Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Therapeutic Potential of Quercetin in Diabetic Neuropathy and Retinopathy: Exploring Molecular Mechanisms

Author(s): Lunasmrita Saikia, Sm Abdul Aziz Barbhuiya, Kalyani Saikia, Pratap Kalita and Partha Pratim Dutta*

Volume 24, Issue 27, 2024

Published on: 27 August, 2024

Page: [2351 - 2361] Pages: 11

DOI: 10.2174/0115680266330678240821060623

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Diabetes mellitus poses a significant health challenge globally, often leading to debilitating complications, such as neuropathy and retinopathy. Quercetin, a flavonoid prevalent in fruits and vegetables, has demonstrated potential therapeutic effects in these conditions due to its antioxidant, anti-inflammatory, and neuroprotective properties. This review summarizes and provides a comprehensive understanding of the molecular mechanisms underlying the efficacy of quercetin in ameliorating diabetic neuropathy and retinopathy. A thorough search was carried out across scientific databases, such as SciFinder, PubMed, and Google Scholar, to gather pertinent literature regarding the effect of quercetin on diabetic neuropathy and retinopathy till February 2024. Preclinical studies indicate that quercetin mitigates neuropathic pain, sensory deficits, and nerve damage associated with diabetic neuropathy by improving neuronal function, reducing DNA damage, regulating pro-inflammatory cytokines, enhancing antioxidant enzyme levels and endothelial function, as well as restoring nerve injuries. In diabetic retinopathy, quercetin shows the potential to preserve retinal structure and function, inhibiting neovascularization, preventing retinal cell death, reducing pro-inflammatory cytokines, and increasing neurotrophic factor levels. Moreover, through modulating key signaling pathways, such as AMP-activated Protein Kinase (AMPK) activation, Glucose Transporter 4 (GLUT 4) upregulation, and insulin secretion regulation, quercetin demonstrates efficacy in reducing oxidative stress and inflammation, thereby protecting nerve and retinal tissues. Despite promising preclinical findings, challenges, such as limited bioavailability, necessitate further research to optimize quercetin’s clinical application in order to establish its optimal dosage, formulation, and long-term efficacy in clinical settings.

Keywords: Diabetic neuropathy, Diabetic retinopathy, Anti-inflammatory, Anti-oxidant, Hyperglycaemia, oxidative stress.

Graphical Abstract
[1]
Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci., 2020, 21(17), 6275.
[http://dx.doi.org/10.3390/ijms21176275] [PMID: 32872570]
[2]
Osawa, T.; Kato, Y. Protective role of antioxidative food factors in oxidative stress caused by hyperglycemia. Ann. N. Y. Acad. Sci., 2005, 1043(1), 440-451.
[http://dx.doi.org/10.1196/annals.1333.050] [PMID: 16037265]
[3]
Chuter, V.; Schaper, N.; Mills, J.; Hinchliffe, R.; Russell, D.; Azuma, N.; Behrendt, C.A.; Boyko, E.J.; Conte, M.S.; Humphries, M.; Kirksey, L.; McGinigle, K.C.; Nikol, S.; Nordanstig, J.; Rowe, V.; van den Berg, J.C.; Venermo, M.; Fitridge, R. Effectiveness of bedside investigations to diagnose peripheral artery disease among people with diabetes mellitus: A systematic review. Diabetes Metab. Res. Rev., 2024, 40(3), e3683.
[http://dx.doi.org/10.1002/dmrr.3683] [PMID: 37477087]
[4]
Raghav, S.S.; Kumar, B.; Sethiya, N.K.; Lal, D.K. Diabetic foot ulcer management and treatment: An overview of published patents. Curr. Diabetes Rev., 2024, 20(3), e120623217906.
[http://dx.doi.org/10.2174/1573399820666230612161846] [PMID: 37309771]
[5]
Prabhawathi, V.; Sivakumar, P.M.; Prabhakar, P.K.; Cetinel, S.; R, N. Molecular insights on the therapeutic effect of selected flavonoids on diabetic neuropathy. Mini Rev. Med. Chem., 2022, 22(14), 1828-1846.
[http://dx.doi.org/10.2174/1389557522666220309140855] [PMID: 35264089]
[6]
Johnson, E.L.; Heaver, S.L.; Walters, W.A.; Ley, R.E. Microbiome and metabolic disease: Revisiting the bacterial phylum Bacteroidetes. J. Mol. Med., 2017, 95(1), 1-8.
