Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Review Article

Beyond the Genome: Deciphering the Role of MALAT1 in Breast Cancer Progression

Author(s): Md Sadique Hussain, Mohit Agrawal, Nusratbanu K. Shaikh, Nikita Saraswat, Gurusha Bahl, Mudasir Maqbool Bhat, Navneet Khurana, Ajay Singh Bisht, Muhammad Tufail and Rajesh Kumar*

Volume 25, Issue 5, 2024

Published on: 22 May, 2024

Page: [343 - 357] Pages: 15

DOI: 10.2174/0113892029305656240503045154

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

The MALAT1, a huge non-coding RNA, recently came to light as a multifaceted regulator in the intricate landscape of breast cancer (BC) progression. This review explores the multifaceted functions and molecular interactions of MALAT1, shedding light on its profound implications for understanding BC pathogenesis and advancing therapeutic strategies. The article commences by acknowledging the global impact of BC and the pressing need for insights into its molecular underpinnings. It is stated that the core lncRNA MALAT1 has a range of roles in both healthy and diseased cell functions. The core of this review unravels MALAT1's multifaceted role in BC progression, elucidating its participation in critical processes like resistance, invasion, relocation, and proliferating cells to therapy. It explores the intricate mechanisms through which MALAT1 modulates gene expression, interacts with other molecules, and influences signalling pathways. Furthermore, the paper emphasizes MALAT1's clinical significance as a possible prognostic and diagnostic biomarker. Concluding on a forward-looking note, the review highlights the broader implications of MALAT1 in BC biology, such as its connections to therapy resistance and metastasis. It underscores the significance of deeper investigations into these intricate molecular interactions to pave the way for precision medicine approaches. This review highlights the pivotal role of MALAT1 in BC progression by deciphering its multifaceted functions beyond the genome, offering profound insights into its implications for disease understanding and the potential for targeted therapeutic interventions.

Keywords: Breast cancer, MALAT1, lncRNAs, molecular interactions, therapeutic implications, quality of life.

Graphical Abstract
[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Tiwary, S.; Hussain, M.S. Functional foods for prevention and treatment of cancer. Asian J. Pharm. Clin. Res., 2021, 14(3), 4-10.
[http://dx.doi.org/10.22159/ajpcr.2021.v14i3.40426]
[3]
Hussain, M.S.; Altamimi, A.S.A.; Afzal, M.; Almalki, W.H.; Kazmi, I.; Alzarea, S.I.; Gupta, G.; Shahwan, M.; Kukreti, N.; Wong, L.S.; Kumarasamy, V.; Subramaniyan, V. Kaempferol: Paving the path for advanced treatments in aging-related diseases. Exp. Gerontol., 2024, 188, 112389.
[http://dx.doi.org/10.1016/j.exger.2024.112389] [PMID: 38432575]
[4]
Lee, A; Mavaddat, N; Wilcox, AN; Cunningham, AP; Carver, T; Hartley, S BOADICEA: A comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors. Genetics in Medicine, 2019, 21, 1708-1718.
[5]
Grimaldi, A.M.; Incoronato, M. Clinical Translatability of “Identified” Circulating miRNAs for Diagnosing Breast Cancer: Overview and Update. Cancers, 2019, 11(7), 901.
[http://dx.doi.org/10.3390/cancers11070901] [PMID: 31252695]
[6]
Hussain, M.S.; Gupta, G.; Afzal, M.; Alqahtani, S.M.; Samuel, V.P.; Almalki, H.W.; Kazmi, I.; Alzarea, S.I.; Saleem, S.; Dureja, H.; Singh, S.K.; Dua, K.; Thangavelu, L. Exploring the role of lncrna neat1 knockdown in regulating apoptosis across multiple cancer types: A review. Pathol. Res. Pract., 2023, 252, 154908.
[http://dx.doi.org/10.1016/j.prp.2023.154908] [PMID: 37950931]
[7]
Li, K.; Tian, Y.; Yuan, Y.; Fan, X.; Yang, M.; He, Z.; Yang, D. Insights into the Functions of LncRNAs in Drosophila. Int. J. Mol. Sci., 2019, 20(18), 4646.
[http://dx.doi.org/10.3390/ijms20184646] [PMID: 31546813]
[8]
Hussain, M.S.; Majami, A.A.; Ali, H.; Gupta, G.; Almalki, W.H.; Alzarea, S.I.; Kazmi, I.; Syed, R.U.; Khalifa, N.E.; Break, B.M.K.; Khan, R.; Altwaijry, N.; Sharma, R. The complex role of MEG3: An emerging long non-coding RNA in breast cancer. Pathol. Res. Pract., 2023, 251, 154850.
[http://dx.doi.org/10.1016/j.prp.2023.154850] [PMID: 37839358]
[9]
Wang, Y.; Liu, Z.; Xu, Z.; Shao, W.; Hu, D.; Zhong, H.; Zhang, J. Introduction of long non-coding RNAs to regulate autophagy-associated therapy resistance in cancer. Mol. Biol. Rep., 2022, 49(11), 10761-10773.
[http://dx.doi.org/10.1007/s11033-022-07669-7] [PMID: 35810239]
[10]
Hussain, M.S.; Afzal, O.; Gupta, G.; Altamimi, A.S.A.; Almalki, W.H.; Alzarea, S.I.; Kazmi, I.; Fuloria, N.K.; Sekar, M.; Meenakshi, D.U.; Thangavelu, L.; Sharma, A. Long non-coding RNAs in lung cancer: Unraveling the molecular modulators of MAPK signaling. Pathol. Res. Pract., 2023, 249, 154738.
[http://dx.doi.org/10.1016/j.prp.2023.154738] [PMID: 37595448]
[11]
Zhou, Z.; Qi, D.; Gan, Q.; Wang, F.; Qin, B.; Li, J.; Wang, H.; Wang, D. Studies on the Regulatory Roles and Related Mechanisms of lncRNAs in the Nervous System. Oxid. Med. Cell. Longev., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/6657944] [PMID: 33791072]
[12]
Cao, H.; Li, D.; Lu, H.; Sun, J.; Li, H. Uncovering potential lncRNAs and nearby mRNAs in systemic lupus erythematosus from the Gene Expression Omnibus dataset. Epigenomics, 2019, 11(16), 1795-1809.
[http://dx.doi.org/10.2217/epi-2019-0145] [PMID: 31755746]
[13]
Bian, B.; Li, L.; Ke, X.; Chen, H.; Liu, Y.; Zheng, N.; Zheng, Y.; Ma, Y.; Zhou, Y.; Yang, J.; Xiao, L.; Shen, L. Urinary exosomal long non-coding RNAs as noninvasive biomarkers for diagnosis of bladder cancer by RNA sequencing. Front. Oncol., 2022, 12, 976329.
[http://dx.doi.org/10.3389/fonc.2022.976329] [PMID: 36119544]
[14]
Zhou, Q.; Yu, Q.; Gong, Y.; Liu, Z.; Xu, H.; Wang, Y.; Shi, Y. Construction of a lncRNA-miRNA-mRNA network to determine the regulatory roles of lncRNAs in psoriasis. Exp. Ther. Med., 2019, 18(5), 4011-4021.
[http://dx.doi.org/10.3892/etm.2019.8035] [PMID: 31611939]
[15]
Hussain, M.S.; Afzal, O.; Gupta, G.; Altamimi, A.S.A.; Almalki, W.H.; Alzarea, S.I.; Kazmi, I.; Kukreti, N.; Gupta, S.; Sulakhiya, K.; Singh, S.K.; Dua, K. Probing the links: Long non-coding RNAs and NF-κB signalling in atherosclerosis. Pathol. Res. Pract., 2023, 249, 154773.
[http://dx.doi.org/10.1016/j.prp.2023.154773] [PMID: 37647827]
[16]
Hussain, M.S.; Afzal, O.; Gupta, G.; Goyal, A.; Almalki, W.H.; Kazmi, I.; Alzarea, S.I.; Altamimi, A.A.S.; Kukreti, N.; Chakraborty, A.; Singh, S.K.; Dua, K. Unraveling NEAT1's complex role in lung cancer biology: A comprehensive review. EXCLI J., 2024, 23, 34-52.
[PMID: 38343745]
[17]
Zhou, Q.; Liu, L.; Zhou, J.; Chen, Y.; Xie, D.; Yao, Y.; Cui, D. Novel Insights Into MALAT1 Function as a MicroRNA Sponge in NSCLC. Front. Oncol., 2021, 11, 758653.
[http://dx.doi.org/10.3389/fonc.2021.758653] [PMID: 34778078]
[18]
Syllaios, A.; Moris, D.; Karachaliou, G.; Sakellariou, S.; Karavokyros, I.; Gazouli, M.; Schizas, D. Pathways and role of MALAT1 in esophageal and gastric cancer (Review). Oncol. Lett., 2021, 21(5), 343.
[http://dx.doi.org/10.3892/ol.2021.12604] [PMID: 33747200]
[19]
Su, K; Wang, N; Shao, Q; Liu, H; Zhao, B; Ma, S The role of a ceRNA regulatory network based on lncRNA MALAT1 site in cancer progression. Biomed Pharmacother, 2021, 137, 111389.
[http://dx.doi.org/10.1016/j.biopha.2021.111389]
[20]
Ma, Z.; Zhang, J.; Xu, X.; Qu, Y.; Dong, H.; Dang, J.; Huo, Z.; Xu, G. LncRNA expression profile during autophagy and Malat1 function in macrophages. PLoS One, 2019, 14(8), e0221104.
[http://dx.doi.org/10.1371/journal.pone.0221104] [PMID: 31425535]
[21]
Hussain, M.S.; Shaikh, N.K.; Agrawal, M.; Tufail, M.; Bisht, A.S.; Khurana, N.; Kumar, R. Osteomyelitis and non-coding RNAS: A new dimension in disease understanding. Pathol. Res. Pract., 2024, 255, 155186.
[http://dx.doi.org/10.1016/j.prp.2024.155186] [PMID: 38350169]
[22]
Farooqi, A.A.; Legaki, E.; Gazouli, M.; Rinaldi, S.; Berardi, R. MALAT1 as a Versatile Regulator of Cancer: Overview of the updates from Predatory role as Competitive Endogenous RNA to Mechanistic Insights. Curr. Cancer Drug Targets, 2020.
[PMID: 32748748]
[23]
Li, Z.; Hou, P.; Fan, D.; Dong, M.; Ma, M.; Li, H.; Yao, R.; Li, Y.; Wang, G.; Geng, P.; Mihretab, A.; Liu, D.; Zhang, Y.; Huang, B.; Lu, J. The degradation of EZH2 mediated by lncRNA ANCR attenuated the invasion and metastasis of breast cancer. Cell Death Differ., 2017, 24(1), 59-71.
[http://dx.doi.org/10.1038/cdd.2016.95] [PMID: 27716745]
[24]
Yang, F.; Shen, Y.; Zhang, W.; Jin, J.; Huang, D.; Fang, H.; Ji, W.; Shi, Y.; Tang, L.; Chen, W.; Zhou, G.; Guan, X. An androgen receptor negatively induced long non-coding RNA ARNILA binding to miR-204 promotes the invasion and metastasis of triple-negative breast cancer. Cell Death Differ., 2018, 25(12), 2209-2220.
[http://dx.doi.org/10.1038/s41418-018-0123-6] [PMID: 29844570]
[25]
Li, R.H.; Chen, M.; Liu, J.; Shao, C.C.; Guo, C.P.; Wei, X.L.; Li, Y.C.; Huang, W.H.; Zhang, G.J. Long noncoding RNA ATB promotes the epithelial−mesenchymal transition by upregulating the miR-200c/Twist1 axe and predicts poor prognosis in breast cancer. Cell Death Dis., 2018, 9(12), 1171.
[http://dx.doi.org/10.1038/s41419-018-1210-9] [PMID: 30518916]
[26]
Song, R.; Zhang, J.; Huang, J.; Hai, T. Long non-coding RNA GHET1 promotes human breast cancer cell proliferation, invasion and migration via affecting epithelial mesenchymal transition. Cancer Biomark., 2018, 22(3), 565-573.
[http://dx.doi.org/10.3233/CBM-181250] [PMID: 29843220]
[27]
Wang, Z.; Yang, B.; Zhang, M.; Guo, W.; Wu, Z.; Wang, Y.; Jia, L.; Li, S.; Xie, W.; Yang, D.; Johnson, C.S.J.; Demchok, J.A.; Felau, I.; Kasapi, M.; Ferguson, M.L.; Hutter, C.M.; Sofia, H.J.; Tarnuzzer, R.; Wang, Z.; Yang, L.; Zenklusen, J.C.; Zhang, J.J.; Chudamani, S.; Liu, J.; Lolla, L.; Naresh, R.; Pihl, T.; Sun, Q.; Wan, Y.; Wu, Y.; Cho, J.; DeFreitas, T.; Frazer, S.; Gehlenborg, N.; Getz, G.; Heiman, D.I.; Kim, J.; Lawrence, M.S.; Lin, P.; Meier, S.; Noble, M.S.; Saksena, G.; Voet, D.; Zhang, H.; Bernard, B.; Chambwe, N.; Dhankani, V.; Knijnenburg, T.; Kramer, R.; Leinonen, K.; Liu, Y.; Miller, M.; Reynolds, S.; Shmulevich, I.; Thorsson, V.; Zhang, W.; Akbani, R.; Broom, B.M.; Hegde, A.M.; Ju, Z.; Kanchi, R.S.; Korkut, A.; Li, J.; Liang, H.; Ling, S.; Liu, W.; Lu, Y.; Mills, G.B.; Ng, K-S.; Rao, A.; Ryan, M.; Wang, J.; Weinstein, J.N.; Zhang, J.; Abeshouse, A.; Armenia, J.; Chakravarty, D.; Chatila, W.K.; Bruijn, I.; Gao, J.; Gross, B.E.; Heins, Z.J.; Kundra, R.; La, K.; Ladanyi, M.; Luna, A.; Nissan, M.G.; Ochoa, A.; Phillips, S.M.; Reznik, E.; Vega, S.F.; Sander, C.; Schultz, N.; Sheridan, R.; Sumer, S.O.; Sun, Y.; Taylor, B.S.; Wang, J.; Zhang, H.; Anur, P.; Peto, M.; Spellman, P.; Benz, C.; Stuart, J.M.; Wong, C.K.; Yau, C.; Hayes, D.N.; Parker, J.S.; Wilkerson, M.D.; Ally, A.; Balasundaram, M.; Bowlby, R.; Brooks, D.; Carlsen, R.; Chuah, E.; Dhalla, N.; Holt, R.; Jones, S.J.M.; Kasaian, K.; Lee, D.; Ma, Y.; Marra, M.A.; Mayo, M.; Moore, R.A.; Mungall, A.J.; Mungall, K.; Robertson, A.G.; Sadeghi, S.; Schein, J.E.; Sipahimalani, P.; Tam, A.; Thiessen, N.; Tse, K.; Wong, T.; Berger, A.C.; Beroukhim, R.; Cherniack, A.D.; Cibulskis, C.; Gabriel, S.B.; Gao, G.F.; Ha, G.; Meyerson, M.; Schumacher, S.E.; Shih, J.; Kucherlapati, M.H.; Kucherlapati, R.S.; Baylin, S.; Cope, L.; Danilova, L.; Bootwalla, M.S.; Lai, P.H.; Maglinte, D.T.; Van Den Berg, D.J.; Weisenberger, D.J.; Auman, J.T.; Balu, S.; Bodenheimer, T.; Fan, C.; Hoadley, K.A.; Hoyle, A.P.; Jefferys, S.R.; Jones, C.D.; Meng, S.; Mieczkowski, P.A.; Mose, L.E.; Perou, A.H.; Perou, C.M.; Roach, J.; Shi, Y.; Simons, J.V.; Skelly, T.; Soloway, M.G.; Tan, D.; Veluvolu, U.; Fan, H.; Hinoue, T.; Laird, P.W.; Shen, H.; Zhou, W.; Bellair, M.; Chang, K.; Covington, K.; Creighton, C.J.; Dinh, H.; Doddapaneni, H.V.; Donehower, L.A.; Drummond, J.; Gibbs, R.A.; Glenn, R.; Hale, W.; Han, Y.; Hu, J.; Korchina, V.; Lee, S.; Lewis, L.; Li, W.; Liu, X.; Morgan, M.; Morton, D.; Muzny, D.; Santibanez, J.; Sheth, M.; Shinbrot, E.; Wang, L.; Wang, M.; Wheeler, D.A.; Xi, L.; Zhao, F.; Hess, J.; Appelbaum, E.L.; Bailey, M.; Cordes, M.G.; Ding, L.; Fronick, C.C.; Fulton, L.A.; Fulton, R.S.; Kandoth, C.; Mardis, E.R.; McLellan, M.D.; Miller, C.A.; Schmidt, H.K.; Wilson, R.K.; Crain, D.; Curley, E.; Gardner, J.; Lau, K.; Mallery, D.; Morris, S.; Paulauskis, J.; Penny, R.; Shelton, C.; Shelton, T.; Sherman, M.; Thompson, E.; Yena, P.; Bowen, J.; Foster, G.J.M.; Gerken, M.; Leraas, K.M.; Lichtenberg, T.M.; Ramirez, N.C.; Wise, L.; Zmuda, E.; Corcoran, N.; Costello, T.; Hovens, C.; Carvalho, A.L.; de Carvalho, A.C.; Fregnani, J.H.; Filho, L.A.; Reis, R.M.; Neto, S.C.; Silveira, H.C.S.; Vidal, D.O.; Burnette, A.; Eschbacher, J.; Hermes, B.; Noss, A.; Singh, R.; Anderson, M.L.; Castro, P.D.; Ittmann, M.; Huntsman, D.; Kohl, B.; Le, X.; Thorp, R.; Andry, C.; Duffy, E.R.; Lyadov, V.; Paklina, O.; Setdikova, G.; Shabunin, A.; Tavobilov, M.; McPherson, C.; Warnick, R.; Berkowitz, R.; Cramer, D.; Feltmate, C.; Horowitz, N.; Kibel, A.; Muto, M.; Raut, C.P.; Malykh, A.; Sloan, B.J.S.; Barrett, W.; Devine, K.; Fulop, J.; Ostrom, Q.T.; Shimmel, K.; Wolinsky, Y.; Sloan, A.E.; De Rose, A.; Giuliante, F.; Goodman, M.; Karlan, B.Y.; Hagedorn, C.H.; Eckman, J.; Harr, J.; Myers, J.; Tucker, K.; Zach, L.A.; Deyarmin, B.; Hu, H.; Kvecher, L.; Larson, C.; Mural, R.J.; Somiari, S.; Vicha, A.; Zelinka, T.; Bennett, J.; Iacocca, M.; Rabeno, B.; Swanson, P.; Latour, M.; Lacombe, L.; Têtu, B.; Bergeron, A.; McGraw, M.; Staugaitis, S.M.; Chabot, J.; Hibshoosh, H.; Sepulveda, A.; Su, T.; Wang, T.; Potapova, O.; Voronina, O.; Desjardins, L.; Mariani, O.; Roman, R.S.; Sastre, X.; Stern, M-H.; Cheng, F.; Signoretti, S.; Berchuck, A.; Bigner, D.; Lipp, E.; Marks, J.; McCall, S.; McLendon, R.; Secord, A.; Sharp, A.; Behera, M.; Brat, D.J.; Chen, A.; Delman, K.; Force, S.; Khuri, F.; Magliocca, K.; Maithel, S.; Olson, J.J.; Owonikoko, T.; Pickens, A.; Ramalingam, S.; Shin, D.M.; Sica, G.; Van Meir, E.G.; Zhang, H.; Eijckenboom, W.; Gillis, A.; Korpershoek, E.; Looijenga, L.; Oosterhuis, W.; Stoop, H.; van Kessel, K.E.; Zwarthoff, E.C.; Calatozzolo, C.; Cuppini, L.; Cuzzubbo, S.; DiMeco, F.; Finocchiaro, G.; Mattei, L.; Perin, A.; Pollo, B.; Chen, C.; Houck, J.; Lohavanichbutr, P.; Hartmann, A.; Stoehr, C.; Stoehr, R.; Taubert, H.; Wach, S.; Wullich, B.; Kycler, W.; Murawa, D.; Wiznerowicz, M.; Chung, K.; Edenfield, W.J.; Martin, J.; Baudin, E.; Bubley, G.; Bueno, R.; De Rienzo, A.; Richards, W.G.; Kalkanis, S.; Mikkelsen, T.; Noushmehr, H.; Scarpace, L.; Girard, N.; Aymerich, M.; Campo, E.; Giné, E.; Guillermo, A.L.; Van Bang, N.; Hanh, P.T.; Phu, B.D.; Tang, Y.; Colman, H.; Evason, K.; Dottino, P.R.; Martignetti, J.A.; Gabra, H.; Juhl, H.; Akeredolu, T.; Stepa, S.; Hoon, D.; Ahn, K.; Kang, K.J.; Beuschlein, F.; Breggia, A.; Birrer, M.; Bell, D.; Borad, M.; Bryce, A.H.; Castle, E.; Chandan, V.; Cheville, J.; Copland, J.A.; Farnell, M.; Flotte, T.; Giama, N.; Ho, T.; Kendrick, M.; Kocher, J-P.; Kopp, K.; Moser, C.; Nagorney, D.; O’Brien, D.; O’Neill, B.P.; Patel, T.; Petersen, G.; Que, F.; Rivera, M.; Roberts, L.; Smallridge, R.; Smyrk, T.; Stanton, M.; Thompson, R.H.; Torbenson, M.; Yang, J.D.; Zhang, L.; Brimo, F.; Ajani, J.A.; Gonzalez, A.M.A.; Behrens, C.; Bondaruk, J.; Broaddus, R.; Czerniak, B.; Esmaeli, B.; Fujimoto, J.; Gershenwald, J.; Guo, C.; Lazar, A.J.; Logothetis, C.; Bernstam, M.F.; Moran, C.; Ramondetta, L.; Rice, D.; Sood, A.; Tamboli, P.; Thompson, T.; Troncoso, P.; Tsao, A.; Wistuba, I.; Carter, C.; Haydu, L.; Hersey, P.; Jakrot, V.; Kakavand, H.; Kefford, R.; Lee, K.; Long, G.; Mann, G.; Quinn, M.; Saw, R.; Scolyer, R.; Shannon, K.; Spillane, A.; Stretch, J.; Synott, M.; Thompson, J.; Wilmott, J.; Al-Ahmadie, H.; Chan, T.A.; Ghossein, R.; Gopalan, A.; Levine, D.A.; Reuter, V.; Singer, S.; Singh, B.; Tien, N.V.; Broudy, T.; Mirsaidi, C.; Nair, P.; Drwiega, P.; Miller, J.; Smith, J.; Zaren, H.; Park, J-W.; Hung, N.P.; Kebebew, E.; Linehan, W.M.; Metwalli, A.R.; Pacak, K.; Pinto, P.A.; Schiffman, M.; Schmidt, L.S.; Vocke, C.D.; Wentzensen, N.; Worrell, R.; Yang, H.; Moncrieff, M.; Goparaju, C.; Melamed, J.; Pass, H.; Botnariuc, N.; Caraman, I.; Cernat, M.; Chemencedji, I.; Clipca, A.; Doruc, S.; Gorincioi, G.; Mura, S.; Pirtac, M.; Stancul, I.; Tcaciuc, D.; Albert, M.; Alexopoulou, I.; Arnaout, A.; Bartlett, J.; Engel, J.; Gilbert, S.; Parfitt, J.; Sekhon, H.; Thomas, G.; Rassl, D.M.; Rintoul, R.C.; Bifulco, C.; Tamakawa, R.; Urba, W.; Hayward, N.; Timmers, H.; Antenucci, A.; Facciolo, F.; Grazi, G.; Marino, M.; Merola, R.; de Krijger, R.; Roqueplo, G.A-P.; Piché, A.; Chevalier, S.; McKercher, G.; Birsoy, K.; Barnett, G.; Brewer, C.; Farver, C.; Naska, T.; Pennell, N.A.; Raymond, D.; Schilero, C.; Smolenski, K.; Williams, F.; Morrison, C.; Borgia, J.A.; Liptay, M.J.; Pool, M.; Seder, C.W.; Junker, K.; Omberg, L.; Dinkin, M.; Manikhas, G.; Alvaro, D.; Bragazzi, M.C.; Cardinale, V.; Carpino, G.; Gaudio, E.; Chesla, D.; Cottingham, S.; Dubina, M.; Moiseenko, F.; Dhanasekaran, R.; Becker, K-F.; Janssen, K-P.; Huspenina, S.J.; Rahman, A.M.H.; Aziz, D.; Bell, S.; Cebulla, C.M.; Davis, A.; Duell, R.; Elder, J.B.; Hilty, J.; Kumar, B.; Lang, J.; Lehman, N.L.; Mandt, R.; Nguyen, P.; Pilarski, R.; Rai, K.; Schoenfield, L.; Senecal, K.; Wakely, P.; Hansen, P.; Lechan, R.; Powers, J.; Tischler, A.; Grizzle, W.E.; Sexton, K.C.; Kastl, A.; Henderson, J.; Porten, S.; Waldmann, J.; Fassnacht, M.; Asa, S.L.; Schadendorf, D.; Couce, M.; Graefen, M.; Huland, H.; Sauter, G.; Schlomm, T.; Simon, R.; Tennstedt, P.; Olabode, O.; Nelson, M.; Bathe, O.; Carroll, P.R.; Chan, J.M.; Disaia, P.; Glenn, P.; Kelley, R.K.; Landen, C.N.; Phillips, J.; Prados, M.; Simko, J.; McCune, S.K.; VandenBerg, S.; Roggin, K.; Fehrenbach, A.; Kendler, A.; Sifri, S.; Steele, R.; Jimeno, A.; Carey, F.; Forgie, I.; Mannelli, M.; Carney, M.; Hernandez, B.; Campos, B.; Mende, H.C.; Jungk, C.; Unterberg, A.; von Deimling, A.; Bossler, A.; Galbraith, J.; Jacobus, L.; Knudson, M.; Knutson, T.; Ma, D.; Milhem, M.; Sigmund, R.; Godwin, A.K.; Madan, R.; Rosenthal, H.G.; Adebamowo, C.; Adebamowo, S.N.; Boussioutas, A.; Beer, D.; Giordano, T.; Mes-Masson, A-M.; Saad, F.; Bocklage, T.; Landrum, L.; Mannel, R.; Moore, K.; Moxley, K.; Postier, R.; Walker, J.; Zuna, R.; Feldman, M.; Valdivieso, F.; Dhir, R.; Luketich, J.; Pinero, E.M.M.; Aguilo, Q.M.; Carlotti, C.G., Jr; Dos Santos, J.S.; Kemp, R.; Sankarankuty, A.; Tirapelli, D.; Catto, J.; Agnew, K.; Swisher, E.; Creaney, J.; Robinson, B.; Shelley, C.S.; Godwin, E.M.; Kendall, S.; Shipman, C.; Bradford, C.; Carey, T.; Haddad, A.; Moyer, J.; Peterson, L.; Prince, M.; Rozek, L.; Wolf, G.; Bowman, R.; Fong, K.M.; Yang, I.; Korst, R.; Rathmell, W.K.; Campbell, F.J.L.; Hooke, J.A.; Kovatich, A.J.; Shriver, C.D.; DiPersio, J.; Drake, B.; Govindan, R.; Heath, S.; Ley, T.; Van Tine, B.; Westervelt, P.; Rubin, M.A.; Lee, J.I.; Aredes, N.D.; Mariamidze, A. lncRNA Epigenetic Landscape Analysis Identifies EPIC1 as an Oncogenic lncRNA that Interacts with MYC and Promotes Cell- Cycle Progression in Cancer. Cancer Cell, 2018, 33(4), 706-720.e9.
[http://dx.doi.org/10.1016/j.ccell.2018.03.006] [PMID: 29622465]
[28]
Bai, Y.; Zhou, X.; Huang, L.; Wan, Y.; Li, X.; Wang, Y. Long noncoding RNA EZR-AS1 promotes tumor growth and metastasis by modulating Wnt/β-catenin pathway in breast cancer. Exp. Ther. Med., 2018, 16(3), 2235-2242.
[http://dx.doi.org/10.3892/etm.2018.6461] [PMID: 30186463]
[29]
Zhong, H.; Yang, J.; Zhang, B.; Wang, X.; Pei, L.; Zhang, L.; Lin, Z.; Wang, Y.; Wang, C. LncRNA GACAT3 predicts poor prognosis and promotes cell proliferation in breast cancer through regulation of miR-497/CCND2. Cancer Biomark., 2018, 22(4), 787-797.
[http://dx.doi.org/10.3233/CBM-181354] [PMID: 29945347]
[30]
Liu, M.; Gou, L.; Xia, J.; Wan, Q.; Jiang, Y.; Sun, S.; Tang, M.; He, T.; Zhang, Y. LncRNA ITGB2-AS1 Could Promote the Migration and Invasion of Breast Cancer Cells through Up-Regulating ITGB2. Int. J. Mol. Sci., 2018, 19(7), 1866.
[http://dx.doi.org/10.3390/ijms19071866] [PMID: 29941860]
[31]
Lu, G.; Li, Y.; Ma, Y.; Lu, J.; Chen, Y.; Jiang, Q. Long noncoding RNA LINC00511 contributes to breast cancer tumourigenesis and stemness by inducing the miR-185-3p/E2F1/Nanog axis. Journal of experimental & clinical cancer research. CR (East Lansing Mich.), 2018, 37(1), 289.
[32]
Huang, X.; Xie, X.; Liu, P.; Yang, L.; Chen, B.; Song, C.; Tang, H.; Xie, X. Adam12 and lnc015192 act as ceRNAs in breast cancer by regulating miR-34a. Oncogene, 2018, 37(49), 6316-6326.
[http://dx.doi.org/10.1038/s41388-018-0410-1] [PMID: 30042416]
[33]
Yang, Y.; Yang, H.; Xu, M.; Zhang, H.; Sun, M.; Mu, P.; Dong, T.; Du, S.; Liu, K. Long non-coding RNA (lncRNA) MAGI2-AS3 inhibits breast cancer cell growth by targeting the Fas/FasL signalling pathway. Hum. Cell, 2018, 31(3), 232-241.
[http://dx.doi.org/10.1007/s13577-018-0206-1] [PMID: 29679339]
[34]
Zhang, W; Shi, S; Jiang, J; Li, X; Lu, H; Ren, F. LncRNA MEG3 inhibits cell epithelial-mesenchymal transition by sponging miR-421 targeting E-cadherin in breast cancer. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2017, 91, 312-9.
[35]
Wang, S.; Ke, H.; Zhang, H.; Ma, Y.; Ao, L.; Zou, L.; Yang, Q.; Zhu, H.; Nie, J.; Wu, C.; Jiao, B. LncRNA MIR100HG promotes cell proliferation in triple-negative breast cancer through triplex formation with p27 loci. Cell Death Dis., 2018, 9(8), 805.
[http://dx.doi.org/10.1038/s41419-018-0869-2] [PMID: 30042378]
[36]
Li, W.; Zhang, Z.; Liu, X.; Cheng, X.; Zhang, Y.; Han, X.; Zhang, Y.; Liu, S.; Yang, J.; Xu, B.; He, L.; Sun, L.; Liang, J.; Shang, Y. The FOXN3-NEAT1-SIN3A repressor complex promotes progression of hormonally responsive breast cancer. J. Clin. Invest., 2017, 127(9), 3421-3440.
[http://dx.doi.org/10.1172/JCI94233] [PMID: 28805661]
[37]
Wu, W.; Chen, F.; Cui, X.; Yang, L.; Chen, J.; Zhao, J.; Huang, D.; Liu, J.; Yang, L.; Zeng, J.; Zeng, Z.; Pan, Y.; Su, F.; Cai, J.; Ying, Z.; Zhao, Q.; Song, E.; Su, S. LncRNA NKILA suppresses TGF-β-induced epithelial–mesenchymal transition by blocking NF-κB signaling in breast cancer. Int. J. Cancer, 2018, 143(9), 2213-2224.
[http://dx.doi.org/10.1002/ijc.31605] [PMID: 29761481]
[38]
Li, Y; Lv, M; Song, Z; Lou, Z; Wang, R; Zhuang, M. Long non-coding RNA NNT-AS1 affects progression of breast cancer through miR-142-3p/ZEB1 axis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie., 2018, 103, 939-46.
[39]
Yang, Y.X.; Wei, L.; Zhang, Y.J.; Hayano, T.; Pereda, P.M.P.; Nakaoka, H.; Li, Q.; Mallofret, B.I.; Lu, Y.Z.; Tamagnone, L.; Inoue, I.; Li, X.; Luo, J.Y.; Zheng, K.; You, H. Long non-coding RNA p10247, high expressed in breast cancer (lncRNA-BCHE), is correlated with metastasis. Clin. Exp. Metastasis, 2018, 35(3), 109-121.
[http://dx.doi.org/10.1007/s10585-018-9901-2] [PMID: 29948648]
[40]
Jadaliha, M.; Gholamalamdari, O.; Tang, W.; Zhang, Y.; Petracovici, A.; Hao, Q.; Tariq, A.; Kim, T.G.; Holton, S.E.; Singh, D.K.; Li, X.L.; Freier, S.M.; Ambs, S.; Bhargava, R.; Lal, A.; Prasanth, S.G.; Ma, J.; Prasanth, K.V. A natural antisense lncRNA controls breast cancer progression by promoting tumor suppressor gene mRNA stability. PLoS Genet., 2018, 14(11), e1007802.
[http://dx.doi.org/10.1371/journal.pgen.1007802] [PMID: 30496290]
[41]
Liang, Y.; Song, X.; Li, Y.; Sang, Y.; Zhang, N.; Zhang, H.; Liu, Y.; Duan, Y.; Chen, B.; Guo, R.; Zhao, W.; Wang, L.; Yang, Q. A novel long non-coding RNA-PRLB acts as a tumor promoter through regulating miR-4766-5p/SIRT1 axis in breast cancer. Cell Death Dis., 2018, 9(5), 563.
[http://dx.doi.org/10.1038/s41419-018-0582-1] [PMID: 29752439]
[42]
Shi, X.; Tang, X.; Su, L. Overexpression of Long Noncoding RNA PTENP1 Inhibits Cell Proliferation and Migration via Suppression of miR-19b in Breast Cancer Cells. Oncol. Res., 2018, 26(6), 869-878.
[http://dx.doi.org/10.3727/096504017X15123838050075] [PMID: 29212574]
[43]
Tang, J.; Li, Y.; Sang, Y.; Yu, B.; Lv, D.; Zhang, W.; Feng, H. LncRNA PVT1 regulates triple-negative breast cancer through KLF5/beta-catenin signaling. Oncogene, 2018, 37(34), 4723-4734.
[http://dx.doi.org/10.1038/s41388-018-0310-4] [PMID: 29760406]
[44]
Li, T.; Liu, Y.; Xiao, H.; Xu, G. Long non-coding RNA TUG1 promotes cell proliferation and metastasis in human breast cancer. Breast Cancer, 2017, 24(4), 535-543.
[http://dx.doi.org/10.1007/s12282-016-0736-x] [PMID: 27848085]
[45]
Li, G.Y.; Wang, W.; Sun, J.Y.; Xin, B.; Zhang, X.; Wang, T.; Zhang, Q.F.; Yao, L.B.; Han, H.; Fan, D.M.; Yang, A.G.; Jia, L.T.; Wang, L. Long non-coding RNAs AC026904.1 and UCA1: A “one-two punch” for TGF-β-induced SNAI2 activation and epithelial-mesenchymal transition in breast cancer. Theranostics, 2018, 8(10), 2846-2861.
[http://dx.doi.org/10.7150/thno.23463] [PMID: 29774079]
[46]
Marx, S.J. Molecular genetics of multiple endocrine neoplasia types 1 and 2. Nat. Rev. Cancer, 2005, 5(5), 367-375.
[http://dx.doi.org/10.1038/nrc1610] [PMID: 15864278]
[47]
Marsh, D.J.; Gimm, O. Multiple endocrine neoplasia: Types 1 and 2. Adv. Otorhinolaryngol., 2011, 70, 84-90.
[http://dx.doi.org/10.1159/000322479] [PMID: 21358189]
[48]
Ji, P.; Diederichs, S.; Wang, W.; Böing, S.; Metzger, R.; Schneider, P.M.; Tidow, N.; Brandt, B.; Buerger, H.; Bulk, E.; Thomas, M.; Berdel, W.E.; Serve, H.; Tidow, M.C. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 2003, 22(39), 8031-8041.
[http://dx.doi.org/10.1038/sj.onc.1206928] [PMID: 12970751]
[49]
Hutchinson, J.N.; Ensminger, A.W.; Clemson, C.M.; Lynch, C.R.; Lawrence, J.B.; Chess, A. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics, 2007, 8(1), 39.
[http://dx.doi.org/10.1186/1471-2164-8-39] [PMID: 17270048]
[50]
Faber, G.P.; Eliyahu, N.S.; Tal, S.Y. Nuclear speckles – A driving force in gene expression. J. Cell Sci., 2022, 135(13), jcs259594.
[http://dx.doi.org/10.1242/jcs.259594] [PMID: 35788677]
[51]
Ulitsky, I.; Shkumatava, A.; Jan, C.H.; Sive, H.; Bartel, D.P. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell, 2011, 147(7), 1537-1550.
[http://dx.doi.org/10.1016/j.cell.2011.11.055] [PMID: 22196729]
[52]
Wilusz, J.E.; JnBaptiste, C.K.; Lu, L.Y.; Kuhn, C.D.; Tor, J.L.; Sharp, P.A. A triple helix stabilizes the 3′ ends of long noncoding RNAs that lack poly(A) tails. Genes Dev., 2012, 26(21), 2392-2407.
[http://dx.doi.org/10.1101/gad.204438.112] [PMID: 23073843]
[53]
Brown, J.A.; Valenstein, M.L.; Yario, T.A.; Tycowski, K.T.; Steitz, J.A. Formation of triple-helical structures by the 3′-end sequences of MALAT1 and MENβ noncoding RNAs. Proc. Natl. Acad. Sci., 2012, 109(47), 19202-19207.
[http://dx.doi.org/10.1073/pnas.1217338109] [PMID: 23129630]
[54]
Brown, J.A.; Bulkley, D.; Wang, J.; Valenstein, M.L.; Yario, T.A.; Steitz, T.A.; Steitz, J.A. Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat. Struct. Mol. Biol., 2014, 21(7), 633-640.
[http://dx.doi.org/10.1038/nsmb.2844] [PMID: 24952594]
[55]
Tani, H.; Mizutani, R.; Salam, K.A.; Tano, K.; Ijiri, K.; Wakamatsu, A.; Isogai, T.; Suzuki, Y.; Akimitsu, N. Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res., 2012, 22(5), 947-956.
[http://dx.doi.org/10.1101/gr.130559.111] [PMID: 22369889]
[56]
Tani, H.; Nakamura, Y.; Ijiri, K.; Akimitsu, N. Stability of MALAT-1, a nuclear long non-coding RNA in mammalian cells, varies in various cancer cells. Drug Discov. Ther., 2010, 4(4), 235-239.
[PMID: 22491206]
[57]
Simon, M.D.; Wang, C.I.; Kharchenko, P.V.; West, J.A.; Chapman, B.A.; Alekseyenko, A.A.; Borowsky, M.L.; Kuroda, M.I.; Kingston, R.E. The genomic binding sites of a noncoding RNA. Proc. Natl. Acad. Sci. USA, 2011, 108(51), 20497-20502.
[http://dx.doi.org/10.1073/pnas.1113536108] [PMID: 22143764]
[58]
Geng, X.; Zou, Y.; Li, S.; Qi, R.; Yu, H.; Li, J. MALAT1 Mediates α-Synuclein Expression through miR-23b-3p to Induce Autophagic Impairment and the Inflammatory Response in Microglia to Promote Apoptosis in Dopaminergic Neuronal Cells. Mediators Inflamm., 2023, 2023, 1-17.
[http://dx.doi.org/10.1155/2023/4477492] [PMID: 37064502]
[59]
Zhang, Y.; Gao, L.; Ma, S.; Ma, J.; Wang, Y.; Li, S.; Hu, X.; Han, S.; Zhou, M.; Zhou, L.; Ding, Z. MALAT1-KTN1-EGFR regulatory axis promotes the development of cutaneous squamous cell carcinoma. Cell Death Differ., 2019, 26(10), 2061-2073.
[http://dx.doi.org/10.1038/s41418-019-0288-7] [PMID: 30683916]
[60]
Stone, J.K.; Kim, J.H.; Vukadin, L.; Richard, A.; Giannini, H.K.; Lim, S.T.S.; Tan, M.; Ahn, E.Y.E. Hypoxia induces cancer cell-specific chromatin interactions and increases MALAT1 expression in breast cancer cells. J. Biol. Chem., 2019, 294(29), 11213-11224.
[http://dx.doi.org/10.1074/jbc.RA118.006889] [PMID: 31167784]
[61]
Zhou, J.; Wang, M.; Mao, A.; Zhao, Y.; Wang, L.; Xu, Y.; Jia, H.; Wang, L. Long noncoding RNA MALAT1 sponging miR-26a-5p to modulate Smad1 contributes to colorectal cancer progression by regulating autophagy. Carcinogenesis, 2021, 42(11), 1370-1379.
[http://dx.doi.org/10.1093/carcin/bgab069] [PMID: 34313719]
[62]
Bamodu, O.A.; Huang, W.C.; Lee, W.H.; Wu, A.; Wang, L.S.; Hsiao, M.; Yeh, C.T.; Chao, T.Y. Aberrant KDM5B expression promotes aggressive breast cancer through MALAT1 overexpression and downregulation of hsa-miR-448. BMC Cancer, 2016, 16(1), 160.
[http://dx.doi.org/10.1186/s12885-016-2108-5] [PMID: 26917489]
[63]
Li, X. lncRNA MALAT1 promotes diabetic retinopathy by upregulating PDE6G via miR-378a-3p. Arch. Physiol. Biochem., 2021, 130(2), 119-127.
[PMID: 34674599]
[64]
Xie, J.J.; Li, W.H.; Li, X.; Ye, W.; Shao, C.F. LncRNA MALAT1 promotes colorectal cancer development by sponging miR-363-3p to regulate EZH2 expression. J. Biol. Regul. Homeost. Agents, 2019, 33(2), 331-343.
[PMID: 30972996]
[65]
Xu, W.W.; Jin, J.; Wu, X.; Ren, Q.L.; Farzaneh, M. MALAT1-related signaling pathways in colorectal cancer. Cancer Cell Int., 2022, 22(1), 126.
[http://dx.doi.org/10.1186/s12935-022-02540-y] [PMID: 35305641]
[66]
Jiang, X.; Li, D.; Wang, G.; Liu, J.; Su, X.; Yu, W.; Wang, Y.; Zhai, C.; Liu, Y.; Zhao, Z. Thapsigargin promotes colorectal cancer cell migration through upregulation of lncRNA MALAT1. Oncol. Rep., 2020, 43(4), 1245-1255.
[http://dx.doi.org/10.3892/or.2020.7502] [PMID: 32323831]
[67]
Ferri, C.; Di Biase, A.; Bocchetti, M.; Zappavigna, S.; Wagner, S.; Le Vu, P. MiR-423-5p prevents MALAT1-mediated proliferation and metastasis in prostate cancer. J. Experimental Clinical Cancer Res. CR , 2022, 41(1), 20.
[68]
Hao, L.; Wu, W.; Xu, Y.; Chen, Y.; Meng, C.; Yun, J.; Wang, X. LncRNA-MALAT1: A Key Participant in the Occurrence and Development of Cancer. Molecules, 2023, 28(5), 2126.
[http://dx.doi.org/10.3390/molecules28052126] [PMID: 36903369]
[69]
Hussain, M.S.; Altamimi, A.S.A.; Afzal, M.; almalki, W.H.; Kazmi, I.; Alzarea, S.I.; Saleem, S.; Prasher, P.; Oliver, B.; Singh, S.K.; MacLoughlin, R.; Dua, K.; Gupta, G. From carcinogenesis to therapeutic avenues: lncRNAs and mTOR crosstalk in lung cancer. Pathol. Res. Pract., 2024, 253, 155015.
[http://dx.doi.org/10.1016/j.prp.2023.155015] [PMID: 38103364]
[70]
Song, Z.; Wang, X.; Chen, F.; Chen, Q.; Liu, W.; Yang, X.; Zhu, X.; Liu, X.; Wang, P. LncRNA MALAT1 regulates METTL3-mediated PD-L1 expression and immune infiltrates in pancreatic cancer. Front. Oncol., 2022, 12, 1004212.
[http://dx.doi.org/10.3389/fonc.2022.1004212] [PMID: 36212476]
[71]
Tee, A.E.; Ling, D.; Nelson, C.; Atmadibrata, B.; Dinger, M.E.; Xu, N.; Mizukami, T.; Liu, P.Y.; Liu, B.; Cheung, B.; Pasquier, E.; Haber, M.; Norris, M.D.; Suzuki, T.; Marshall, G.M.; Liu, T. The histone demethylase JMJD1A induces cell migration and invasion by up-regulating the expression of the long noncoding RNA MALAT1. Oncotarget, 2014, 5(7), 1793-1804.
[http://dx.doi.org/10.18632/oncotarget.1785] [PMID: 24742640]
[72]
Yao, Y.; Fan, Y.; Wu, J.; Wan, H.; Wang, J.; Lam, S.; Lam, W.L.; Girard, L.; Gazdar, A.F.; Wu, Z.; Zhou, Q. Potential application of non-small cell lung cancer-associated autoantibodies to early cancer diagnosis. Biochem. Biophys. Res. Commun., 2012, 423(3), 613-619.
[http://dx.doi.org/10.1016/j.bbrc.2012.06.050] [PMID: 22713465]
[73]
Zhao, Z.; Chen, C.; Liu, Y.; Wu, C. 17β-Estradiol treatment inhibits breast cell proliferation, migration and invasion by decreasing MALAT-1 RNA level. Biochem. Biophys. Res. Commun., 2014, 445(2), 388-393.
[http://dx.doi.org/10.1016/j.bbrc.2014.02.006] [PMID: 24525122]
[74]
Jiang, Y.; Li, Y.; Fang, S.; Jiang, B.; Qin, C.; Xie, P.; Zhou, G.; Li, G. The role of MALAT1 correlates with HPV in cervical cancer. Oncol. Lett., 2014, 7(6), 2135-2141.
[http://dx.doi.org/10.3892/ol.2014.1996] [PMID: 24932303]
[75]
Guo, F.; Li, Y.; Liu, Y.; Wang, J.; Li, Y.; Li, G. Inhibition of metastasis-associated lung adenocarcinoma transcript 1 in CaSki human cervical cancer cells suppresses cell proliferation and invasion. Acta Biochim. Biophys. Sin., 2010, 42(3), 224-229.
[http://dx.doi.org/10.1093/abbs/gmq008] [PMID: 20213048]
[76]
Kan, J.Y.; Wu, D.C.; Yu, F.J.; Wu, C.Y.; Ho, Y.W.; Chiu, Y.J.; Jian, S.F.; Hung, J.Y.; Wang, J.Y.; Kuo, P.L. Chemokine (C-C Motif) Ligand 5 is Involved in Tumor-Associated Dendritic Cell- Mediated Colon Cancer Progression Through Non-Coding RNA MALAT-1. J. Cell. Physiol., 2015, 230(8), 1883-1894.
[http://dx.doi.org/10.1002/jcp.24918] [PMID: 25546229]
[77]
Zheng, H.T.; Shi, D.B.; Wang, Y.W.; Li, X.X.; Xu, Y.; Tripathi, P.; Gu, W.L.; Cai, G.X.; Cai, S.J. High expression of lncRNA MALAT1 suggests a biomarker of poor prognosis in colorectal cancer. Int. J. Clin. Exp. Pathol., 2014, 7(6), 3174-3181.
[PMID: 25031737]
[78]
Ji, Q.; Zhang, L.; Liu, X.; Zhou, L.; Wang, W.; Han, Z.; Sui, H.; Tang, Y.; Wang, Y.; Liu, N.; Ren, J.; Hou, F.; Li, Q. Long non-coding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to SFPQ and releasing oncogene PTBP2 from SFPQ/PTBP2 complex. Br. J. Cancer, 2014, 111(4), 736-748.
[http://dx.doi.org/10.1038/bjc.2014.383] [PMID: 25025966]
[79]
Ji, Q.; Liu, X.; Fu, X.; Zhang, L.; Sui, H.; Zhou, L.; Sun, J.; Cai, J.; Qin, J.; Ren, J.; Li, Q. Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/β- catenin signal pathway. PLoS One, 2013, 8(11), e78700.
[http://dx.doi.org/10.1371/journal.pone.0078700] [PMID: 24244343]
[80]
Zhao, Y.; Yang, Y.; Trovik, J.; Sun, K.; Zhou, L.; Jiang, P.; Lau, T.S.; Hoivik, E.A.; Salvesen, H.B.; Sun, H.; Wang, H. A novel wnt regulatory axis in endometrioid endometrial cancer. Cancer Res., 2014, 74(18), 5103-5117.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0427] [PMID: 25085246]
[81]
Kuo, I.Y.; Wu, C.C.; Chang, J.M.; Huang, Y.L.; Lin, C.H.; Yan, J.J.; Sheu, B.S.; Lu, P.J.; Chang, W.L.; Lai, W.W.; Wang, Y.C. Low SOX17 expression is a prognostic factor and drives transcriptional dysregulation and esophageal cancer progression. Int. J. Cancer, 2014, 135(3), 563-573.
[http://dx.doi.org/10.1002/ijc.28695] [PMID: 24407731]
[82]
Wang, X.; Li, M.; Wang, Z.; Han, S.; Tang, X.; Ge, Y.; Zhou, L.; Zhou, C.; Yuan, Q.; Yang, M. Silencing of long noncoding RNA MALAT1 by miR-101 and miR-217 inhibits proliferation, migration, and invasion of esophageal squamous cell carcinoma cells. J. Biol. Chem., 2015, 290(7), 3925-3935.
[http://dx.doi.org/10.1074/jbc.M114.596866] [PMID: 25538231]
[83]
Koshimizu, T.; Fujiwara, Y.; Sakai, N.; Shibata, K.; Tsuchiya, H. Oxytocin stimulates expression of a noncoding RNA tumor marker in a human neuroblastoma cell line. Life Sci., 2010, 86(11-12), 455-460.
[http://dx.doi.org/10.1016/j.lfs.2010.02.001] [PMID: 20149803]
[84]
Fang, D.; Yang, H.; Lin, J.; Teng, Y.; Jiang, Y.; Chen, J.; Li, Y. 17β-Estradiol regulates cell proliferation, colony formation, migration, invasion and promotes apoptosis by upregulating miR-9 and thus degrades MALAT-1 in osteosarcoma cell MG-63 in an estrogen receptor-independent manner. Biochem. Biophys. Res. Commun., 2015, 457(4), 500-506.
[http://dx.doi.org/10.1016/j.bbrc.2014.12.114] [PMID: 25592968]
[85]
Taniguchi, M.; Fujiwara, K.; Nakai, Y.; Ozaki, T.; Koshikawa, N.; Toshio, K.; Kataba, M.; Oguni, A.; Matsuda, H.; Yoshida, Y.; Tokuhashi, Y.; Fukuda, N.; Ueno, T.; Soma, M.; Nagase, H. Inhibition of malignant phenotypes of human osteosarcoma cells by a gene silencer, a pyrrole–imidazole polyamide, which targets an E-box motif. FEBS Open Bio, 2014, 4(1), 328-334.
[http://dx.doi.org/10.1016/j.fob.2014.03.004] [PMID: 24918046]
[86]
Ren, S.; Liu, Y.; Xu, W.; Sun, Y.; Lu, J.; Wang, F.; Wei, M.; Shen, J.; Hou, J.; Gao, X.; Xu, C.; Huang, J.; Zhao, Y.; Sun, Y. Long noncoding RNA MALAT-1 is a new potential therapeutic target for castration resistant prostate cancer. J. Urol., 2013, 190(6), 2278-2287.
[http://dx.doi.org/10.1016/j.juro.2013.07.001] [PMID: 23845456]
[87]
Sowalsky, A.G.; Xia, Z.; Wang, L.; Zhao, H.; Chen, S.; Bubley, G.J.; Balk, S.P.; Li, W. Whole transcriptome sequencing reveals extensive unspliced mRNA in metastatic castration-resistant prostate cancer. Mol. Cancer Res., 2015, 13(1), 98-106.
[http://dx.doi.org/10.1158/1541-7786.MCR-14-0273] [PMID: 25189356]
[88]
Hirata, H.; Hinoda, Y.; Shahryari, V.; Deng, G.; Nakajima, K.; Tabatabai, Z.L.; Ishii, N.; Dahiya, R. Long Noncoding RNA MALAT1 Promotes Aggressive Renal Cell Carcinoma through Ezh2 and Interacts with miR-205. Cancer Res., 2015, 75(7), 1322-1331.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2931] [PMID: 25600645]
[89]
Latorre, E.; Carelli, S.; Raimondi, I.; D’Agostino, V.; Castiglioni, I.; Zucal, C.; Moro, G.; Luciani, A.; Ghilardi, G.; Monti, E.; Inga, A.; Di Giulio, A.M.; Gorio, A.; Provenzani, A. The Ribonucleic Complex HuR-MALAT1 Represses CD133 Expression and Suppresses Epithelial–Mesenchymal Transition in Breast Cancer. Cancer Res., 2016, 76(9), 2626-2636.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2018] [PMID: 27197265]
[90]
Tufail, M. The MALAT1-breast cancer interplay: Insights and implications. Expert Rev. Mol. Diagn., 2023, 23(8), 665-678.
[http://dx.doi.org/10.1080/14737159.2023.2233902] [PMID: 37405385]
[91]
Yue, X.; Wu, W.; Dong, M.; Guo, M. LncRNA MALAT1 promotes breast cancer progression and doxorubicin resistance via regulating miR-570–3p. Biomed. J., 2021, 44(6), S296-S304.
[http://dx.doi.org/10.1016/j.bj.2020.11.002] [PMID: 35410813]
[92]
Chou, J.; Wang, B.; Zheng, T.; Li, X.; Zheng, L.; Hu, J.; Zhang, Y.; Xing, Y.; Xi, T. MALAT1 induced migration and invasion of human breast cancer cells by competitively binding miR-1 with cdc42. Biochem. Biophys. Res. Commun., 2016, 472(1), 262-269.
[http://dx.doi.org/10.1016/j.bbrc.2016.02.102] [PMID: 26926567]
[93]
Kim, J.; Piao, H.L.; Kim, B.J.; Yao, F.; Han, Z.; Wang, Y.; Xiao, Z.; Siverly, A.N.; Lawhon, S.E.; Ton, B.N.; Lee, H.; Zhou, Z.; Gan, B.; Nakagawa, S.; Ellis, M.J.; Liang, H.; Hung, M.C.; You, M.J.; Sun, Y.; Ma, L. Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Nat. Genet., 2018, 50(12), 1705-1715.
[http://dx.doi.org/10.1038/s41588-018-0252-3] [PMID: 30349115]
[94]
Shao, J.; Zhang, Q.; Wang, P.; Wang, Z. LncRNA MALAT1 promotes breast cancer progression by sponging miR101-3p to mediate mTOR/PKM2 signal transmission. Am. J. Transl. Res., 2021, 13(9), 10262-10275.
[PMID: 34650695]
[95]
Dolatabadi, F.N.; Dehghani, A.; Shahand, E.; Yazdanshenas, M.; Tabatabaeian, H.; Zamani, A.; Azadeh, M.; Ghaedi, K. The interaction between MALAT1 target, miR-143-3p, and RALGAPA2 is affected by functional SNP rs3827693 in breast cancer. Hum. Cell, 2020, 33(4), 1229-1239.
[http://dx.doi.org/10.1007/s13577-020-00422-x] [PMID: 32880825]
[96]
Klopotowska, D.; Matuszyk, J. Downregulation of MALAT1 in triple-negative breast cancer cells. Biochem. Biophys. Rep., 2024, 37, 101592.
[http://dx.doi.org/10.1016/j.bbrep.2023.101592] [PMID: 38088951]
[97]
Yu, J.; Jin, T.; Zhang, T. Suppression of Long Non-Coding RNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1) Potentiates Cell Apoptosis and Drug Sensitivity to Taxanes and Adriamycin in Breast Cancer. Med. Sci. Monit., 2020, 26, e922672.
[http://dx.doi.org/10.12659/MSM.922672] [PMID: 32623440]
[98]
Tsyganov, M.M.; Ibragimova, M.K. MALAT1 Long Non-coding RNA and Its Role in Breast Carcinogenesis. Acta Nat., 2023, 15(2), 32-41.
[PMID: 37538803]
[99]
Jadaliha, M.; Zong, X.; Malakar, P.; Ray, T.; Singh, D.K.; Freier, S.M.; Jensen, T.; Prasanth, S.G.; Karni, R.; Ray, P.S.; Prasanth, K.V. Functional and prognostic significance of long non-coding RNA MALAT1 as a metastasis driver in ER negative lymph node negative breast cancer. Oncotarget, 2016, 7(26), 40418-40436.
[http://dx.doi.org/10.18632/oncotarget.9622] [PMID: 27250026]
[100]
Zheng, L.; Zhang, Y.; Fu, Y.; Gong, H.; Guo, J.; Wu, K.; Jia, Q.; Ding, X. Long non-coding RNA MALAT1 regulates BLCAP mRNA expression through binding to miR-339-5p and promotes poor prognosis in breast cancer. Biosci. Rep., 2019, 39(2), BSR20181284.
[http://dx.doi.org/10.1042/BSR20181284] [PMID: 30683807]
[101]
Goyal, B.; Yadav, S.R.M.; Awasthee, N.; Gupta, S.; Kunnumakkara, A.B.; Gupta, S.C. Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim. Biophys. Acta Rev. Cancer, 2021, 1875(2), 188502.
[http://dx.doi.org/10.1016/j.bbcan.2021.188502] [PMID: 33428963]
[102]
Li, J.; Cui, Z.; Li, H.; Lv, X.; Gao, M.; Yang, Z.; Bi, Y.; Zhang, Z.; Wang, S.; Zhou, B.; Yin, Z. Clinicopathological and prognostic significance of long noncoding RNA MALAT1 in human cancers: A review and meta-analysis. Cancer Cell Int., 2018, 18(1), 109.
[http://dx.doi.org/10.1186/s12935-018-0606-z] [PMID: 30093838]
[103]
Lin, Q.; Guan, W.; Ren, W.; Zhang, L.; Zhang, J.; Xu, G. MALAT1 affects ovarian cancer cell behavior and patient survival. Oncol. Rep., 2018, 39(6), 2644-2652.
[http://dx.doi.org/10.3892/or.2018.6384] [PMID: 29693187]
[104]
Huo, Y.; Li, Q.; Wang, X.; Jiao, X.; Zheng, J.; Li, Z.; Pan, X. MALAT1 predicts poor survival in osteosarcoma patients and promotes cell metastasis through associating with EZH2. Oncotarget, 2017, 8(29), 46993-47006.
[http://dx.doi.org/10.18632/oncotarget.16551] [PMID: 28388584]
[105]
Zhao, H.; Wang, Y.; Hou, W.; Ding, X.; Wang, W. Long non-coding RNA MALAT1 promotes cell proliferation, migration and invasion by targeting miR-590-3p in osteosarcoma. Exp. Ther. Med., 2022, 24(5), 672.
[http://dx.doi.org/10.3892/etm.2022.11608] [PMID: 36277152]
[106]
Miao, Y.; Fan, R.; Chen, L.; Qian, H. Clinical Significance of Long Non-coding RNA MALAT1 Expression in Tissue and Serum of Breast Cancer. Ann. Clin. Lab. Sci., 2016, 46(4), 418-424.
[PMID: 27466303]
[107]
Baloutaki, A.S.; Doosti, A.; Jaafarinia; Goudarzi, H. Editing of the MALAT1 Gene in MDA-MB-361 Breast Cancer Cell Line using the Novel CRISPR Method. Journal of ilam university of medical sciences, 2022, 30(2), 18-31.
[http://dx.doi.org/10.52547/sjimu.30.2.18]
[108]
Huang, Y.; Zhou, Z.; Zhang, J.; Hao, Z.; He, Y.; Wu, Z.; Song, Y.; Yuan, K.; Zheng, S.; Zhao, Q.; Li, T.; Wang, B. lncRNA MALAT1 participates in metformin inhibiting the proliferation of breast cancer cell. J. Cell. Mol. Med., 2021, 25(15), 7135-7145.
[http://dx.doi.org/10.1111/jcmm.16742] [PMID: 34164906]
[109]
Xie, H.; Liao, X.; Chen, Z.; Fang, Y.; He, A.; Zhong, Y.; Gao, Q.; Xiao, H.; Li, J.; Huang, W.; Liu, Y. LncRNA MALAT1 Inhibits Apoptosis and Promotes Invasion by Antagonizing miR-125b in Bladder Cancer Cells. J. Cancer, 2017, 8(18), 3803-3811.
[http://dx.doi.org/10.7150/jca.21228] [PMID: 29151968]
[110]
Sun, Z.; Ou, C.; Liu, J.; Chen, C.; Zhou, Q.; Yang, S.; Li, G.; Wang, G.; Song, J.; Li, Z.; Zhang, Z.; Yuan, W.; Li, X. RETRACTED ARTICLE: YAP1-induced MALAT1 promotes epithelial–mesenchymal transition and angiogenesis by sponging miR-126-5p in colorectal cancer. Oncogene, 2019, 38(14), 2627-2644.
[http://dx.doi.org/10.1038/s41388-018-0628-y] [PMID: 30531836]
[111]
Lu, X.; Chen, D.; Yang, F.; Xing, N. Quercetin Inhibits Epithelial-to-Mesenchymal Transition (EMT) Process and Promotes Apoptosis in Prostate Cancer via Downregulating lncRNA MALAT1. Cancer Manag. Res., 2020, 12, 1741-1750.
[http://dx.doi.org/10.2147/CMAR.S241093] [PMID: 32210615]
[112]
Chen, M.; Xia, Z.; Chen, C.; Hu, W.; Yuan, Y. LncRNA MALAT1 promotes epithelial-to-mesenchymal transition of esophageal cancer through Ezh2-Notch1 signaling pathway. Anticancer Drugs, 2018, 29(8), 767-773.
[http://dx.doi.org/10.1097/CAD.0000000000000645] [PMID: 29916899]
[113]
Shen, L.; Chen, L.; Wang, Y.; Jiang, X.; Xia, H.; Zhuang, Z. Long noncoding RNA MALAT1 promotes brain metastasis by inducing epithelial-mesenchymal transition in lung cancer. J. Neurooncol., 2015, 121(1), 101-108.
[http://dx.doi.org/10.1007/s11060-014-1613-0] [PMID: 25217850]
[114]
Zhao, C.; Ling, X.; Xia, Y.; Yan, B.; Guan, Q. The m6A methyltransferase METTL3 controls epithelial-mesenchymal transition, migration and invasion of breast cancer through the MALAT1/miR-26b/HMGA2 axis. Cancer Cell Int., 2021, 21(1), 441.
[http://dx.doi.org/10.1186/s12935-021-02113-5] [PMID: 34419065]
[115]
Wang, Y.; Zhou, Y.; Yang, Z.; Chen, B.; Huang, W.; Liu, Y.; Zhang, Y. MiR-204/ZEB2 axis functions as key mediator for MALAT1-induced epithelial–mesenchymal transition in breast cancer. Tumour Biol., 2017, 39(7), 1010428317690998.
[http://dx.doi.org/10.1177/1010428317690998] [PMID: 28675122]
[116]
Xu, S.; Sui, S.; Zhang, J.; Bai, N.; Shi, Q.; Zhang, G.; Gao, S.; You, Z.; Zhan, C.; Liu, F.; Pang, D. Downregulation of long noncoding RNA MALAT1 induces epithelial-to-mesenchymal transition via the PI3K-AKT pathway in breast cancer. Int. J. Clin. Exp. Pathol., 2015, 8(5), 4881-4891.
[PMID: 26191181]
[117]
Gupta, S.C.; Mo, Y.Y. Abstract 168: MALAT1 is crucial for epithelial-mesenchymal transition of breast cancer cells in acidic microenvironment. Cancer Res., 2015, 75(S15), 168.
[http://dx.doi.org/10.1158/1538-7445.AM2015-168]
[118]
Chen, B.; Luo, L.; Wei, X.; Gong, D.; Li, Z.; Li, S.; Tang, W.; Jin, L. M1 Bone Marrow-Derived Macrophage-Derived Extracellular Vesicles Inhibit Angiogenesis and Myocardial Regeneration Following Myocardial Infarction via the MALAT1/MicroRNA-25-3p/CDC42 Axis. Oxid. Med. Cell. Longev., 2021, 2021, 1-26.
[http://dx.doi.org/10.1155/2021/9959746] [PMID: 34745428]
[119]
Tao, S.; Bai, Z.; Liu, Y.; Gao, Y.; Zhou, J.; Zhang, Y.; Li, J. Exosomes Derived from Tumor Cells Initiate Breast Cancer Cell Metastasis and Chemoresistance through a MALAT1-Dependent Mechanism. J. Oncol., 2022, 2022, 1-16.
[http://dx.doi.org/10.1155/2022/5483523] [PMID: 35813865]
[120]
Li, J.; Heravi, M.F.; Wu, X.; He, K. Mechanism of METTL14 and m6A modification of lncRNA MALAT1 in the proliferation of oral squamous cell carcinoma cells. Oral Dis., 2023, 29(5), 2012-2026.
[http://dx.doi.org/10.1111/odi.14220] [PMID: 35467063]
[121]
Liu, J.; Shi, Y.; Wu, M.; Zhang, F.; Xu, M.; He, Z.; Tang, M. JAG1 enhances angiogenesis in triple-negative breast cancer through promoting the secretion of exosomal lncRNA MALAT1. Genes Dis., 2023, 10(5), 2167-2178.
[http://dx.doi.org/10.1016/j.gendis.2022.07.006] [PMID: 37492742]
[122]
Huang, X.J.; Xia, Y.; He, G.F.; Zheng, L.L.; Cai, Y.P.; Yin, Y.; Wu, Q. MALAT1 promotes angiogenesis of breast cancer. Oncol. Rep., 2018, 40(5), 2683-2689.
[PMID: 30226550]
[123]
Geng, Q.; Xian, R.; Yu, Y.; Chen, F.; Li, R. SHP-1 acts as a tumor suppressor by interacting with EGFR and predicts the prognosis of human breast cancer. Cancer Biol. Med., 2021, 19(4), 468-485.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0501] [PMID: 34591414]
[124]
Toraih, E.A.; Wazir, E.A.; Ageeli, E.A.; Hussein, M.H.; Eltoukhy, M.M.; Killackey, M.T.; Kandil, E.; Fawzy, M.S. Unleash multifunctional role of long noncoding RNAs biomarker panel in breast cancer: A predictor classification model. Epigenomics, 2020, 12(14), 1215-1237.
[http://dx.doi.org/10.2217/epi-2019-0291] [PMID: 32812439]
[125]
Qin, Y.; Peng, F.; Ai, L.; Mu, S.; Li, Y.; Yang, C.; Hu, Y. Tumor-infiltrating B cells as a favorable prognostic biomarker in breast cancer: A systematic review and meta-analysis. Cancer Cell Int., 2021, 21(1), 310.
[http://dx.doi.org/10.1186/s12935-021-02004-9] [PMID: 34118931]
[126]
Berger, K.; Rhost, S.; Rafnsdóttir, S.; Hughes, É.; Magnusson, Y.; Ekholm, M.; Stål, O.; Rydén, L.; Landberg, G. Tumor co-expression of progranulin and sortilin as a prognostic biomarker in breast cancer. BMC Cancer, 2021, 21(1), 185.
[http://dx.doi.org/10.1186/s12885-021-07854-0] [PMID: 33618683]
[127]
Blockhuys, S.; Brady, D.C.; Stafshede, W.P. Evaluation of copper chaperone ATOX1 as prognostic biomarker in breast cancer. Breast Cancer, 2020, 27(3), 505-509.
[http://dx.doi.org/10.1007/s12282-019-01044-4] [PMID: 31898157]
[128]
Pickl, J.M.A.; Heckmann, D.; Ratz, L.; Klauck, S.M.; Sültmann, H. Novel RNA markers in prostate cancer: Functional considerations and clinical translation. BioMed Res. Int., 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/765207] [PMID: 25250334]
[129]
Chen, B.; Dragomir, M.P.; Yang, C.; Li, Q.; Horst, D.; Calin, G.A. Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct. Target. Ther., 2022, 7(1), 121.
[http://dx.doi.org/10.1038/s41392-022-00975-3] [PMID: 35418578]
[130]
Dashtaki, M.E.; Ghasemi, S. Anti-angiogenic Drug Resistance: Roles and Targeting of Non-coding RNAs (microRNAs and long non-coding RNAs). Curr. Mol. Pharmacol., 2023, 16(8), 855-869.
[PMID: 36475334]
[131]
Hussain, MS; Mohit, GK; Deb, A; Kataria, T Mini-review on personalized medicine: A revolution in health care. Precision Medicine Research, 2021, 3(4), 1-3.
[132]
Sharma, RK; Calderon, C; Mejia, V.PE Targeting Non-coding RNA for Glioblastoma Therapy: The Challenge of Overcomes the Blood-Brain Barrier. Frontiers in medical technology, 2021, 3, 678593.
[133]
Liao, Y.; Wu, X.; Wu, M.; Fang, Y.; Li, J.; Tang, W. Non-coding RNAs in lung cancer: Emerging regulators of angiogenesis. J. Transl. Med., 2022, 20(1), 349.
[http://dx.doi.org/10.1186/s12967-022-03553-x] [PMID: 35918758]
[134]
Shih, C.H.; Chuang, L.L.; Tsai, M.H.; Chen, L.H.; Chuang, E.Y.; Lu, T.P.; Lai, L.C. Hypoxia-Induced MALAT1 Promotes the Proliferation and Migration of Breast Cancer Cells by Sponging MiR-3064-5p. Front. Oncol., 2021, 11, 658151.
[http://dx.doi.org/10.3389/fonc.2021.658151] [PMID: 34012919]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy