Generic placeholder image

Cardiovascular & Hematological Disorders-Drug Targets

Editor-in-Chief

ISSN (Print): 1871-529X
ISSN (Online): 2212-4063

Mini-Review Article

Thrombosis in Myeloid Malignancies: From CHIP to AML

Author(s): Beatrice Borsellino, Carlos Bravo-Perez, Valeria Visconte and Luca Guarnera*

Volume 24, Issue 1, 2024

Published on: 11 June, 2024

Page: [2 - 12] Pages: 11

DOI: 10.2174/011871529X307253240530060107

Open Access Journals Promotions 2
conference banner
Abstract

The development of myeloid malignancies is a multi-step process starting from pre-malignant stages. Large-scale studies on clonal hematopoiesis of indeterminate potential (CHIP) identified this condition as a risk factor for developing hematologic malignancies, in particular myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). In parallel, CHIP was found to confer an enhanced thrombotic risk, in particular for cardiovascular diseases. In a similar fashion, in recent years, alongside their life-threatening features, increasing attention has been drawn toward thrombotic complications in myeloid malignancies. Thus, the purpose of this review is to gather a growing body of evidence on incidence, pathogenesis and clinical impact of thrombosis in myeloid malignancies at every step of malignant progression, from CHIP to AML.

Keywords: Thrombosis, clonal hemopoiesis of indeterminate potential, myelodysplastic syndromes, VEXAS syndrome, acute myeloid leukemia, acute promyelocytic leukemia.

Graphical Abstract
[1]
Guarnera, L.; Santinella, E.; Galossi, E.; Cristiano, A.; Fabiani, E.; Falconi, G.; Voso, M.T. Microenvironment in Acute Myeloid Leukemia: focus on senescence mechanisms, therapeutic interactions and future directions. Exp. Hematol., 2023, 129, 104118.
[http://dx.doi.org/10.1016/j.exphem.2023.09.005] [PMID: 37741607]
[2]
Bouligny, I.M.; Maher, K.R.; Grant, S. Mechanisms of myeloid leukemogenesis: Current perspectives and therapeutic objectives. Blood Rev., 2023, 57, 100996.
[http://dx.doi.org/10.1016/j.blre.2022.100996] [PMID: 35989139]
[3]
Genovese, G.; Kähler, A.K.; Handsaker, R.E.; Lindberg, J.; Rose, S.A.; Bakhoum, S.F.; Chambert, K.; Mick, E.; Neale, B.M.; Fromer, M.; Purcell, S.M.; Svantesson, O.; Landén, M.; Höglund, M.; Lehmann, S.; Gabriel, S.B.; Moran, J.L.; Lander, E.S.; Sullivan, P.F.; Sklar, P.; Grönberg, H.; Hultman, C.M.; McCarroll, S.A. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med., 2014, 371(26), 2477-2487.
[http://dx.doi.org/10.1056/NEJMoa1409405] [PMID: 25426838]
[4]
Jaiswal, S.; Natarajan, P.; Silver, A.J.; Gibson, C.J.; Bick, A.G.; Shvartz, E.; McConkey, M.; Gupta, N.; Gabriel, S.; Ardissino, D.; Baber, U.; Mehran, R.; Fuster, V.; Danesh, J.; Frossard, P.; Saleheen, D.; Melander, O.; Sukhova, G.K.; Neuberg, D.; Libby, P.; Kathiresan, S.; Ebert, B.L. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med., 2017, 377(2), 111-121.
[http://dx.doi.org/10.1056/NEJMoa1701719] [PMID: 28636844]
[5]
Voso, M.T.; Falconi, G.; Fabiani, E. What’s new in the pathogenesis and treatment of therapy-related myeloid neoplasms. Blood, 2021, 138(9), 749-757.
[http://dx.doi.org/10.1182/blood.2021010764] [PMID: 33876223]
[6]
Asada, S.; Kitamura, T. Clonal hematopoiesis and associated diseases: A review of recent findings. Cancer Sci., 2021, 112(10), 3962-3971.
[http://dx.doi.org/10.1111/cas.15094] [PMID: 34328684]
[7]
Tall, A. R.; Fuster, J. J. Clonal hematopoiesis in cardiovascular disease and therapeutic implications. Nat. Cardiov. Res., 2022, 1, 116-124.
[8]
Del Principe, M.I.; Del Principe, D.; Venditti, A. Thrombosis in adult patients with acute leukemia. Curr. Opin. Oncol., 2017, 29(6), 448-454.
[http://dx.doi.org/10.1097/CCO.0000000000000402] [PMID: 28841588]
[9]
Olivi, M.; Di Biase, F.; Lanzarone, G.; Arrigo, G.; Martella, F.; Apolito, V.; Secreto, C.; Freilone, R.; Bruno, B.; Audisio, E.; Ferrero, D.; Beggiato, E.; Cerrano, M. Thrombosis in acute myeloid leukemia: Pathogenesis, risk factors and therapeutic challenges. Curr. Treat. Options Oncol., 2023, 24(6), 693-710.
[http://dx.doi.org/10.1007/s11864-023-01089-w] [PMID: 37099265]
[10]
Lau, E.S.; Paniagua, S.M.; Liu, E.; Jovani, M.; Li, S.X.; Takvorian, K.; Suthahar, N.; Cheng, S.; Splansky, G.L.; Januzzi, J.L., Jr; Wang, T.J.; Vasan, R.S.; Kreger, B.; Larson, M.G.; Levy, D.; de Boer, R.A.; Ho, J.E. Cardiovascular risk factors are associated with future cancer. JACC: Cardio Oncology, 2021, 3(1), 48-58.
[http://dx.doi.org/10.1016/j.jaccao.2020.12.003] [PMID: 33870217]
[11]
Naschitz, J.E. Cancer-associated atherothrombosis: The challenge. Int. J. Angiol., 2021, 30, 249-256.
[12]
Yao, C.; Veleva, T.; Scott, L., Jr; Cao, S.; Li, L.; Chen, G.; Jeyabal, P.; Pan, X.; Alsina, K.M.; Abu-Taha, I.; Ghezelbash, S.; Reynolds, C.L.; Shen, Y.H.; LeMaire, S.A.; Schmitz, W.; Müller, F.U.; El-Armouche, A.; Tony Eissa, N.; Beeton, C.; Nattel, S.; Wehrens, X.H.T.; Dobrev, D.; Li, N. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation. Circulation, 2018, 138(20), 2227-2242.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.035202] [PMID: 29802206]
[13]
Singh, N.; Baby, D.; Rajguru, J.; Patil, P.; Thakkannavar, S.; Pujari, V. Inflammation and cancer. Ann. Afr. Med., 2019, 18(3), 121-126.
[http://dx.doi.org/10.4103/aam.aam_56_18] [PMID: 31417011]
[14]
Woo, J.; Lu, D.; Lewandowski, A.; Xu, H.; Serrano, P.; Healey, M.; Yates, D.P.; Beste, M.T.; Libby, P.; Ridker, P.M.; Steensma, D.P. Effects of IL-1β inhibition on anemia and clonal hematopoiesis in the randomized CANTOS trial. Blood Adv., 2023, 7(24), 7471-7484.
[http://dx.doi.org/10.1182/bloodadvances.2023011578] [PMID: 37934948]
[15]
Pasupuleti, S.K.; Ramdas, B.; Burns, S.S.; Palam, L.R.; Kanumuri, R.; Kumar, R.; Pandhiri, T.R.; Dave, U.P.; Yellapu, N.K.; Zhou, X.; Zhang, C.; Sandusky, G.E.; Yu, Z.; Honigberg, M.C.; Bick, A.G.; Griffin, G.K.; Niroula, A.; Ebert, B.L.; Paczesny, S.; Natarajan, P.; Kapur, R. Obesity-induced inflammation exacerbates clonal hematopoiesis. J. Clin. Invest., 2023, 133(11), e163968.
[http://dx.doi.org/10.1172/JCI163968] [PMID: 37071471]
[16]
Nguyen, M.L.T.; Bui, K.C.; Scholta, T.; Xing, J.; Bhuria, V.; Sipos, B.; Wilkens, L.; Nguyen Linh, T.; Velavan, T.P.; Bozko, P.; Plentz, R.R. Targeting interleukin 6 signaling by monoclonal antibody siltuximab on cholangiocarcinoma. J. Gastroenterol. Hepatol., 2021, 36(5), 1334-1345.
[http://dx.doi.org/10.1111/jgh.15307] [PMID: 33091158]
[17]
Jaiswal, S.; Libby, P. Clonal haematopoiesis: Connecting ageing and inflammation in cardiovascular disease. Nat. Rev. Cardiol., 2020, 17(3), 137-144.
[http://dx.doi.org/10.1038/s41569-019-0247-5] [PMID: 31406340]
[18]
Guillotin, F.; Mercier, É.; Fortier, M.; Bouvier, S.; Jacquet, Q.; Dallo, M.; Chéa, M.; Bourguignon, C.; Cochery-Nouvellon, É.; Perez-Martin, A.; Gris, J.C. Clonal haematopoiesis of indeterminate potential in patients with venous thromboembolism. J. Thromb. Thrombol., 2023, 56(2), 351-354.
[http://dx.doi.org/10.1007/s11239-023-02836-4] [PMID: 37300604]
[19]
Nakao, T.; Natarajan, P. Clonal hematopoiesis, multi-omics and coronary artery disease. Nature Cardiov. Res., 2022, 1, 965-967.
[20]
Veninga, A.; De Simone, I.; Heemskerk, J.W.M.; Cate, H.; van der Meijden, P.E.J. Clonal hematopoietic mutations linked to platelet traits and the risk of thrombosis or bleeding. Haematologica, 2020, 105(8), 2020-2031.
[http://dx.doi.org/10.3324/haematol.2019.235994] [PMID: 32554558]
[21]
Barbui, T.; Gavazzi, A.; Sciatti, E.; Finazzi, M.C.; Ghirardi, A.; Carioli, G.; Carobbio, A. Clonal hematopoiesis in myeloproliferative neoplasms confers a predisposition to both thrombosis and cancer. Curr. Hematol. Malig. Rep., 2023, 18(4), 105-112.
[http://dx.doi.org/10.1007/s11899-023-00697-5] [PMID: 37221411]
[22]
Liu, W.; Östberg, N.; Yalcinkaya, M.; Dou, H.; Endo-Umeda, K.; Tang, Y.; Hou, X.; Xiao, T.; Fidler, T.P.; Abramowicz, S.; Yang, Y.G.; Soehnlein, O.; Tall, A.R.; Wang, N. Erythroid lineage Jak2V617F expression promotes atherosclerosis through erythrophagocytosis and macrophage ferroptosis. J. Clin. Invest., 2022, 132(13), e155724.
[http://dx.doi.org/10.1172/JCI155724] [PMID: 35587375]
[23]
Guglielmelli, P.; Vannucchi, A. JAK2 mutation-related disease and thrombosis. Semin. Thromb. Hemost., 2013, 39(5), 496-506.
[http://dx.doi.org/10.1055/s-0033-1343890] [PMID: 23633193]
[24]
Edelmann, B.; Gupta, N.; Schnoeder, T.M.; Oelschlegel, A.M.; Shahzad, K.; Goldschmidt, J.; Philipsen, L.; Weinert, S.; Ghosh, A.; Saalfeld, F.C.; Nimmagadda, S.C.; Müller, P.; Braun-Dullaeus, R.; Mohr, J.; Wolleschak, D.; Kliche, S.; Amthauer, H.; Heidel, F.H.; Schraven, B.; Isermann, B.; Müller, A.J.; Fischer, T. JAK2-V617F promotes venous thrombosis through β1/β2 integrin activation. J. Clin. Invest., 2018, 128(10), 4359-4371.
[http://dx.doi.org/10.1172/JCI90312] [PMID: 30024857]
[25]
Liu, W.; Pircher, J.; Schuermans, A.; Ul Ain, Q.; Zhang, Z.; Honigberg, M.C.; Yalcinkaya, M.; Nakao, T.; Pournamadri, A.; Xiao, T.; Hajebrahimi, M.A.; Wasner, L.; Stegner, D.; Petzold, T.; Natarajan, P.; Massberg, S.; Tall, A.R.; Schulz, C.; Wang, N. Jak2 V617F clonal hematopoiesis promotes arterial thrombosis via platelet activation and cross talk. Blood, 2024, 143(15), 1539-1550.
[http://dx.doi.org/10.1182/blood.2023022260] [PMID: 38142422]
[26]
Wolach, O.; Sellar, R.S.; Martinod, K.; Cherpokova, D.; McConkey, M.; Chappell, R.J.; Silver, A.J.; Adams, D.; Castellano, C.A.; Schneider, R.K.; Padera, R.F.; DeAngelo, D.J.; Wadleigh, M.; Steensma, D.P.; Galinsky, I.; Stone, R.M.; Genovese, G.; McCarroll, S.A.; Iliadou, B.; Hultman, C.; Neuberg, D.; Mullally, A.; Wagner, D.D.; Ebert, B.L. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci. Transl. Med., 2018, 10(436), eaan8292.
[http://dx.doi.org/10.1126/scitranslmed.aan8292] [PMID: 29643232]
[27]
Bravo-Perez, C.; Guarnera, L.; Williams, N.D.; Visconte, V. Paroxysmal nocturnal hemoglobinuria: Biology and treatment. Medicina, 2023, 59(9), 1612.
[http://dx.doi.org/10.3390/medicina59091612] [PMID: 37763731]
[28]
Carrà, G. Clonal hematopoiesis by DNMT3A mutations as a common finding in idiopathic splanchnic vein thrombosis. Haematologica, 2023, 108, 1447-1449.
[http://dx.doi.org/10.3324/haematol.2022.281705]
[29]
Zon, B.; Sekar, A.; Clapham, K.; Niroula, A.; Bick, A.G.; Gibson, C.J.; Griffin, G.K.; Uddin, M.M.; Natarajan, P.; Ebert, B.L. Clonal hematopoiesis and venous thromboembolism in the UK biobank. Blood, 2023, 142(Suppl. 1), 568.
[http://dx.doi.org/10.1182/blood-2023-180764]
[30]
Haque, T.; Lozanski, A.; Doong, T-J.; Huang, Y.; Li, R.; Bartosic, A.; Lozanski, G.; Byrd, J.C.; Wang, T.F. Rate of clonal hematopoiesis in patients with venous thromboembolism. Blood, 2021, 138(Suppl. 1), 4297.
[http://dx.doi.org/10.1182/blood-2021-151696]
[31]
Landolfi, R.; Gennaro, L.D. Thrombosis in myeloproliferative and myelodysplastic syndromes. Hematology, 2012, 17(Suppl. 1), s174-s176.
[http://dx.doi.org/10.1179/102453312X13336169156898] [PMID: 22507813]
[32]
Brandenburg, N.A.; Weiss, L.; Bwire, R.; Schmidt, M.; Knight, R.; List, A.F. Venous thromboembolism in patients with myelodysplastic syndrome treated with lenalidomide: Incidence and risk factors. J. Clin. Oncol., 2008, 26(15_suppl), 7084.
[http://dx.doi.org/10.1200/jco.2008.26.15_suppl.7084]
[33]
Lian, X.; Zhang, Z.; Deng, Z.; He, P.; Yao, D.; Xu, Z.; Wen, X.; Yang, L.; Lin, J.; Qian, J. Efficacy and safety of lenalidomide for treatment of low-/intermediate-1-risk myelodysplastic syndromes with or without 5q deletion: A systematic review and meta-analysis. PLoS One, 2016, 11(11), e0165948.
[http://dx.doi.org/10.1371/journal.pone.0165948] [PMID: 27824902]
[34]
Yang, X.; Brandenburg, N.A.; Freeman, J.; Salomon, M.L.; Zeldis, J.B.; Knight, R.D.; Bwire, R. Venous thromboembolism in myelodysplastic syndrome patients receiving lenalidomide: Results from postmarketing surveillance and data mining techniques. Clin. Drug Investig., 2009, 29(3), 161-171.
[http://dx.doi.org/10.2165/00044011-200929030-00003] [PMID: 19243209]
[35]
Steurer, M.; Sudmeier, I.; Stauder, R.; Gastl, G. Thromboembolic events in patients with myelodysplastic syndrome receiving thalidomide in combination with darbepoietin-alpha. Br. J. Haematol., 2003, 121(1), 101-103.
[http://dx.doi.org/10.1046/j.1365-2141.2003.04252.x] [PMID: 12670338]
[36]
Alkharabsheh, O.A.; Saadeh, S.S.; Zblewski, D.L.; Gangat, N.; Begna, K.H.; Elliott, M.A.; Alkhateeb, H.B.; Patnaik, M.S.; Hogan, W.J.; Litzow, M.R.; Al-Kali, A. Frequency of venous thrombotic events in patients with myelodysplastic syndrome and 5q deletion syndrome during lenalidomide therapy. Ann. Hematol., 2019, 98(2), 331-337.
[http://dx.doi.org/10.1007/s00277-018-3509-0] [PMID: 30334068]
[37]
Smith, S.W.; Sato, M.; Gore, S.D.; Baer, M.R.; Ke, X.; McNally, D.; Davidoff, A. Erythropoiesis-stimulating agents are not associated with increased risk of thrombosis in patients with myelodysplastic syndromes. Haematologica, 2012, 97(1), 15-20.
[http://dx.doi.org/10.3324/haematol.2011.051755] [PMID: 22102702]
[38]
Horváth-Puhó, E.; Suttorp, M.M.; Frederiksen, H.; Hoekstra, T.; Dekkers, O.M.; Pedersen, L.; Cannegieter, S.C.; Dekker, F.W.; Sørensen, H.T. Erythropoiesis-stimulating agents and cardiovascular events in patients with myelodysplastic syndrome and multiple myeloma. Clin. Epidemiol., 2018, 10, 1371-1380.
[http://dx.doi.org/10.2147/CLEP.S172306] [PMID: 30310329]
[39]
Broseus, J.; Florensa, L.; Zipperer, E.; Schnittger, S.; Malcovati, L.; Richebourg, S.; Lippert, E.; Cermak, J.; Evans, J.; Mounier, M.; Raya, J.M.; Bailly, F.; Gattermann, N.; Haferlach, T.; Garand, R.; Allou, K.; Besses, C.; Germing, U.; Haferlach, C.; Travaglino, E.; Luno, E.; Pinan, M.A.; Arenillas, L.; Rozman, M.; Perez Sirvent, M.L.; Favre, B.; Guy, J.; Alonso, E.; Ahwij, N.; Jerez, A.; Hermouet, S.; Maynadié, M.; Cazzola, M.; Girodon, F. Clinical features and course of refractory anemia with ring sideroblasts associated with marked thrombocytosis. Haematologica, 2012, 97(7), 1036-1041.
[http://dx.doi.org/10.3324/haematol.2011.053918] [PMID: 22532522]
[40]
Péan de Ponfilly-Sotier, M.; Jachiet, V.; Benhamou, Y.; Lahuna, C.; De Renzis, B.; Kottler, D.; Voillat, L.; Dimicoli-Salazar, S.; Banos, A.; Chauveheid, M.P.; Alexandra, J.F.; Grignano, E.; Liferman, F.; Laborde, M.; Broner, J.; Michel, M.; Lambotte, O.; Laribi, K.; Venon, M.D.; Dussol, B.; Martis, N.; Thepot, S.; Park, S.; Couret, D.; Roux-Sauvat, M.; Terriou, L.; Hachulla, E.; Bally, C.; Galland, J.; Allain, J.S.; Parcelier, A.; Peterlin, P.; Cohen-Bittan, J.; Regent, A.; Ackermann, F.; Le Guen, J.; Algrin, C.; Charles, P.; Daguindau, E.; Puechal, X.; Dunogue, B.; Blanchard-Delaunay, C.; Beyne-Rauzy, O.; Grobost, V.; Schmidt, J.; Le Gallou, T.; Dubos-Lascu, G.; Sonet, A.; Denis, G.; Roy-Peaud, F.; Fenaux, P.; Adès, L.; Fain, O.; Mekinian, A. Venous thromboembolism during systemic inflammatory and autoimmune diseases associated with myelodysplastic syndromes, chronic myelomonocytic leukaemia and myelodysplastic/myeloproliferative neoplasms: A French multicentre retrospective case-control study. Clin. Exp. Rheumatol., 2022, 40(7), 1336-1342.
[PMID: 35579092]
[41]
Beck, D.B.; Ferrada, M.A.; Sikora, K.A.; Ombrello, A.K.; Collins, J.C.; Pei, W.; Balanda, N.; Ross, D.L.; Ospina Cardona, D.; Wu, Z.; Patel, B.; Manthiram, K.; Groarke, E.M.; Gutierrez-Rodrigues, F.; Hoffmann, P.; Rosenzweig, S.; Nakabo, S.; Dillon, L.W.; Hourigan, C.S.; Tsai, W.L.; Gupta, S.; Carmona-Rivera, C.; Asmar, A.J.; Xu, L.; Oda, H.; Goodspeed, W.; Barron, K.S.; Nehrebecky, M.; Jones, A.; Laird, R.S.; Deuitch, N.; Rowczenio, D.; Rominger, E.; Wells, K.V.; Lee, C.C.R.; Wang, W.; Trick, M.; Mullikin, J.; Wigerblad, G.; Brooks, S.; Dell’Orso, S.; Deng, Z.; Chae, J.J.; Dulau-Florea, A.; Malicdan, M.C.V.; Novacic, D.; Colbert, R.A.; Kaplan, M.J.; Gadina, M.; Savic, S.; Lachmann, H.J.; Abu-Asab, M.; Solomon, B.D.; Retterer, K.; Gahl, W.A.; Burgess, S.M.; Aksentijevich, I.; Young, N.S.; Calvo, K.R.; Werner, A.; Kastner, D.L.; Grayson, P.C. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N. Engl. J. Med., 2020, 383(27), 2628-2638.
[http://dx.doi.org/10.1056/NEJMoa2026834] [PMID: 33108101]
[42]
Poulter, J.A.; Collins, J.C.; Cargo, C.; De Tute, R.M.; Evans, P.; Ospina Cardona, D.; Bowen, D.T.; Cunnington, J.R.; Baguley, E.; Quinn, M.; Green, M.; McGonagle, D.; Beck, D.B.; Werner, A.; Savic, S. Novel somatic mutations in UBA1 as a cause of VEXAS syndrome. Blood, 2021, 137(26), 3676-3681.
[http://dx.doi.org/10.1182/blood.2020010286] [PMID: 33690815]
[43]
Bourbon, E.; Heiblig, M.; Gerfaud Valentin, M.; Barba, T.; Durel, C.A.; Lega, J.C.; Barraco, F.; Sève, P.; Jamilloux, Y.; Sujobert, P. Therapeutic options in VEXAS syndrome: Insights from a retrospective series. Blood, 2021, 137(26), 3682-3684.
[http://dx.doi.org/10.1182/blood.2020010177] [PMID: 33619558]
[44]
Obiorah, I.E.; Patel, B.A.; Groarke, E.M.; Wang, W.; Trick, M.; Ombrello, A.K.; Ferrada, M.A.; Wu, Z.; Gutierrez-Rodrigues, F.; Lotter, J.; Wilson, L.; Hoffmann, P.; Cardona, D.O.; Patel, N.; Dulau-Florea, A.; Kastner, D.L.; Grayson, P.C.; Beck, D.B.; Young, N.S.; Calvo, K.R. Benign and malignant hematologic manifestations in patients with VEXAS syndrome due to somatic mutations in UBA1. Blood Adv., 2021, 5(16), 3203-3215.
[http://dx.doi.org/10.1182/bloodadvances.2021004976] [PMID: 34427584]
[45]
van der Made, C.I.; Potjewijd, J.; Hoogstins, A.; Willems, H.P.J.; Kwakernaak, A.J.; de Sevaux, R.G.L.; van Daele, P.L.A.; Simons, A.; Heijstek, M.; Beck, D.B.; Netea, M.G.; van Paassen, P.; Elizabeth Hak, A.; van der Veken, L.T.; van Gijn, M.E.; Hoischen, A.; van de Veerdonk, F.L.; Leavis, H.L.; Rutgers, A. Adult-onset autoinflammation caused by somatic mutations in UBA1: A Dutch case series of patients with VEXAS. J. Allergy Clin. Immunol., 2022, 149(1), 432-439.e4.
[http://dx.doi.org/10.1016/j.jaci.2021.05.014] [PMID: 34048852]
[46]
Tsuchida, N.; Kunishita, Y.; Uchiyama, Y.; Kirino, Y.; Enaka, M.; Yamaguchi, Y.; Taguri, M.; Yamanaka, S.; Takase-Minegishi, K.; Yoshimi, R.; Fujii, S.; Nakajima, H.; Matsumoto, N. Pathogenic UBA1 variants associated with VEXAS syndrome in Japanese patients with relapsing polychondritis. Ann. Rheum. Dis., 2021, 80(8), 1057-1061.
[http://dx.doi.org/10.1136/annrheumdis-2021-220089] [PMID: 33789873]
[47]
Bertin, F.R.; Rys, R.N.; Mathieu, C.; Laurance, S.; Lemarié, C.A.; Blostein, M.D. Natural killer cells induce neutrophil extracellular trap formation in venous thrombosis. J. Thromb. Haemost., 2019, 17(2), 403-414.
[http://dx.doi.org/10.1111/jth.14339] [PMID: 30456926]
[48]
Matos, M.F.; Lourenço, D.M.; Orikaza, C.M.; Bajerl, J.A.H.; Noguti, M.A.E.; Morelli, V.M. The role of IL-6, IL-8 and MCP-1 and their promoter polymorphisms IL-6 -174GC, IL-8 -251AT and MCP-1 -2518AG in the risk of venous thromboembolism: A case-control study. Thromb. Res., 2011, 128(3), 216-220.
[http://dx.doi.org/10.1016/j.thromres.2011.04.016] [PMID: 21620438]
[49]
Döring, Y.; Soehnlein, O.; Weber, C. Neutrophil extracellular traps in atherosclerosis and atherothrombosis. Circ. Res., 2017, 120(4), 736-743.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309692] [PMID: 28209798]
[50]
Moffat, K.; Raby, A.; Crowther, M. Lupus anticoagulant testing. Methods Mol. Biol., 2013, 992, 97-108.
[http://dx.doi.org/10.1007/978-1-62703-339-8_7] [PMID: 23546707]
[51]
Pengo, V.; Del Ross, T.; Ruffatti, A.; Bison, E.; Cattini, M.G.; Pontara, E.; Testa, S.; Legnani, C.; Pozzi, N.; Peterle, D.; Acquasaliente, L.; De Filippis, V.; Denas, G. Lupus anticoagulant identifies two distinct groups of patients with different antibody patterns. Thromb. Res., 2018, 172, 172-178.
[http://dx.doi.org/10.1016/j.thromres.2018.11.003] [PMID: 30466070]
[52]
Groarke, E.M.; Dulau-Florea, A.E.; Kanthi, Y. Thrombotic manifestations of VEXAS syndrome. Semin. Hematol., 2021, 58(4), 230-238.
[http://dx.doi.org/10.1053/j.seminhematol.2021.10.006] [PMID: 34802545]
[53]
Ku, G.H.; White, R.H.; Chew, H.K.; Harvey, D.J.; Zhou, H.; Wun, T. Venous thromboembolism in patients with acute leukemia: Incidence, risk factors, and effect on survival. Blood, 2009, 113(17), 3911-3917.
[http://dx.doi.org/10.1182/blood-2008-08-175745] [PMID: 19088376]
[54]
Döhner, H.; Weisdorf, D.J.; Bloomfield, C.D. Acute myeloid leukemia. N. Engl. J. Med., 2015, 373(12), 1136-1152.
[http://dx.doi.org/10.1056/NEJMra1406184] [PMID: 26376137]
[55]
Lecumberri, R.; Ruiz-Artacho, P.; Trujillo-Santos, J.; Brenner, B.; Barillari, G.; Ruiz-Ruiz, J.; Lorente, M.A.; Verhamme, P.; Vázquez, F.J.; Weinberg, I.; Monreal, M. Management and outcomes of cancer patients with venous thromboembolism presenting with thrombocytopenia. Thromb. Res., 2020, 195, 139-145.
[http://dx.doi.org/10.1016/j.thromres.2020.07.021] [PMID: 32693201]
[56]
Ziegler, S.; Sperr, W.R.; Knöbl, P.; Lehr, S.; Weltermann, A.; Jäger, U.; Valent, P.; Lechner, K. Symptomatic venous thromboembolism in acute leukemia. Incidence, risk factors, and impact on prognosis. Thromb. Res., 2005, 115(1-2), 59-64.
[http://dx.doi.org/10.1016/j.thromres.2004.07.016] [PMID: 15567454]
[57]
Kwon, J.; Yoon, S.; Song, L.; Yoon, J.H.; Shin, S-H.; Min, W-S.; Lee, Y-G.; Kim, I.; Park, S.; Kim, H.J. Implications of cytogenetics for venous thromboembolism in acute myeloid leukaemia. Thromb. Haemost., 2015, 113(1), 201-208.
[http://dx.doi.org/10.1160/TH13-12-1020] [PMID: 25339605]
[58]
Libourel, E.J.; Klerk, C.P.W.; van Norden, Y.; de Maat, M.P.M.; Kruip, M.J.; Sonneveld, P.; Löwenberg, B.; Leebeek, F.W.G. Disseminated intravascular coagulation at diagnosis is a strong predictor for thrombosis in acute myeloid leukemia. Blood, 2016, 128(14), 1854-1861.
[http://dx.doi.org/10.1182/blood-2016-02-701094] [PMID: 27354723]
[59]
Gangaraju, R.; Gahagan, A.; Bhatia, S.; Kenzik, K. Venous-thromboembolism in elderly patients with acute myeloid leukemia. Thrombosis Res., 2021, 200, 9-11.
[http://dx.doi.org/10.1016/j.thromres.2020.12.032]
[60]
Paterno, G.; Palmieri, R.; Forte, V.; Del Prete, V.; Gurnari, C.; Guarnera, L.; Mallegni, F.; Pascale, M.R.; Buzzatti, E.; Mezzanotte, V.; Cerroni, I.; Savi, A.; Buccisano, F.; Maurillo, L.; Venditti, A.; Del Principe, M.I. Predictors of early thrombotic events in adult patients with acute myeloid leukemia: A real-world experience. Cancers, 2022, 14(22), 5640.
[http://dx.doi.org/10.3390/cancers14225640] [PMID: 36428732]
[61]
Colombo, R.; Gallipoli, P.; Castelli, R. Thrombosis and hemostatic abnormalities in hematological malignancies. Clin. Lymphoma Myeloma Leuk., 2014, 14(6), 441-450.
[http://dx.doi.org/10.1016/j.clml.2014.05.003] [PMID: 25018062]
[62]
Dicke, C.; Amirkhosravi, A.; Spath, B.; Jiménez-Alcázar, M.; Fuchs, T.; Davila, M.; Francis, J.L.; Bokemeyer, C.; Langer, F. Tissue factor-dependent and -independent pathways of systemic coagulation activation in acute myeloid leukemia: A single-center cohort study. Exp. Hematol. Oncol., 2015, 4(1), 22.
[http://dx.doi.org/10.1186/s40164-015-0018-x] [PMID: 26251762]
[63]
Falanga, A.; Alessio, M.G.; Donati, M.B.; Barbui, T. A new procoagulant in acute leukemia. Blood, 1988, 71(4), 870-875.
[http://dx.doi.org/10.1182/blood.V71.4.870.870] [PMID: 3355894]
[64]
McVey, J.H. 3 tissue factor pathway. Baillieres Clin. Haematol., 1994, 7(3), 469-484.
[http://dx.doi.org/10.1016/S0950-3536(05)80094-0] [PMID: 7841596]
[65]
Gordon, S. G.; Mielicki, W. P. Cancer procoagulant: a factor X activator, tumor marker and growth factor from malignant tissue. Blood. Coagul. Fibrinol. Int. J. Haemost. Thromb., 1997, 8, 73-86.
[66]
Zhou, J.; Shi, J.; Hou, J.; Cao, F.; Zhang, Y.; Rasmussen, J.T.; Heegaard, C.W.; Gilbert, G.E. Phosphatidylserine exposure and procoagulant activity in acute promyelocytic leukemia. J. Thromb. Haemost., 2010, 8(4), 773-782.
[http://dx.doi.org/10.1111/j.1538-7836.2010.03763.x] [PMID: 20102487]
[67]
Van Aalderen, M.C. Procoagulant myeloblast-derived microparticles in AML patients: Changes in numbers and thrombin generation potential during chemotherapy. J. Thromb. Haemost., 2011, 9, 223-226.
[http://dx.doi.org/10.1111/j.1538-7836.2010.04133.x]
[68]
Gheldof, D.; Haguet, H.; Dogné, J.M.; Bouvy, C.; Graux, C.; George, F.; Sonet, A.; Chatelain, C.; Chatelain, B.; Mullier, F. Procoagulant activity of extracellular vesicles as a potential biomarker for risk of thrombosis and DIC in patients with acute leukaemia. J. Thromb. Thrombol.,, 2017, 43(2), 224-232.
[http://dx.doi.org/10.1007/s11239-016-1471-z] [PMID: 28074413]
[69]
Guy, A. High circulating levels of MPO-DNA are associated with thrombosis in patients with MPN. Leukemia, 2019, 33, 2544-2548.
[http://dx.doi.org/10.1038/s41375-019-0500-2]
[70]
Aharon, A.; Brenner, B. Microparticles, thrombosis and cancer. Best Pract. Res. Clin. Haematol., 2009, 22(1), 61-69.
[http://dx.doi.org/10.1016/j.beha.2008.11.002] [PMID: 19285273]
[71]
del Conde, I.; Shrimpton, C.N.; Thiagarajan, P.; López, J.A. Tissue-factor–bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood, 2005, 106(5), 1604-1611.
[http://dx.doi.org/10.1182/blood-2004-03-1095] [PMID: 15741221]
[72]
Furie, B.; Furie, B.C. Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation. Trends Mol. Med., 2004, 10(4), 171-178.
[http://dx.doi.org/10.1016/j.molmed.2004.02.008] [PMID: 15059608]
[73]
Essayagh, S.; Xuereb, J.M.; Terrisse, A.D.; Tellier-Cirioni, L.; Pipy, B.; Sié, P. Microparticles from apoptotic monocytes induce transient platelet recruitment and tissue factor expression by cultured human vascular endothelial cells via a redox-sensitive mechanism. Thromb. Haemost., 2007, 98(10), 831-837.
[http://dx.doi.org/10.1160/TH07-02-0082] [PMID: 17938808]
[74]
Jiménez-Alcázar, M.; Kim, N.; Fuchs, T. Circulating extracellular DNA: Cause or consequence of thrombosis? Semin. Thromb. Hemost., 2017, 43(6), 553-561.
[http://dx.doi.org/10.1055/s-0036-1597284] [PMID: 28359134]
[75]
Liaw, P.C.; Ito, T.; Iba, T.; Thachil, J.; Zeerleder, S. DAMP and DIC: The role of extracellular DNA and DNA-binding proteins in the pathogenesis of DIC. Blood Rev., 2016, 30(4), 257-261.
[http://dx.doi.org/10.1016/j.blre.2015.12.004] [PMID: 26776504]
[76]
Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science, 2004, 303(5663), 1532-1535.
[http://dx.doi.org/10.1126/science.1092385] [PMID: 15001782]
[77]
Ostafin, M.; Ciepiela, O.; Pruchniak, M.; Wachowska, M.; Ulińska, E.; Mrówka, P.; Głodkowska-Mrówka, E.; Demkow, U. Dynamic changes in the ability to release neutrophil extra cellular traps in the course of childhood acute leukemias. Int. J. Mol. Sci., 2021, 22(2), 821.
[http://dx.doi.org/10.3390/ijms22020821] [PMID: 33467555]
[78]
Nakayama, T.; Saitoh, N.; Morotomi-Yano, K.; Yano, K.; Nakao, M.; Saitoh, H. Nuclear extrusion precedes discharge of genomic DNA fibers during tunicamycin-induced neutrophil extracellular trap-osis (NETosis)-like cell death in cultured human leukemia cells. Cell Biol. Int., 2016, 40(5), 597-602.
[http://dx.doi.org/10.1002/cbin.10594] [PMID: 26888435]
[79]
Breccia, M.; Coco, F.L. Thrombo-hemorrhagic deaths in acute promyelocytic leukemia. Thromb. Res., 2014, 133(Suppl. 2), S112-S116.
[http://dx.doi.org/10.1016/S0049-3848(14)50019-9] [PMID: 24862130]
[80]
Zhang, Y.; Hou, J.; Ge, F.; Cao, F.; Li, H.; Wang, P.; Xu, M.; Song, P.; Li, X.; Wang, S.; Li, J.; Han, X.; Zhao, Y.; Su, Y.; Li, Y.; Fan, S.; Li, L.; Zhou, J. Integrating microRNA and mRNA expression profiles of acute promyelocytic leukemia cells to explore the occurrence mechanisms of differentiation syndrome. Oncotarget, 2016, 7(45), 73509-73524.
[http://dx.doi.org/10.18632/oncotarget.11989] [PMID: 27634874]
[81]
Lambert, J.; Pautas, C.; Terré, C.; Raffoux, E.; Turlure, P.; Caillot, D.; Legrand, O.; Thomas, X.; Gardin, C.; Gogat-Marchant, K.; Rubin, S.D.; Benner, R.J.; Bousset, P.; Preudhomme, C.; Chevret, S.; Dombret, H.; Castaigne, S. Gemtuzumab ozogamicin for de novo acute myeloid leukemia: Final efficacy and safety updates from the open-label, phase III ALFA-0701 trial. Haematologica, 2019, 104(1), 113-119.
[http://dx.doi.org/10.3324/haematol.2018.188888] [PMID: 30076173]
[82]
Ladha, A.; Mannis, G.; Muffly, L. Hepatic veno-occlusive disease in allogeneic stem cell transplant recipients with prior exposure to gemtuzumab ozogamicin or inotuzumab ozogamicin. Leuk. Lymphoma, 2021, 62(2), 257-263.
[http://dx.doi.org/10.1080/10428194.2020.1827247] [PMID: 32988266]
[83]
Pouwer, M.G.; Pieterman, E.J.; Verschuren, L.; Caspers, M.P.M.; Kluft, C.; Garcia, R.A.; Aman, J.; Jukema, J.W.; Princen, H.M.G. The BCR-ABL1 inhibitors imatinib and ponatinib decrease plasma cholesterol and atherosclerosis, and nilotinib and ponatinib activate coagulation in a translational mouse model. Front. Cardiovasc. Med., 2018, 5, 55.
[http://dx.doi.org/10.3389/fcvm.2018.00055] [PMID: 29946549]
[84]
Haguet, H.; Bouvy, C.; Delvigne, A.S.; Modaffari, E.; Wannez, A.; Sonveaux, P.; Dogné, J.M.; Douxfils, J. The risk of arterial thrombosis in patients with chronic myeloid leukemia treated with second and third generation BCR-ABL tyrosine kinase inhibitors may be explained by their impact on endothelial cells: An In-Vitro study. Front. Pharmacol., 2020, 11, 1007.
[http://dx.doi.org/10.3389/fphar.2020.01007] [PMID: 32719607]
[85]
Perek, S.; Khatib, A.; Izhaki, N.; Khalaila, A.S.; Brenner, B.; Horowitz, N.A. A prediction model for central venous catheter-related thrombosis in patients with newly-diagnosed acute myeloid leukemia: A derivation cohort analysis. Eur. J. Intern. Med., 2022, 101, 68-75.
[http://dx.doi.org/10.1016/j.ejim.2022.04.025] [PMID: 35527180]
[86]
Iba, T.; Levi, M.; Levy, J.H. Sepsis-induced coagulopathy and disseminated intravascular coagulation. Semin. Thromb. Hemost., 2020, 46(1), 089-095.
[http://dx.doi.org/10.1055/s-0039-1694995] [PMID: 31443111]
[87]
Guarnera, L.; Ottone, T.; Fabiani, E.; Divona, M.; Savi, A.; Travaglini, S.; Falconi, G.; Panetta, P.; Rapanotti, M.C.; Voso, M.T. Atypical rearrangements in APL-like acute myeloid leukemias: Molecular characterization and prognosis. Front. Oncol., 2022, 12, 871590.
[http://dx.doi.org/10.3389/fonc.2022.871590] [PMID: 35494081]
[88]
Jimenez, J.J.; Chale, R.S.; Abad, A.C.; Schally, A.V. Acute promyelocytic leukemia (APL): A review of the literature. Oncotarget, 2020, 11(11), 992-1003.
[http://dx.doi.org/10.18632/oncotarget.27513] [PMID: 32215187]
[89]
Jemal, A.; Siegel, R.; Xu, J.; Ward, E. Cancer Statistics, 2010. CA Cancer J. Clin., 2010, 60(5), 277-300.
[http://dx.doi.org/10.3322/caac.20073] [PMID: 20610543]
[90]
Hermsen, J.; Hambley, B. The coagulopathy of acute promyelocytic leukemia: An updated review of pathophysiology, risk stratification, and clinical management. Cancers, 2023, 15(13), 3477.
[http://dx.doi.org/10.3390/cancers15133477] [PMID: 37444587]
[91]
Gurnari, C.; Breccia, M.; Di Giuliano, F.; Scalzulli, E.; Divona, M.; Piciocchi, A.; Cicconi, L.; De Bellis, E.; Venditti, A.; Del Principe, M.I.; Arcese, W.; Lo-Coco, F.; Garaci, F.; Voso, M.T. Early intracranial haemorrhages in acute promyelocytic leukaemia: analysis of neuroradiological and clinico‐biological parameters. Br. J. Haematol., 2021, 193(1), 129-132.
[http://dx.doi.org/10.1111/bjh.17018] [PMID: 32808672]
[92]
Cicconi, L. Long-term results of all-trans retinoic acid and arsenic trioxide in non-high-risk acute promyelocytic leukemia: update of the APL0406 Italian-German randomized trial. Leukemia, 2020, 34, 914-918.
[http://dx.doi.org/10.1038/s41375-019-0589-3]
[93]
Guarnera, L.; Lehmann, S.; Döhner, K.; Döhner, H.; Platzbecker, U.; Russell, N.H.; Dillon, R.; Thomas, I.; Ossenkoppele, G.; Vignetti, M.; la Sala, E.; Piciocchi, A.; Villaverde Ramiro, A.; Tur, L.; Gurnari, C.; Bullinger, L.; Hernández-Rivas, J.M.; Voso, M.T. Long-term outcome of 1296 patients with newly diagnosed with APL: A harmony alliance study. Blood, 2023, 142(Suppl. 1), 727.
[http://dx.doi.org/10.1182/blood-2023-185121]
[94]
Mitrovic, M.; Suvajdzic, N.; Elezovic, I.; Bogdanovic, A.; Djordjevic, V.; Miljic, P.; Djunic, I.; Gvozdenov, M.; Colovic, N.; Virijevic, M.; Lekovic, D.; Vidovic, A.; Tomin, D. Thrombotic events in acute promyelocytic leukemia. Thromb. Res., 2015, 135(4), 588-593.
[http://dx.doi.org/10.1016/j.thromres.2014.11.026] [PMID: 25528069]
[95]
De Stefano, V.; Sorà, F.; Rossi, E.; Chiusolo, P.; Laurenti, L.; Fianchi, L.; Zini, G.; Pagano, L.; Sica, S.; Leone, G. The risk of thrombosis in patients with acute leukemia: Occurrence of thrombosis at diagnosis and during treatment. J. Thromb. Haemost., 2005, 3(9), 1985-1992.
[http://dx.doi.org/10.1111/j.1538-7836.2005.01467.x] [PMID: 16102104]
[96]
Xiao, M.; Zhou, P.; Liu, Y.; Wei, S.; Li, D.; Li, W.; Niu, X.; Niu, J.; Zhang, Y.; Cao, W.; Liu, B.; Wang, X.; Bai, Y.; Sun, K. Predictive factors for differentiating thrombohemorrhagic disorders in high-risk acute promyelocytic leukemia. Thromb. Res., 2022, 210, 33-41.
[http://dx.doi.org/10.1016/j.thromres.2021.12.020] [PMID: 34998209]
[97]
Montesinos, P.; de la Serna, J.; Vellenga, E.; Rayon, C.; Bergua, J.; Parody, R.; Esteve, J.; Gonzalez, M.; Brunet, S.; Sanz, M. Incidence and risk factors for thrombosis in patients with acute promyelocytic leukemia. experience of the PETHEMA LPA96 and LPA99 protocols. Blood, 2006, 108(11), 1503.
[http://dx.doi.org/10.1182/blood.V108.11.1503.1503]
[98]
Dally, N.; Hoffman, R.; Haddad, N.; Sarig, G.; Rowe, J.M.; Brenner, B. Predictive factors of bleeding and thrombosis during induction therapy in acute promyelocytic leukemia—a single center experience in 34 patients. Thromb. Res., 2005, 116(2), 109-114.
[http://dx.doi.org/10.1016/j.thromres.2004.11.001] [PMID: 15907524]
[99]
Yan, J.; Wang, K.; Dong, L.; Liu, H.; Chen, W.; Xi, W.; Ding, Q.; Kieffer, N.; Caen, J.P.; Chen, S.; Chen, Z.; Xi, X. PML/RARα fusion protein transactivates the tissue factor promoter through a GAGC-containing element without direct DNA association. Proc. Natl. Acad. Sci., 2010, 107(8), 3716-3721.
[http://dx.doi.org/10.1073/pnas.0915006107] [PMID: 20133705]
[100]
Bassi, S.C.; Rego, E.M. Tissue factor pathway inhibitor (TFPI) may be another important factor in the coagulopathy in acute promyelocytic leukemia (APL). Blood, 2015, 126(23), 2278.
[http://dx.doi.org/10.1182/blood.V126.23.2278.2278]
[101]
Falanga, A.; Consonni, R.; Marchetti, M.; Locatelli, G.; Garattini, E.; Passerini, C.G.; Gordon, S.G.; Barbui, T. Cancer procoagulant and tissue factor are differently modulated by all-trans-retinoic acid in acute promyelocytic leukemia cells. Blood, 1998, 92(1), 143-151.
[http://dx.doi.org/10.1182/blood.V92.1.143.413k18_143_151] [PMID: 9639510]
[102]
Stein, E.; McMahon, B.; Kwaan, H.; Altman, J.K.; Frankfurt, O.; Tallman, M.S. The coagulopathy of acute promyelocytic leukaemia revisited. Best Pract. Res. Clin. Haematol., 2009, 22(1), 153-163.
[http://dx.doi.org/10.1016/j.beha.2008.12.007] [PMID: 19285282]
[103]
Rodeghiero, F.; Mannucci, P.M.; Viganò, S.; Barbui, T.; Gugliotta, L.; Cortellaro, M.; Dini, E. Liver dysfunction rather than intravascular coagulation as the main cause of low protein C and antithrombin III in acute leukemia. Blood, 1984, 63(4), 965-969.
[http://dx.doi.org/10.1182/blood.V63.4.965.965] [PMID: 6584188]
[104]
Langer, F.; Spath, B.; Haubold, K.; Holstein, K.; Marx, G.; Wierecky, J.; Brümmendorf, T.H.; Dierlamm, J.; Bokemeyer, C.; Eifrig, B. Tissue factor procoagulant activity of plasma microparticles in patients with cancer-associated disseminated intravascular coagulation. Ann. Hematol., 2008, 87(6), 451-457.
[http://dx.doi.org/10.1007/s00277-008-0446-3] [PMID: 18292996]
[105]
Griffin, J.D.; Rambaldi, A.; Vellenga, E.; Young, D.C.; Ostapovicz, D.; Cannistra, S.A. Secretion of interleukin-1 by acute myeloblastic leukemia cells in vitro induces endothelial cells to secrete colony stimulating factors. Blood, 1987, 70(4), 1218-1221.
[http://dx.doi.org/10.1182/blood.V70.4.1218.1218] [PMID: 3498521]
[106]
Cozzolino, F.; Torcia, M.; Miliani, A.; Carossino, A.M.; Giordani, R.; Cinotti, S.; Filimberti, E.; Saccardi, R.; Bernabei, P.; Guidi, G.; Di Guglielmo, R.; Pistoia, V.; Ferrarini, M.; Nawroth, P.P.; Stern, D. Potential role of interleukin-1 as the trigger for diffuse intravascular coagulation in acute nonlymphoblastic leukemia. Am. J. Med., 1988, 84(2), 240-250.
[http://dx.doi.org/10.1016/0002-9343(88)90420-2] [PMID: 3261536]
[107]
Ma, R.; Li, T.; Cao, M.; Si, Y.; Wu, X.; Zhao, L.; Yao, Z.; Zhang, Y.; Fang, S.; Deng, R.; Novakovic, V.A.; Bi, Y.; Kou, J.; Yu, B.; Yang, S.; Wang, J.; Zhou, J.; Shi, J. Extracellular DNA traps released by acute promyelocytic leukemia cells through autophagy. Cell Death Dis., 2016, 7(6), e2283.
[http://dx.doi.org/10.1038/cddis.2016.186] [PMID: 27362801]
[108]
Hambley, B.C.; Tomuleasa, C.; Ghiaur, G. Coagulopathy in acute promyelocytic leukemia: can we go beyond supportive care? Front. Med., 2021, 8, 722614.
[http://dx.doi.org/10.3389/fmed.2021.722614] [PMID: 34485349]
[109]
Lo-Coco, F.; Avvisati, G.; Vignetti, M.; Thiede, C.; Orlando, S.M.; Iacobelli, S.; Ferrara, F.; Fazi, P.; Cicconi, L.; Di Bona, E.; Specchia, G.; Sica, S.; Divona, M.; Levis, A.; Fiedler, W.; Cerqui, E.; Breccia, M.; Fioritoni, G.; Salih, H.R.; Cazzola, M.; Melillo, L.; Carella, A.M.; Brandts, C.H.; Morra, E.; von Lilienfeld-Toal, M.; Hertenstein, B.; Wattad, M.; Lübbert, M.; Hänel, M.; Schmitz, N.; Link, H.; Kropp, M.G.; Rambaldi, A.; La Nasa, G.; Luppi, M.; Ciceri, F.; Finizio, O.; Venditti, A.; Fabbiano, F.; Döhner, K.; Sauer, M.; Ganser, A.; Amadori, S.; Mandelli, F.; Döhner, H.; Ehninger, G.; Schlenk, R.F.; Platzbecker, U. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N. Engl. J. Med., 2013, 369(2), 111-121.
[http://dx.doi.org/10.1056/NEJMoa1300874] [PMID: 23841729]
[110]
Burnett, A.K.; Russell, N.H.; Hills, R.K.; Bowen, D.; Kell, J.; Knapper, S.; Morgan, Y.G.; Lok, J.; Grech, A.; Jones, G.; Khwaja, A.; Friis, L.; McMullin, M.F.; Hunter, A.; Clark, R.E.; Grimwade, D. Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): Results of a randomised, controlled, phase 3 trial. Lancet Oncol., 2015, 16(13), 1295-1305.
[http://dx.doi.org/10.1016/S1470-2045(15)00193-X] [PMID: 26384238]
[111]
Tallman, M.S.; Lefèbvre, P.; Baine, R.M.; Shoji, M.; Cohen, I.; Green, D.; Kwaan, H.C.; Paietta, E.; Rickles, F.R. Effects of all‐trans retinoic acid or chemotherapy on the molecular regulation of systemic blood coagulation and fibrinolysis in patients with acute promyelocytic leukemia. J. Thromb. Haemost., 2004, 2(8), 1341-1350.
[http://dx.doi.org/10.1111/j.1538-7836.2004.00787.x] [PMID: 15304040]
[112]
Olwill, S.A.; McGlynn, H.; Gilmore, W.S.; Alexander, H.D. All‐ trans retinoic acid-induced downregulation of annexin II expression in myeloid leukaemia cell lines is not confined to acute promyelocytic leukaemia. Br. J. Haematol., 2005, 131(2), 258-264.
[http://dx.doi.org/10.1111/j.1365-2141.2005.05750.x] [PMID: 16197459]
[113]
Zhang, Y.; Wu, S.; Luo, D.; Zhou, J.; Li, D. Addition of arsenic trioxide into induction regimens could not accelerate recovery of abnormality of coagulation and fibrinolysis in patients with acute promyelocytic leukemia. PLoS One, 2016, 11(1), e0147545.
[http://dx.doi.org/10.1371/journal.pone.0147545] [PMID: 26812490]
[114]
Falanga, A.; Diani, E.; Russo, L.; Balducci, D.; Marchetti, M. Arsenic trioxide (ATO) and all-trans retinoic acid (atra) differently affect the thrombin generation potential of acute promyelocytic leukemia (APL) cells. Blood, 2009, 114(22), 3986.
[http://dx.doi.org/10.1182/blood.V114.22.3986.3986]
[115]
Sanz, M.A.; Grimwade, D.; Tallman, M.S.; Lowenberg, B.; Fenaux, P.; Estey, E.H.; Naoe, T.; Lengfelder, E.; Büchner, T.; Döhner, H.; Burnett, A.K.; Lo-Coco, F. Management of acute promyelocytic leukemia: Recommendations from an expert panel on behalf of the European LeukemiaNet. Blood, 2009, 113(9), 1875-1891.
[http://dx.doi.org/10.1182/blood-2008-04-150250] [PMID: 18812465]
[116]
Sanz, M.A.; Fenaux, P.; Tallman, M.S.; Estey, E.H.; Löwenberg, B.; Naoe, T.; Lengfelder, E.; Döhner, H.; Burnett, A.K.; Chen, S.J.; Mathews, V.; Iland, H.; Rego, E.; Kantarjian, H.; Adès, L.; Avvisati, G.; Montesinos, P.; Platzbecker, U.; Ravandi, F.; Russell, N.H.; Lo-Coco, F. Management of acute promyelocytic leukemia: Updated recommendations from an expert panel of the European LeukemiaNet. Blood, 2019, 133(15), 1630-1643.
[http://dx.doi.org/10.1182/blood-2019-01-894980] [PMID: 30803991]
[117]
Hambley, B.C. Fibrinogen consumption and use of heparin are risk factors for delayed bleeding during acute promyelocytic leukemia induction. Leukemia Res., 2019, 83, 106174.
[http://dx.doi.org/10.1016/j.leukres.2019.106174]
[118]
Matsushita, T.; Watanabe, J.; Honda, G.; Mimuro, J.; Takahashi, H.; Tsuji, H.; Eguchi, Y.; Kitajima, I.; Sakata, Y. Thrombomodulin alfa treatment in patients with acute promyelocytic leukemia and disseminated intravascular coagulation: A retrospective analysis of an open-label, multicenter, post-marketing surveillance study cohort. Thromb. Res., 2014, 133(5), 772-781.
[http://dx.doi.org/10.1016/j.thromres.2014.02.025] [PMID: 24636871]
[119]
Ikezoe, T.; Takeuchi, A.; Isaka, M.; Arakawa, Y.; Iwabu, N.; Kin, T.; Anabuki, K.; Sakai, M.; Taniguchi, A.; Togitani, K.; Yokoyama, A. Recombinant human soluble thrombomodulin safely and effectively rescues acute promyelocytic leukemia patients from disseminated intravascular coagulation. Leuk. Res., 2012, 36(11), 1398-1402.
[http://dx.doi.org/10.1016/j.leukres.2012.08.012] [PMID: 22917769]
[120]
Ito, T.; Thachil, J.; Asakura, H.; Levy, J.H.; Iba, T. Thrombomodulin in disseminated intravascular coagulation and other critical conditions—a multi-faceted anticoagulant protein with therapeutic potential. Crit. Care, 2019, 23(1), 280.
[http://dx.doi.org/10.1186/s13054-019-2552-0] [PMID: 31416465]
[121]
Saito, H.; Maruyama, I.; Shimazaki, S.; Yamamoto, Y.; Aikawa, N.; Ohno, R.; Hirayama, A.; Matsuda, T.; Asakura, H.; Nakashima, M.; Aoki, N. Efficacy and safety of recombinant human soluble thrombomodulin (ART-123) in disseminated intravascular coagulation: results of a phase III, randomized, double-blind clinical trial. J. Thromb. Haemost., 2007, 5(1), 31-41.
[http://dx.doi.org/10.1111/j.1538-7836.2006.02267.x] [PMID: 17059423]
[122]
Ikezoe, T. Thrombomodulin/activated protein C system in septic disseminated intravascular coagulation. J. Intensive Care, 2015, 3(1), 1.
[http://dx.doi.org/10.1186/s40560-014-0050-7] [PMID: 25705426]
[123]
Huenerbein, K.; Sadjadian, P.; Becker, T.; Kolatzki, V.; Deventer, E.; Engelhardt, C.; Griesshammer, M.; Wille, K. Direct oral anticoagulants (DOAC) for prevention of recurrent arterial or venous thromboembolic events (ATE/VTE) in myeloproliferative neoplasms. Ann. Hematol., 2021, 100(8), 2015-2022.
[http://dx.doi.org/10.1007/s00277-020-04350-6] [PMID: 33216197]
[124]
Guarnera, L. Real-life experience of secondary prophylaxis with DOACs in splanchnic venous thrombosis during COVID-19 pandemic. Anna Hematol, 2023, 102, 1607-1608.
[http://dx.doi.org/10.1007/s00277-023-05184-8]
[125]
How, J.; Story, C.; Ren, S.; Neuberg, D.; Rosovsky, R.P.; Hobbs, G.S.; Connors, J.M. Practice patterns and outcomes of direct oral anticoagulant use in myeloproliferative neoplasm patients. Blood Cancer J., 2021, 11(11), 176.
[http://dx.doi.org/10.1038/s41408-021-00566-5] [PMID: 34741012]

© 2024 Bentham Science Publishers | Privacy Policy