[http://dx.doi.org/10.1007/s00109-016-1492-2] [PMID: 27900395]
[7]
Kushnir, R.; Cherkas, P.S.; Hanani, M. Peripheral inflammation upregulates P2X receptor expression in satellite glial cells of mouse trigeminal ganglia: A calcium imaging study. Neuropharmacology, 2011, 61(4), 739-746.
[http://dx.doi.org/10.1016/j.neuropharm.2011.05.019] [PMID: 21645532]
[8]
Fatima, M.; Khan, M.R. Investigating the role of polyphenols from Pleurospermum candollei (DC.) extract against diabetic nephropathy through modulating inflammatory cytokines and renal gene expression in rats. J. Mol. Struct., 2024, 1305, 137832.
[http://dx.doi.org/10.1016/j.molstruc.2024.137832]
[9]
Shen, L.; Li, C.; Wang, W.; Wang, X.; Tang, D.; Xiao, F.; Xia, T. Buckwheat extracts rich in flavonoid aglycones and flavonoid glycosides significantly reduced blood glucose in diabetes mice. J. Funct. Foods, 2024, 113, 106029.
[http://dx.doi.org/10.1016/j.jff.2024.106029]
[10]
Fanaro, G.B.; Marques, M.R.; Calaza, K.C.; Brito, R.; Pessoni, A.M.; Mendonça, H.R.; Lemos, D.E.A.; de Brito Alves, J.L.; de Souza, E.L.; Cavalcanti Neto, M.P. New insights on dietary polyphenols for the management of oxidative stress and neuroinflammation in diabetic retinopathy. Antioxidants, 2023, 12(6), 1237.
[http://dx.doi.org/10.3390/antiox12061237] [PMID: 37371967]
[11]
Zhang, L.; Wang, X.; Chang, L.; Ren, Y.; Sui, M.; Fu, Y.; Zhang, L.; Hao, L. Quercetin improves diabetic kidney disease by inhibiting ferroptosis and regulating the Nrf2 in streptozotocin-induced diabetic rats. Ren. Fail., 2024, 46(1), 2327495.
[http://dx.doi.org/10.1080/0886022X.2024.2327495] [PMID: 38465879]
[12]
Laky, M.; Arslan, M.; Zhu, X.; Rausch-Fan, X.; Moritz, A.; Sculean, A.; Laky, B.; Ramseier, C.A.; Stähli, A.; Eick, S. Quercetin in the prevention of induced periodontal disease in animal models: A systematic review and meta-analysis. Nutrients, 2024, 16(5), 735.
[http://dx.doi.org/10.3390/nu16050735] [PMID: 38474862]
[13]
Jian, X.; Shi, C.; Luo, W.; Zhou, L.; Jiang, L.; Liu, K. Therapeutic effects and molecular mechanisms of quercetin in gynecological disorders. Biomed. Pharmacother., 2024, 173, 116418.
[http://dx.doi.org/10.1016/j.biopha.2024.116418] [PMID: 38461683]
[14]
Kamboj, S.; Mukhija, M.; Monga, J.; Singla, R.; Chaudhary, J. Mechanistic investigation of quercetin in the management of complications of diabetes mellitus by network pharmacology. JMC, 2024, 4(1), 684.
[15]
Ahmad, I.; Hoda, M. Attenuation of diabetic retinopathy and neuropathy by resveratrol: Review on its molecular mechanisms of action. Life Sci., 2020, 245(245), 117350.
[http://dx.doi.org/10.1016/j.lfs.2020.117350] [PMID: 31982401]
[16]
Hussain, M.S.; Altamimi, A.S.A.; Afzal, M.; Almalki, W.H.; Kazmi, I.; Alzarea, S.I.; Gupta, G.; Shahwan, M.; Kukreti, N.; Wong, L.S.; Kumarasamy, V.; Subramaniyan, V. Kaempferol: Paving the path for advanced treatments in aging-related diseases. Exp. Gerontol., 2024, 188, 112389.
[http://dx.doi.org/10.1016/j.exger.2024.112389] [PMID: 38432575]
[17]
Pandey, P.; Khan, F.; Ramniwas, S.; Saeed, M.; Ahmad, I. A mechanistic review of the pharmacological potential of narirutin: A dietary flavonoid. Naunyn Schmiedebergs Arch. Pharmacol., 2024, 8, 1-3.
[http://dx.doi.org/10.1007/s00210-024-03022-w] [PMID: 38457040]
[18]
Pei, B.; Yang, M.; Qi, X.; Shen, X.; Chen, X.; Zhang, F. Quercetin ameliorates ischemia/reperfusion-induced cognitive deficits by inhibiting ASK1/JNK3/caspase-3 by enhancing the Akt signaling pathway. Biochem. Biophys. Res. Commun., 2016, 478(1), 199-205.
[http://dx.doi.org/10.1016/j.bbrc.2016.07.068] [PMID: 27450812]
[19]
Chung, S.S.M. Contribution of polyol pathway to diabetes-induced oxidative stress. J. Am. Soc. Nephrol., 2007.
[PMID: 12874437]
[20]
Dong, Y.; Wang, J.; Feng, D.; Qin, H.; Wen, H.; Yin, Z.; Gao, G.; Li, C. Protective effect of quercetin against oxidative stress and brain edema in an experimental rat model of subarachnoid hemorrhage. Int. J. Med. Sci., 2014, 11(3), 282-290.
[http://dx.doi.org/10.7150/ijms.7634] [PMID: 24516353]
[21]
Gao, L.; Qin, J.; Chen, Y.; Jiang, W.; Zhu, D.; Zhou, X.; Ding, J.; Qiu, H.; Zhou, Y.; Dong, Q.; Guan, Y. Risk factors for subclinical diabetic peripheral neuropathy in type 2 diabetes mellitus. Diabetes Metab. Syndr. Obes., 2024, 17, 417-426.
[http://dx.doi.org/10.2147/DMSO.S433024] [PMID: 38288341]
[22]
Bansal, V.; Kalita, J.; Misra, U.K. Diabetic neuropathy. Postgrad. Med. J., 2006, 82(964), 95-100.
[http://dx.doi.org/10.1136/pgmj.2005.036137] [PMID: 16461471]
[23]
Boulton, A.J.M.; Vinik, A.I.; Arezzo, J.C.; Bril, V.; Feldman, E.L.; Freeman, R.; Malik, R.A.; Maser, R.E.; Sosenko, J.M.; Ziegler, D. Diabetic neuropathies. Diabetes Care, 2005, 28(4), 956-962.
[http://dx.doi.org/10.2337/diacare.28.4.956] [PMID: 15793206]
[24]
Zakin, E.; Abrams, R.; Simpson, D.M. Diabetic neuropathy. Semin Neurol, 2019, 39(5), 560-569.
[http://dx.doi.org/10.1055/s-0039-1688978]
[25]
Nkonge, K.M.; Nkonge, D.K.; Nkonge, T.N. Screening for diabetic peripheral neuropathy in resource-limited settings. Diabetol. Metab. Syndr., 2023, 15(1), 55.
[http://dx.doi.org/10.1186/s13098-023-01032-x] [PMID: 36945043]
[26]
Fang, X.X.; Wang, H.; Song, H.L.; Wang, J.; Zhang, Z.J. Neuroinflammation involved in diabetes-related pain and itch. Front. Pharmacol., 2022, 13, 921612.
[http://dx.doi.org/10.3389/fphar.2022.921612] [PMID: 35795572]
[27]
Vincent, A.M.; Callaghan, B.C.; Smith, A.L.; Feldman, E.L. Diabetic neuropathy: Cellular mechanisms as therapeutic targets. Nat. Rev. Neurol., 2011, 7(10), 573-583.
[http://dx.doi.org/10.1038/nrneurol.2011.137] [PMID: 21912405]
[28]
Rauskolb, S.; Dombert, B.; Sendtner, M. Insulin-like growth factor 1 in diabetic neuropathy and amyotrophic lateral sclerosis. Neurobiol. Dis., 2017, 97(Pt B), 103-113.
[http://dx.doi.org/10.1016/j.nbd.2016.04.007] [PMID: 27142684]
[29]
Nagpal, A.S.; Leet, J.; Egan, K.; Garza, R. Diabetic neuropathy: A critical, narrative review of published data from 2019. Curr. Pain Headache Rep., 2021, 25(3), 15.
[http://dx.doi.org/10.1007/s11916-020-00928-x] [PMID: 33630186]
[30]
Skapek, S.X.; Ferrari, A.; Gupta, A.A.; Lupo, P.J.; Butler, E.; Shipley, J.; Barr, F.G.; Hawkins, D.S.; Viswanathan, V. Rhabdomyosarcoma. Nat. Rev. Dis. Primers, 2019, 5(1), 1-8.
[http://dx.doi.org/10.1038/s41572-018-0051-2] [PMID: 30617281]
[31]
Basbaum, A.I.; Bautista, D.M.; Scherrer, G.; Julius, D. Cellular and molecular mechanisms of pain. Cell, 2009, 139(2), 267-284.
[http://dx.doi.org/10.1016/j.cell.2009.09.028] [PMID: 19837031]
[32]
Azevedo, M.I.; Pereira, A.F.; Nogueira, R.B.; Rolim, F.E.; Brito, G.A.C.; Wong, D.V.T.; Lima-Júnior, R.C.P.; de Albuquerque Ribeiro, R.; Vale, M.L. The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced chronic painful peripheral neuropathy. Mol. Pain, 2013, 9(9), 1744-8069-9-53.
[http://dx.doi.org/10.1186/1744-8069-9-53] [PMID: 24152430]
[33]
de Souza, S.R.G.; de Miranda Neto, M.H.; Martins Perles, J.V.C.; Vieira Frez, F.C.; Zignani, I.; Ramalho, F.V.; Hermes-Uliana, C.; Bossolani, G.D.P.; Zanoni, J.N. Antioxidant effects of the quercetin in the jejunal myenteric innervation of diabetic rats. Front. Med., 2017, 4, 8.
[http://dx.doi.org/10.3389/fmed.2017.00008] [PMID: 28224126]
[34]
Batiha, G.E.S.; Beshbishy, A.M.; Ikram, M.; Mulla, Z.S.; El-Hack, M.E.A.; Taha, A.E.; Algammal, A.M.; Elewa, Y.H.A. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods, 2020, 9(3), 374.
[http://dx.doi.org/10.3390/foods9030374] [PMID: 32210182]
[35]
Wang, W.; Huang, C.Y.; Tsai, F.J.; Tsai, C.C.; Yao, C.H.; Chen, Y.S. Growth-promoting effects of quercetin on peripheral nerves in rats. Int. J. Artif. Organs, 2011, 34(11), 1095-1105.
[http://dx.doi.org/10.5301/ijao.5000064] [PMID: 22183523]
[36]
Yardim, A.; Kandemir, F.M.; Ozdemir, S.; Kucukler, S.; Comakli, S.; Gur, C.; Celik, H. Quercetin provides protection against the peripheral nerve damage caused by vincristine in rats by suppressing caspase 3, NF-κB, ATF-6 pathways and activating Nrf2, Akt pathways. Neurotoxicology, 2020, 81(81), 137-146.
[http://dx.doi.org/10.1016/j.neuro.2020.10.001] [PMID: 33038355]
[37]
Mahmoud, H.; El Horany, H.E.; Aboalsoud, M.; Abd-Ellatif, R.; El Sheikh, A.A.; Aboalsoud, A. Targeting oxidative stress, autophagy, and apoptosis by quercetin to ameliorate cisplatin-induced peripheral neuropathy in rats. J. Microsc. Ultrastruct., 2023, 11(2), 107-114.
[http://dx.doi.org/10.4103/jmau.jmau_78_22] [PMID: 37448816]
[38]
Unay, S.; Bilgin, M.D. Investigation of effects of quercetin and low-level laser therapy in cisplatin-induced in vitro peripheral neuropathy model. Lasers Med. Sci., 2023, 38(1), 49.
[http://dx.doi.org/10.1007/s10103-023-03718-0] [PMID: 36689023]
[39]
Kabir, MT; Tabassum, N; Uddin, MS; Aziz, F; Behl, T; Mathew, B; Rahman, MH; Akter, R; Rauf, A; Aleya, L Therapeutic potential of polyphenols in the management of diabetic neuropathy. eCAM, 2021, 13, 1-20.
[40]
Oyenihi, A.B.; Ayeleso, A.O.; Mukwevho, E.; Masola, B. Antioxidant strategies in the management of diabetic neuropathy. BioMed Res. Int., 2015, 2015(515042), 1-15.
[http://dx.doi.org/10.1155/2015/515042] [PMID: 25821809]
[41]
Thakur, V.; Sadanandan, J.; Chattopadhyay, M. High-mobility group box 1 protein signaling in painful diabetic neuropathy. Int. J. Mol. Sci., 2020, 21(3), 881.
[http://dx.doi.org/10.3390/ijms21030881] [PMID: 32019145]
[42]
Purohit, S.; Tran, P.M.H.; Tran, L.K.H.; Satter, K.B.; He, M.; Zhi, W.; Bai, S.; Hopkins, D.; Gardiner, M.; Wakade, C.; Bryant, J.; Bernard, R.; Morgan, J.; Bode, B.; Reed, J.C.; She, J.X. Serum levels of inflammatory proteins are associated with peripheral neuropathy in a cross-sectional type-1 diabetes cohort. Front. Immunol., 2021, 12, 654233.
[http://dx.doi.org/10.3389/fimmu.2021.654233] [PMID: 33868296]
[43]
Yan, L.; Vaghari-Tabari, M.; Malakoti, F.; Moein, S.; Qujeq, D.; Yousefi, B.; Asemi, Z. Quercetin: An effective polyphenol in alleviating diabetes and diabetic complications. Crit. Rev. Food Sci. Nutr., 2023, 63(28), 9163-9186.
[http://dx.doi.org/10.1080/10408398.2022.2067825] [PMID: 35468007]
[44]
Anjaneyulu, M.; Chopra, K. Quercetin, a bioflavonoid, attenuates thermal hyperalgesia in a mouse model of diabetic neuropathic pain. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2003, 27(6), 1001-1005.
[http://dx.doi.org/10.1016/S0278-5846(03)00160-X] [PMID: 14499317]
[45]
Anjaneyulu, M.; Chopra, K. Effect of irbesartan on the antioxidant defence system and nitric oxide release in diabetic rat kidney. Am. J. Nephrol., 2004, 24(5), 488-496.
[http://dx.doi.org/10.1159/000080722] [PMID: 15353911]
[46]
Kandhare, A.D.; Raygude, K.S.; Kumar, V.S.; Rajmane, A.R.; Visnagri, A.; Ghule, A.E.; Ghosh, P.; Badole, S.L.; Bodhankar, S.L. Ameliorative effects quercetin against impaired motor nerve function, inflammatory mediators and apoptosis in neonatal streptozotocin-induced diabetic neuropathy in rats. Biomed., 2012, 2(4), 173-186.
[47]
Raygude, K.S.; Kandhare, A.D.; Ghosh, P.; Ghule, A.E.; Bodhankar, S.L. Evaluation of ameliorative effect of quercetin in experimental model of alcoholic neuropathy in rats. Inflammopharmacology, 2012, 20(6), 331-341.
[http://dx.doi.org/10.1007/s10787-012-0122-z] [PMID: 22349996]
[48]
Shi, Y.; Liang, X.; Zhang, H.; Wu, Q.; Qu, L.; Sun, Q. Quercetin protects rat dorsal root ganglion neurons against high glucose-induced injury in vitro through Nrf-2/HO-1 activation and NF-κB inhibition. Acta Pharmacol. Sin., 2013, 34(9), 1140-1148.
[http://dx.doi.org/10.1038/aps.2013.59] [PMID: 23770986]
[49]
Ferreira, P.E.B.; Lopes, C.R.; Alves, A.M.; Alves, É.P.; Linden, D.R.; Zanoni, J.N.; Buttow, N.C. Diabetic neuropathy: An evaluation of the use of quercetin in the cecum of rats. World J. Gastroenterol., 2013, 19(38), 6416-6426.
[http://dx.doi.org/10.3748/wjg.v19.i38.6416] [PMID: 24151360]
[50]
Qu, L.; Liang, X.; Gu, B.; Liu, W. Quercetin alleviates high glucose-induced Schwann cell damage by autophagy. Neural Regen. Res., 2014, 9(12), 1195-1203.
[http://dx.doi.org/10.4103/1673-5374.135328] [PMID: 25206782]
[51]
Chis, I.C.; Clichici, A.; Nagy, A.L.; Oros, A.; Catoi, C.; Clichici, S. Quercetin in association with moderate exercise training attenuates injuries induced by experimental diabetes in sciatic nerves. J. Physiol. Pharmacol., 2017, 68(6), 877-886.
[PMID: 29550800]
[52]
Yang, R.; Li, L.; Yuan, H.; Liu, H.; Gong, Y.; Zou, L.; Li, S.; Wang, Z.; Shi, L.; Jia, T.; Zhao, S.; Wu, B.; Yi, Z.; Gao, Y.; Li, G.; Xu, H.; Liu, S.; Zhang, C.; Li, G.; Liang, S. Quercetin relieved diabetic neuropathic pain by inhibiting upregulated P2X 4 receptor in dorsal root ganglia. J. Cell. Physiol., 2019, 234(3), 2756-2764.
[http://dx.doi.org/10.1002/jcp.27091] [PMID: 30145789]
[53]
Xie, J.; Song, W.; Liang, X.; Zhang, Q.; Shi, Y.; Liu, W.; Shi, X. Protective effect of quercetin on streptozotocin-induced diabetic peripheral neuropathy rats through modulating gut microbiota and reactive oxygen species level. Biomed. Pharmacother., 2020, 127, 110147.
[http://dx.doi.org/10.1016/j.biopha.2020.110147] [PMID: 32559841]
[54]
Zhang, Q.; Song, W.; Zhao, B.; Xie, J.; Sun, Q.; Shi, X.; Yan, B.; Tian, G.; Liang, X. Quercetin attenuates diabetic peripheral neuropathy by correcting mitochondrial abnormality via activation of AMPK/PGC-1α pathway in vivo and in vitro. Front. Neurosci., 2021, 15, 636172.
[http://dx.doi.org/10.3389/fnins.2021.636172] [PMID: 33746703]
[55]
Zhao, B.; Zhang, Q.; Liang, X.; Xie, J.; Sun, Q. Quercetin reduces inflammation in a rat model of diabetic peripheral neuropathy by regulating the TLR4/MyD88/NF-κB signalling pathway. Eur. J. Pharmacol., 2021, 912, 174607.
[http://dx.doi.org/10.1016/j.ejphar.2021.174607] [PMID: 34743981]
[56]
Kumar, N.P.; Annamalai, A.R.; Thakur, R.S. Antinociceptive property of Emblica officinalis Gaertn (Amla) in high fat diet-fed/low dose streptozotocin induced diabetic neuropathy in rats. Indian J. Exp. Biol., 2009, 47(9), 737-742.
[PMID: 19957886]
[57]
Une, H.D.; Dureshahwar, K.; Mubashir, M. Quantification of quercetin obtained from Allium cepa Lam. leaves and its effects on streptozotocin-induced diabetic neuropathy. Pharmacognosy Res., 2017, 9(3), 287-293.
[http://dx.doi.org/10.4103/pr.pr_147_16] [PMID: 28827972]
[58]
Thipkaew, C.; Wattanathorn, J.; Muchimapura, S. Electrospun nanofibers loaded with quercetin promote the recovery of focal entrapment neuropathy in a rat model of streptozotocin-induced diabetes. BioMed Res. Int., 2017, 2017, 1-12.
[http://dx.doi.org/10.1155/2017/2017493] [PMID: 28251151]
[59]
Usman Abid, H.M.; Hanif, M.; Mahmood, K.; Abid, S.; Khan, M.; Khurshid, U.; Azeem, M.; Ameer, N.; Sajid Chughtai, F.R.; Pandey, K.; Qaiser, M. Exploring the Potent Combination of Quercetin–Boronic Acid, Epalrestat, and Urea Containing Nanoethosomal Keratolytic Gel for the Treatment of Diabetic Neuropathic Pain: In Vitro and In Vivo Studies Mol. Pharmaceutics, 2024.
[http://dx.doi.org/10.1021/acs.molpharmaceut.3c00236]
[60]
Valensi, P.; Le Devehat, C.; Richard, J.L.; Farez, C.; Khodabandehlou, T.; Rosenbloom, R.A.; LeFante, C. A multicenter, double-blind, safety study of QR-333 for the treatment of symptomatic diabetic peripheral neuropathy. J. Diabetes Complications, 2005, 19(5), 247-253.
[http://dx.doi.org/10.1016/j.jdiacomp.2005.05.011] [PMID: 16112498]
[61]
Gui, S.; Tang, W.; Huang, Z.; Wang, X.; Gui, S.; Gao, X.; Xiao, D.; Tao, L.; Jiang, Z.; Wang, X. Ultrasmall coordination polymer nanodots fe-quer nanozymes for preventing and delaying the development and progression of diabetic retinopathy. Adv. Funct. Mater., 2023, 33(36), 2300261.
[http://dx.doi.org/10.1002/adfm.202300261]
[62]
Luo, Y.; Li, C. Advances in research related to microrna for diabetic retinopathy. J. Diabetes Res., 2024, 2024, 1-21.
[http://dx.doi.org/10.1155/2024/8520489] [PMID: 38375094]
[63]
Chang, W.L.; Liu, P.Y.; Yeh, S.L.; Lee, H.J. Effects of dried onion powder and quercetin on obesity-associated hepatic menifestation and retinopathy. Int. J. Mol. Sci., 2022, 23(19), 11091.
[http://dx.doi.org/10.3390/ijms231911091] [PMID: 36232387]
[64]
Ren, J.; Zhang, S.; Pan, Y.; Jin, M.; Li, J.; Luo, Y.; Sun, X.; Li, G. Diabetic retinopathy: Involved cells, biomarkers, and treatments. Front. Pharmacol., 2022, 13, 953691.
[http://dx.doi.org/10.3389/fphar.2022.953691] [PMID: 36016568]
[65]
Bungau, S.; Abdel-Daim, M.M.; Tit, D.M.; Ghanem, E.; Sato, S.; Maruyama-Inoue, M.; Yamane, S.; Kadonosono, K. Health benefits of polyphenols and carotenoids in age-related eye diseases. Oxid. Med. Cell. Longev., 2005.
[http://dx.doi.org/10.1155/2019/9783429] [PMID: 30891116]
[66]
Stino, A.M.; Rumora, A.E.; Kim, B.; Feldman, E.L. Evolving concepts on the role of dyslipidemia, bioenergetics, and inflammation in the pathogenesis and treatment of diabetic peripheral neuropathy. J. Peripher. Nerv. Syst., 2020, 25(2), 76-84.
[http://dx.doi.org/10.1111/jns.12387] [PMID: 32412144]
[67]
Wang, L.; Gao, P.; Zhang, M.; Huang, Z.; Zhang, D.; Deng, Q.; Li, Y.; Zhao, Z.; Qin, X.; Jin, D.; Zhou, M.; Tang, X.; Hu, Y.; Wang, L. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA, 2017, 317(24), 2515-2523.
[http://dx.doi.org/10.1001/jama.2017.7596] [PMID: 28655017]
[68]
Lee, M.; Yun, S.; Lee, H.; Yang, J. Quercetin mitigates inflammatory responses induced by vascular endothelial growth factor in mouse retinal photoreceptor cells through suppression of nuclear factor kappa B. Int. J. Mol. Sci., 2017, 18(11), 2497.
[http://dx.doi.org/10.3390/ijms18112497] [PMID: 29165402]
[69]
Chen, R.; Hollborn, M.; Grosche, A.; Reichenbach, A.; Wiedemann, P.; Bringmann, A.; Kohen, L. Effects of the vegetable polyphenols epigallocatechin-3-gallate, luteolin, apigenin, myricetin, quercetin, and cyanidin in primary cultures of human retinal pigment epithelial cells. Mol. Vis., 2014, 20, 242-258.
[PMID: 24623967]
[70]
Kim, C.S.; Kim, J.; Kim, Y.S.; Jo, K.; Lee, Y.M.; Jung, D.H.; Lee, I.S.; Kim, J.H.; Kim, J.S. Improvement in diabetic retinopathy through protection against retinal apoptosis in spontaneously diabetic torii rats mediated by ethanol extract of Osteomeles schwerinae CK Schneid. Nutrients, 2019, 11(3), 546.
[http://dx.doi.org/10.3390/nu11030546] [PMID: 30836664]
[71]
Wang, Y.; Kim, H.J.; Sparrow, J.R. Quercetin and cyanidin-3-glucoside protect against photooxidation and photodegradation of A2E in retinal pigment epithelial cells. Exp. Eye Res., 2017, 160(160), 45-55.
[http://dx.doi.org/10.1016/j.exer.2017.04.010] [PMID: 28461203]
[72]
Darband, S.G.; Sadighparvar, S.; Yousefi, B.; Kaviani, M.; Ghaderi-Pakdel, F.; Mihanfar, A.; Rahimi, Y.; Mobaraki, K.; Majidinia, M. Quercetin attenuated oxidative DNA damage through NRF2 signaling pathway in rats with DMH induced colon carcinogenesis. Life Sci., 2020, 253, 117584.
[http://dx.doi.org/10.1016/j.lfs.2020.117584] [PMID: 32220623]
[73]
Kumar, B.; Gupta, S.K.; Nag, T.C.; Srivastava, S.; Saxena, R.; Jha, K.A.; Srinivasan, B.P. Retinal neuroprotective effects of quercetin in streptozotocin-induced diabetic rats. Exp. Eye Res., 2014, 125, 193-202.
[http://dx.doi.org/10.1016/j.exer.2014.06.009] [PMID: 24952278]
[74]
Chen, Y.; Li, F.; Meng, X.; Li, X. Suppression of retinal angiogenesis by quercetin in a rodent model of retinopathy of prematurity. Zhonghua Yi Xue Za Zhi, 2015, 95(14), 1113-1115.
[PMID: 26081216]
[75]
Ola, M.S.; Ahmed, M.M.; Shams, S.; Al-Rejaie, S.S. Neuroprotective effects of quercetin in diabetic rat retina. Saudi J. Biol. Sci., 2017, 24(6), 1186-1194.
[http://dx.doi.org/10.1016/j.sjbs.2016.11.017] [PMID: 28855811]
[76]
Chen, B.; He, T.; Xing, Y.; Cao, T. Effects of quercetin on the expression of MCP-1, MMP-9 and VEGF in rats with diabetic retinopathy. Exp. Ther. Med., 2017, 14(6), 6022-6026.
[http://dx.doi.org/10.3892/etm.2017.5275] [PMID: 29285153]
[77]
Wang, X.; Li, H.; Wang, H.; Shi, J. Quercetin attenuates high glucose-induced injury in human retinal pigment epithelial cell line ARPE-19 by up-regulation of miR-29b. J. Biochem., 2020, 167(5), 495-502.
[http://dx.doi.org/10.1093/jb/mvaa001] [PMID: 31960917]
[78]
Wang, R.; Qiu, Z.; Wang, G.; Hu, Q.; Shi, N.; Zhang, Z.; Wu, Y.; Zhou, C. Quercetin attenuates diabetic neuropathic pain by inhibiting mTOR/p70S6K pathway-mediated changes of synaptic morphology and synaptic protein levels in spinal dorsal horn of db/db mice. Eur. J. Pharmacol., 2020, 882, 173266.
[http://dx.doi.org/10.1016/j.ejphar.2020.173266] [PMID: 32553736]
[79]
Kaymaz, A.; Ulas, F.; Erimsah, S.; Oztabag, C.K. Investigation of the effect of quercetin in an experimental oxygen-induced retinopathy model. Exp. Biomed. Res., 2021, 4(2), 131-140.
[http://dx.doi.org/10.30714/j-ebr.2021267976]
[80]
Li, R.; Yao, G-M.; Yan, H-L.; Wang, L.; Wang, L. Effects of quercetin on diabetic retinopathy and its association with NLRP3 inflammasome and autophagy. Int. J. Ophthalmol., 2021, 14(1), 42-49.
[http://dx.doi.org/10.18240/ijo.2021.01.06] [PMID: 33469482]
[81]
Chao, L.I.U.; Yan, G.E.N.G.; Zhen-hua, Z.H.A.N.G.; Yan-zhi, G.U. Effect of quercetin liposome on angiopoietin-like protein 2 and its receptor Tie2 expression in the retina. Chin. J. Exp. Ophthalmol., 2012, 12, 613-616.
[82]
Chen, X-L.; Chai, G-R.; Liu, S.; Yang, H-W. Quercetin protects against diabetic retinopathy in rats by inducing heme oxygenase-1 expression. Neural Regen. Res., 2021, 16(7), 1344-1350.
[http://dx.doi.org/10.4103/1673-5374.301027] [PMID: 33318415]
[83]
Liu, Y.; Gong, Y.; Li, M.; Li, J. Quercetin protects against hyperglycemia-induced retinopathy in Sprague Dawley rats by regulating the gut-retina axis and nuclear factor erythroid-2–related factor 2 pathway. Nutr. Res., 2024, 122, 55-67.
[http://dx.doi.org/10.1016/j.nutres.2023.12.003] [PMID: 38185061]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy