18), 5501.
[http://dx.doi.org/10.3390/molecules26185501] [PMID: 34576974]
[54]
Cheng, Y.B.; Chien, Y.T.; Lee, J.C.; Tseng, C.K.; Wang, H.C.; Lo, I.W.; Wu, Y.H.; Wang, S.Y.; Wu, Y.C.; Chang, F.R. Limonoids from the seeds of Swietenia macrophylla with inhibitory activity against dengue virus 2. J. Nat. Prod., 2014, 77(11), 2367-2374.
[http://dx.doi.org/10.1021/np5002829] [PMID: 25330401]
[55]
Sanna, G.; Madeddu, S.; Giliberti, G.; Ntalli, N.G.; Cottiglia, F.; De Logu, A.; Agus, E.; Caboni, P. Limonoids from melia azedarach fruits as inhibitors of flaviviruses and mycobacterium tubercolosis. PLoS One, 2015, 10(10), e0141272.
[http://dx.doi.org/10.1371/journal.pone.0141272] [PMID: 26485025]
[56]
Silva, F.C.; Rodrigues, V.G.; Duarte, L.P.; Lula, I.S.; Sinisterra, R.D.; Vieira-Filho, S.A.; Rodrigues, R.A.L.; Kroon, E.G.; Oliveira, P.L.; Farias, L.M.; Magalhães, P.P.; Silva, G.D.F. Antidiarrheal activity of extracts from Maytenus gonoclada and inhibition of Dengue virus by lupeol. An. Acad. Bras. Cienc., 2017, 89(3), 1555-1564.
[http://dx.doi.org/10.1590/0001-3765201720160046] [PMID: 28954173]
[57]
Zandi, K.; Lim, T.H.; Rahim, N.A.; Shu, M.H.; Teoh, B.T.; Sam, S.S.; Danlami, M.B.; Tan, K.K.; Abubakar, S. Extract of Scutellaria baicalensis inhibits dengue virus replication. BMC Complement. Altern. Med., 2013, 13(1), 91.
[http://dx.doi.org/10.1186/1472-6882-13-91] [PMID: 23627436]
[58]
Ara, S. Antiviral activities of extracts and phenolic components of two Spondias species against dengue virus. J. Venom. Anim. Toxins Incl. Trop. Dis., 2011, 17(4), 406-413.
[59]
Moghaddam, E.; Teoh, B.T.; Sam, S.S.; Lani, R.; Hassandarvish, P.; Chik, Z.; Yueh, A.; Abubakar, S.; Zandi, K. Baicalin, a metabolite of baicalein with antiviral activity against dengue virus. Sci. Rep., 2014, 4(1), 5452.
[http://dx.doi.org/10.1038/srep05452] [PMID: 24965553]
[60]
Chang, F.R.; Li, P.S.; Huang Liu, R.; Hu, H.C.; Hwang, T.L.; Lee, J.C.; Chen, S.L.; Wu, Y.C.; Cheng, Y.B. Bioactive phenolic components from the twigs of Atalantia buxifolia. J. Nat. Prod., 2018, 81(7), 1534-1539.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00938] [PMID: 29975532]
[61]
Chiow, K.H.; Phoon, M.C.; Putti, T.; Tan, B.K.H.; Chow, V.T. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pac. J. Trop. Med., 2016, 9(1), 1-7.
[http://dx.doi.org/10.1016/j.apjtm.2015.12.002] [PMID: 26851778]
[62]
Gómez-Calderón, C.; Mesa-Castro, C.; Robledo, S.; Gómez, S.; Bolivar-Avila, S.; Diaz-Castillo, F.; Martínez-Gutierrez, M. Antiviral effect of compounds derived from the seeds of Mammea americana and Tabernaemontana cymosa on Dengue and Chikungunya virus infections. BMC Complement. Altern. Med., 2017, 17(1), 57.
[http://dx.doi.org/10.1186/s12906-017-1562-1] [PMID: 28100218]
[63]
Whitby, K.; Pierson, T.C.; Geiss, B.; Lane, K.; Engle, M.; Zhou, Y.; Doms, R.W.; Diamond, M.S. Castanospermine, a potent inhibitor of dengue virus infection in vitro and in vivo. J. Virol., 2005, 79(14), 8698-8706.
[http://dx.doi.org/10.1128/JVI.79.14.8698-8706.2005] [PMID: 15994763]
[64]
Lin, L.T.; Chen, T.Y.; Lin, S.C.; Chung, C.Y.; Lin, T.C.; Wang, G.H.; Anderson, R.; Lin, C.C.; Richardson, C.D. Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry. BMC Microbiol., 2013, 13(1), 187.
[http://dx.doi.org/10.1186/1471-2180-13-187] [PMID: 23924316]
[65]
Loaiza-Cano, V.; Monsalve-Escudero, L.M.; Filho, C.S.M.B.; Martinez-Gutierrez, M.; Sousa, D.P. Antiviral role of phenolic compounds against dengue virus: A review. Biomolecules, 2020, 11(1), 11.
[http://dx.doi.org/10.3390/biom11010011] [PMID: 33374457]
[66]
Brandão, G.; Kroon, E.; Souza, D.; Filho, J.; Oliveira, A. Chemistry and antiviral activity of arrabidaea pulchra (Bignoniaceae). Molecules, 2013, 18(8), 9919-9932.
[http://dx.doi.org/10.3390/molecules18089919] [PMID: 23959197]
[67]
Zandi, K.; Teoh, B.T.; Sam, S.S.; Wong, P.F.; Mustafa, M.R.; AbuBakar, S. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol. J., 2011, 8(1), 560.
[http://dx.doi.org/10.1186/1743-422X-8-560] [PMID: 22201648]
[68]
Paemanee, A.; Hitakarun, A.; Roytrakul, S.; Smith, D.R. Screening of melatonin, α-tocopherol, folic acid, acetyl-l-carnitine and resveratrol for anti-dengue 2 virus activity. BMC Res. Notes, 2018, 11(1), 307.
[http://dx.doi.org/10.1186/s13104-018-3417-3] [PMID: 29769094]
[69]
Panraksa, P.; Ramphan, S.; Khongwichit, S.; Smith, D.R. Activity of andrographolide against dengue virus. Antiviral Res., 2017, 139, 69-78.
[http://dx.doi.org/10.1016/j.antiviral.2016.12.014] [PMID: 28034742]
[70]
Simões, L.R.; Maciel, G.M.; Brandão, G.C.; Kroon, E.G.; Castilho, R.O.; Oliveira, A.B. Antiviral activity of Distictella elongata (Vahl) Urb. (Bignoniaceae), a potentially useful source of anti-dengue drugs from the state of Minas Gerais, Brazil. Lett. Appl. Microbiol., 2011, 53(6), 602-607.
[http://dx.doi.org/10.1111/j.1472-765X.2011.03146.x] [PMID: 21895729]
[71]
Cheng, Y.B.; Lee, J.C.; Lo, I.W.; Chen, S.R.; Hu, H.C.; Wu, Y.H.; Wu, Y.C.; Chang, F.R. Ecdysones from Zoanthus spp. with inhibitory activity against dengue virus 2. Bioorg. Med. Chem. Lett., 2016, 26(9), 2344-2348.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.029] [PMID: 26988299]
[72]
Huang, H.C.; Chen, L.C.; Chang, T.H.; Zhu, T.F.; Chen, C.L.; Cheng, M.J.; Chen, J.J. A new lignanamide derivative and bioactive constituents of lycium chinense. Chem. Nat. Compd., 2019, 55(6), 1002-1006.
[http://dx.doi.org/10.1007/s10600-019-02879-1]
[73]
Diosa-Toro, M.; Troost, B.; van de Pol, D.; Heberle, A.M.; Urcuqui-Inchima, S.; Thedieck, K.; Smit, J.M. Tomatidine, a novel antiviral compound towards dengue virus. Antiviral Res., 2019, 161, 90-99.
[http://dx.doi.org/10.1016/j.antiviral.2018.11.011] [PMID: 30468746]
[74]
Yao, X.; Ling, Y.; Guo, S.; He, S.; Wang, J.; Zhang, Q.; Wu, W.; Zou, M.; Zhang, T.; Nandakumar, K.S.; Chen, X.; Liu, S. Inhibition of dengue viral infection by diasarone-I is associated with 2'O methyltransferase of NS5. Eur. J. Pharmacol., 2018, 821, 11-20.
[http://dx.doi.org/10.1016/j.ejphar.2017.12.029] [PMID: 29246851]
[75]
Kaushik, S.; Kaushik, S.; Dar, L.; Yadav, J.P. Eugenol isolated from supercritical fluid extract of Ocimum sanctum: A potent inhibitor of DENV-2. AMB Express, 2023, 13(1), 105.
[http://dx.doi.org/10.1186/s13568-023-01607-x] [PMID: 37783874]
[76]
Panda, K.; Alagarasu, K.; Patil, P.; Agrawal, M.; More, A.; Kumar, N.V.; Mainkar, P.S.; Parashar, D.; Cherian, S. In vitro antiviral activity of α-mangostin against dengue virus serotype-2 (DENV-2). Molecules, 2021, 26(10), 3016.
[http://dx.doi.org/10.3390/molecules26103016] [PMID: 34069351]
[77]
Peng, M.; Watanabe, S.; Chan, K.W.K.; He, Q.; Zhao, Y.; Zhang, Z.; Lai, X.; Luo, D.; Vasudevan, S.G.; Li, G. Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin. Antiviral Res., 2017, 143, 176-185.
[http://dx.doi.org/10.1016/j.antiviral.2017.03.026] [PMID: 28389141]
[78]
Kanyaboon, P.; Saelee, T.; Suroengrit, A.; Hengphasatporn, K.; Rungrotmongkol, T.; Chavasiri, W.; Boonyasuppayakorn, S. Cardol triene inhibits dengue infectivity by targeting kl loops and preventing envelope fusion. Sci. Rep., 2018, 8(1), 16643.
[http://dx.doi.org/10.1038/s41598-018-35035-w] [PMID: 30413789]
[79]
Quintana, V.M.; Selisko, B.; Brunetti, J.E.; Eydoux, C.; Guillemot, J.C.; Canard, B.; Damonte, E.B.; Julander, J.G.; Castilla, V. Antiviral activity of the natural alkaloid anisomycin against dengue and Zika viruses. Antiviral Res., 2020, 176, 104749.
[http://dx.doi.org/10.1016/j.antiviral.2020.104749] [PMID: 32081740]
[80]
Chen, J.M.; Fan, Y.C.; Lin, J.W.; Chen, Y.Y.; Hsu, W.L.; Chiou, S.S. Bovine lactoferrin inhibits dengue virus infectivity by interacting with heparan sulfate, low-density lipoprotein receptor, and DC-SIGN. Int. J. Mol. Sci., 2017, 18(9), 1957.
[http://dx.doi.org/10.3390/ijms18091957] [PMID: 28895925]
[81]
Shukla, R.; Rajpoot, R.K.; Poddar, A.; Ahuja, R.; Beesetti, H.; Shanmugam, R.K.; Chaturvedi, S.; Nayyar, K.; Singh, D.; Singamaneni, V.; Gupta, P.; Gupta, A.P.; Gairola, S.; Kumar, P.; Bedi, Y.S.; Jain, T.; Vashishta, B.; Patil, R.; Madan, H.; Madan, S.; Kalra, R.; Sood, R.; Vishwakarma, R.A.; Reddy, D.S.; Lal, A.A.; Arora, U.; Khanna, N. Cocculus hirsutus-derived phytopharmaceutical drug has potent anti-dengue activity. Front. Microbiol., 2021, 12, 746110.
[http://dx.doi.org/10.3389/fmicb.2021.746110] [PMID: 34912307]
[82]
Zandi, K.; Teoh, B.T.; Sam, S.S.; Wong, P.F.; Mustafa, M.R.; AbuBakar, S. Novel antiviral activity of baicalein against dengue virus. BMC Complement. Altern. Med., 2012, 12(1), 214.
[http://dx.doi.org/10.1186/1472-6882-12-214] [PMID: 23140177]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy