Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Mini-Review Article

Bioinformatics Approaches in the Development of Antifungal Therapeutics and Vaccines

Author(s): Vaishali Ahlawat, Kiran Sura, Bharat Singh, Mehak Dangi* and Anil Kumar Chhillar*

Volume 25, Issue 5, 2024

Published on: 16 May, 2024

Page: [323 - 333] Pages: 11

DOI: 10.2174/0113892029281602240422052210

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Fungal infections are considered a great threat to human life and are associated with high mortality and morbidity, especially in immunocompromised individuals. Fungal pathogens employ various defense mechanisms to evade the host immune system, which causes severe infections. The available repertoire of drugs for the treatment of fungal infections includes azoles, allylamines, polyenes, echinocandins, and antimetabolites. However, the development of multidrug and pandrug resistance to available antimycotic drugs increases the need to develop better treatment approaches. In this new era of -omics, bioinformatics has expanded options for treating fungal infections. This review emphasizes how bioinformatics complements the emerging strategies, including advancements in drug delivery systems, combination therapies, drug repurposing, epitope- based vaccine design, RNA-based therapeutics, and the role of gut-microbiome interactions to combat anti-fungal resistance. In particular, we focused on computational methods that can be useful to obtain potent hits, and that too in a short period.

Keywords: Antifungal resistance, drug repurposing, reverse vaccinology, pharmacomicrobiomics, multidrug resistance, pandrug resistance.

Next »
Graphical Abstract
[1]
León-Buitimea, A.; Garza-Cervantes, J.A.; Gallegos-Alvarado, D.Y.; Osorio-Concepción, M.; Morones-Ramírez, J.R. Nanomaterial-based antifungal therapies to combat fungal diseases aspergillosis, Coccidioidomycosis, Mucormycosis, and candidiasis. Pathogens, 2021, 10(10), 1303.
[http://dx.doi.org/10.3390/pathogens10101303] [PMID: 34684252]
[2]
Heard, S.C.; Wu, G.; Winter, J.M. Antifungal natural products. Curr. Opin. Biotechnol., 2021, 69, 232-241.
[http://dx.doi.org/10.1016/j.copbio.2021.02.001] [PMID: 33640596]
[3]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[4]
Gintjee, T.J.; Donnelley, M.A.; Thompson, G.R., III Aspiring antifungals: review of current antifungal pipeline developments. J. Fungi, 2020, 6(1), 28.
[http://dx.doi.org/10.3390/jof6010028] [PMID: 32106450]
[5]
Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science, 2018, 360(6390), 739-742.
[http://dx.doi.org/10.1126/science.aap7999] [PMID: 29773744]
[6]
Hernández-Chávez, M.; Pérez-García, L.; Niño-Vega, G.; Mora-Montes, H. Fungal strategies to evade the host immune recognition. J. Fungi, 2017, 3(4), 51.
[http://dx.doi.org/10.3390/jof3040051] [PMID: 29371567]
[7]
Marcos, C.M.; de Oliveira, H.C.; de Melo, W.C.M.A.; da Silva, J.F.; Assato, P.A.; Scorzoni, L.; Rossi, S.A.; de Paula e Silva, A.C.A.; Mendes-Giannini, M.J.S.; Fusco-Almeida, A.M. Anti-immune strategies of pathogenic fungi. Front. Cell. Infect. Microbiol., 2016, 6, 142.
[http://dx.doi.org/10.3389/fcimb.2016.00142] [PMID: 27896220]
[8]
Revie, N.M.; Iyer, K.R.; Robbins, N.; Cowen, L.E. Antifungal drug resistance: evolution, mechanisms and impact. Curr. Opin. Microbiol., 2018, 45, 70-76.
[http://dx.doi.org/10.1016/j.mib.2018.02.005] [PMID: 29547801]
[9]
Imchen, M.; Moopantakath, J.; Kumavath, R.; Barh, D.; Tiwari, S.; Ghosh, P.; Azevedo, V. Current trends in experimental and computational approaches to combat antimicrobial resistance. Front. Genet., 2020, 11, 563975.
[http://dx.doi.org/10.3389/fgene.2020.563975] [PMID: 33240317]
[10]
Yang, Y.L.; Xiang, Z.J.; Yang, J.H.; Wang, W.J.; Xu, Z.C.; Xiang, R.L. Adverse effects associated with currently commonly used antifungal agents: a network meta-analysis and systematic review. Front. Pharmacol., 2021, 12, 697330.
[http://dx.doi.org/10.3389/fphar.2021.697330] [PMID: 34776941]
[11]
Wall, G.; Lopez-Ribot, J.L. Current antimycotics, new prospects, and future approaches to antifungal therapy. Antibiotics, 2020, 9(8), 445.
[http://dx.doi.org/10.3390/antibiotics9080445] [PMID: 32722455]
[12]
Aqib, A.I.; Anjum, A.A.; Islam, M.A.; Murtaza, A.; Rehman, A. Recent global trends in vaccinology, advances and challenges. Vaccines, 2023, 11(3), 520.
[http://dx.doi.org/10.3390/vaccines11030520] [PMID: 36992104]
[13]
Heinson, A.I.; Woelk, C.H.; Newell, M.L. The promise of reverse vaccinology. Int. Health, 2015, 7(2), 85-89.
[http://dx.doi.org/10.1093/inthealth/ihv002] [PMID: 25733557]
[14]
Parvizpour, S.; Pourseif, M.M.; Razmara, J.; Rafi, M.A.; Omidi, Y. Epitope-based vaccine design: a comprehensive overview of bioinformatics approaches. Drug Discov. Today, 2020, 25(6), 1034-1042.
[http://dx.doi.org/10.1016/j.drudis.2020.03.006] [PMID: 32205198]
[15]
Ghannoum, M.A.; Rice, L.B. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev., 1999, 12(4), 501-517.
[http://dx.doi.org/10.1128/CMR.12.4.501] [PMID: 10515900]
[16]
Whaley, S.G.; Berkow, E.L.; Rybak, J.M.; Nishimoto, A.T.; Barker, K.S.; Rogers, P.D. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front. Microbiol., 2017, 7, 2173.
[http://dx.doi.org/10.3389/fmicb.2016.02173] [PMID: 28127295]
[17]
Carolus, H.; Pierson, S.; Lagrou, K.; Van Dijck, P. Amphotericin B and other polyenes—Discovery, clinical use, mode of action and drug resistance. J. Fungi, 2020, 6(4), 321.
[http://dx.doi.org/10.3390/jof6040321] [PMID: 33261213]
[18]
Viviani, M.A. Flucytosine—what is its future? J. Antimicrob. Chemother., 1995, 35(2), 241-244.
[http://dx.doi.org/10.1093/jac/35.2.241] [PMID: 7759388]
[19]
Mota Fernandes, C.; Dasilva, D.; Haranahalli, K.; McCarthy, J.B.; Mallamo, J.; Ojima, I.; Del Poeta, M. The future of antifungal drug therapy: novel compounds and targets. Antimicrob. Agents Chemother., 2021, 65(2), e01719-20.
[http://dx.doi.org/10.1128/AAC.01719-20] [PMID: 33229427]
[20]
Scorzoni, L.; de Paula e Silva, A.C.; Marcos, C.M.; Assato, P.A.; de Melo, W.C.; de Oliveira, H.C.; Costa-Orlandi, C.B; Mendes-Giannini, M.J.; Fusco-Almeida, A.M. Antifungal therapy: new advances in the understanding and treatment of mycosis. Front. Microbiol., 2017, 8, 242257.
[21]
Andriole, V.T. Current and future antifungal therapy: new targets for antifungal therapy. Int. J. Antimicrob. Agents, 2000, 16(3), 317-321.
[http://dx.doi.org/10.1016/S0924-8579(00)00258-2] [PMID: 11091055]
[22]
Jiang, Z.; Zhou, Y. Using gene networks to drug target identification. J. Integr. Bioinform., 2005, 2(1), 48-57.
[http://dx.doi.org/10.1515/jib-2005-14]
[23]
Zhang, X.; Wu, F.; Yang, N.; Zhan, X.; Liao, J.; Mai, S.; Huang, Z. In silico methods for identification of potential therapeutic targets. Interdiscip. Sci., 2022, 14(2), 285-310.
[http://dx.doi.org/10.1007/s12539-021-00491-y] [PMID: 34826045]
[24]
Paolini, G.V.; Shapland, R.H.; van Hoorn, W.P.; Mason, J.S.; Hopkins, A.L. Global mapping of pharmacological space. Nat. Biotechnol., 2006, 24(7), 805-815.
[http://dx.doi.org/10.1038/nbt1228] [PMID: 16841068]
[25]
Smoot, M.E.; Ono, K.; Ruscheinski, J.; Wang, P.L.; Ideker, T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 2011, 27(3), 431-432.
[http://dx.doi.org/10.1093/bioinformatics/btq675] [PMID: 21149340]
[26]
Bastian, M.; Heymann, S.; Jacomy, M. Gephi: an open source software for exploring and manipulating networks. Proceedings of the third international AAAI conference on web and social media, vol. 3, no. 1, pp. 361-362, Mar. 2009.
[http://dx.doi.org/10.1609/icwsm.v3i1.13937]
[27]
Mostafavi, S.; Ray, D.; Warde-Farley, D.; Grouios, C.; Morris, Q. GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol., 2008, 9(Suppl 1)(Suppl. 1), S4.
[http://dx.doi.org/10.1186/gb-2008-9-s1-s4] [PMID: 18613948]
[28]
Zhu, X.; Gerstein, M.; Snyder, M. Getting connected: analysis and principles of biological networks. Genes Dev., 2007, 21(9), 1010-1024.
[http://dx.doi.org/10.1101/gad.1528707] [PMID: 17473168]
[29]
Agamah, F.E.; Mazandu, G.K.; Hassan, R.; Bope, C.D.; Thomford, N.E.; Ghansah, A.; Chimusa, E.R. Computational/in silico methods in drug target and lead prediction. Brief. Bioinform., 2020, 21(5), 1663-1675.
[http://dx.doi.org/10.1093/bib/bbz103] [PMID: 31711157]
[30]
Robin, T.B.; Rani, N.A.; Ahmed, N.; Prome, A.A.; Bappy, M.N.I.; Ahmed, F. Identification of novel drug targets and screening potential drugs against Cryptococcus gattii: An in silico approach. Inform. Med. Unlocked, 2023, 38, 101222.
[http://dx.doi.org/10.1016/j.imu.2023.101222]
[31]
Ali, A.; Wakharde, A.; Karuppayil, S.M. Rrp9 as a potential novel antifungal target in candida albicans: Evidences from in silico studies. Med. Mycol. Open Access, 2017, 3(2), 1-5.
[http://dx.doi.org/10.21767/2471-8521.100026]
[32]
Gupta, R.; Rai, C.S. Identification of novel drug targets in pathogenic aspergillus fumigatus: An in Silico approach. Commun. Comput. Inf. Sci., 2020, 1229, 151-160.
[http://dx.doi.org/10.1007/978-981-15-5827-6_13]
[33]
Vandeputte, P.; Ferrari, S.; Coste, A.T. Antifungal resistance and new strategies to control fungal infections. Int. J. Microbiol., 2012, 2012, 1-26.
[http://dx.doi.org/10.1155/2012/713687] [PMID: 22187560]
[34]
Pradhan, D.; Biswasroy, P.; Goyal, A.; Ghosh, G.; Rath, G. Recent advancement in nanotechnology-based drug delivery system against viral infections. AAPS Pharm Sci Tech, 2021, 22(1), 47.
[http://dx.doi.org/10.1208/s12249-020-01908-5] [PMID: 33447909]
[35]
Sousa, F.; Ferreira, D.; Reis, S.; Costa, P. Current insights on antifungal therapy: Novel nanotechnology approaches for drug delivery systems and new drugs from natural sources. Pharmaceuticals, 2020, 13(9), 248.
[http://dx.doi.org/10.3390/ph13090248] [PMID: 32942693]
[36]
Pacheco, C.; Baião, A.; Ding, T.; Cui, W.; Sarmento, B. Recent advances in long-acting drug delivery systems for anticancer drug. Adv. Drug Deliv. Rev., 2023, 194, 114724.
[http://dx.doi.org/10.1016/j.addr.2023.114724] [PMID: 36746307]
[37]
Casalini, T. Not only in silico drug discovery: Molecular modeling towards in silico drug delivery formulations. J. Control. Release, 2021, 332, 390-417.
[http://dx.doi.org/10.1016/j.jconrel.2021.03.005] [PMID: 33675875]
[38]
Kontoyiannis, D.P.; Lewis, R.E. Toward more effective antifungal therapy: the prospects of combination therapy. Br. J. Haematol., 2004, 126(2), 165-175.
[http://dx.doi.org/10.1111/j.1365-2141.2004.05007.x] [PMID: 15238137]
[39]
Shaban, S.; Patel, M.; Ahmad, A. Improved efficacy of antifungal drugs in combination with monoterpene phenols against Candida auris. Sci. Rep., 2020, 10(1), 1162.
[http://dx.doi.org/10.1038/s41598-020-58203-3] [PMID: 31980703]
[40]
Campitelli, M.; Zeineddine, N.; Samaha, G.; Maslak, S. Combination antifungal therapy: a review of current data. J. Clin. Med. Res., 2017, 9(6), 451-456.
[http://dx.doi.org/10.14740/jocmr2992w] [PMID: 28496543]
[41]
Pippi, B.; Lana, A.J.D.; Moraes, R.C.; Güez, C.M.; Machado, M.; de Oliveira, L.F.S.; Lino von Poser, G.; Fuentefria, A.M. In vitro evaluation of the acquisition of resistance, antifungal activity and synergism of Brazilian red propolis with antifungal drugs on Candida spp. J. Appl. Microbiol., 2015, 118(4), 839-850.
[http://dx.doi.org/10.1111/jam.12746] [PMID: 25565139]
[42]
Wang, Y.; Yan, H.; Li, J.; Zhang, Y.; Wang, Z.; Sun, S. Antifungal activity and potential mechanism of action of caspofungin in combination with ribavirin against Candida albicans. Int. J. Antimicrob. Agents, 2023, 61(3), 106709.
[http://dx.doi.org/10.1016/j.ijantimicag.2023.106709] [PMID: 36640848]
[43]
Güvenç Paltun, B.; Kaski, S.; Mamitsuka, H. Machine learning approaches for drug combination therapies. Brief. Bioinform., 2021, 22(6), bbab293.
[http://dx.doi.org/10.1093/bib/bbab293] [PMID: 34368832]
[44]
Cheng, F.; Kovács, I.A.; Barabási, A.L. Network-based prediction of drug combinations. Nat. Commun., 2019, 10(1), 1197.
[http://dx.doi.org/10.1038/s41467-019-09186-x] [PMID: 30867426]
[45]
Pearson, R.A.; Wicha, S.G.; Okour, M. Drug combination modeling: methods and applications in drug development. J. Clin. Pharmacol., 2023, 63(2), 151-165.
[http://dx.doi.org/10.1002/jcph.2128] [PMID: 36088583]
[46]
Vakil, V.; Trappe, W. Drug combinations: mathematical modeling and networking methods. Pharmaceutics, 2019, 11(5), 208.
[http://dx.doi.org/10.3390/pharmaceutics11050208] [PMID: 31052580]
[47]
Abdel-Halim, H.; Hajar, M.; Hasouneh, L., Jnr; Abdelmalek, S.M.A. Identification of drug combination therapies for sars-cov-2: A molecular dynamics simulations approach. Drug Des. Devel. Ther., 2022, 16, 2995-3013.
[http://dx.doi.org/10.2147/DDDT.S366423] [PMID: 36110398]
[48]
Liu, Y.; Hu, B.; Fu, C.; Chen, X. DCDB: Drug combination database. Bioinformatics, 2010, 26(4), 587-588.
[http://dx.doi.org/10.1093/bioinformatics/btp697] [PMID: 20031966]
[49]
Niazi-Ali, S.; Atherton, G.T.; Walczak, M.; Denning, D.W. Drug– drug interaction database for safe prescribing of systemic antifungal agents. Ther. Adv. Infect. Dis., 2021, 8
[http://dx.doi.org/10.1177/20499361211010605] [PMID: 33996073]
[50]
Chen, X.; Ren, B.; Chen, M.; Liu, M.X.; Ren, W.; Wang, Q.X.; Zhang, L.X.; Yan, G.Y. ASDCD: antifungal synergistic drug combination database. PLoS One, 2014, 9(1), e86499.
[http://dx.doi.org/10.1371/journal.pone.0086499] [PMID: 24475134]
[51]
Zagidullin, B.; Aldahdooh, J.; Zheng, S.; Wang, W.; Wang, Y.; Saad, J.; Malyutina, A.; Jafari, M.; Tanoli, Z.; Pessia, A.; Tang, J. DrugComb: an integrative cancer drug combination data portal. Nucleic Acids Res., 2019, 47(W1), W43-W51.
[http://dx.doi.org/10.1093/nar/gkz337] [PMID: 31066443]
[52]
Di Veroli, G.Y.; Fornari, C.; Wang, D.; Mollard, S.; Bramhall, J.L.; Richards, F.M.; Jodrell, D.I. Combenefit: an interactive platform for the analysis and visualization of drug combinations. Bioinformatics, 2016, 32(18), 2866-2868.
[http://dx.doi.org/10.1093/bioinformatics/btw230] [PMID: 27153664]
[53]
Ianevski, A.; He, L.; Aittokallio, T.; Tang, J. SynergyFinder: a web application for analyzing drug combination dose–response matrix data. Bioinformatics, 2017, 33(15), 2413-2415.
[http://dx.doi.org/10.1093/bioinformatics/btx162] [PMID: 28379339]
[54]
Wooten, D.J.; Albert, R. Synergy: a Python library for calculating, analyzing and visualizing drug combination synergy. Bioinformatics, 2021, 37(10), 1473-1474.
[http://dx.doi.org/10.1093/bioinformatics/btaa826] [PMID: 32960970]
[55]
Ianevski, A.; Timonen, S.; Kononov, A.; Aittokallio, T.; Giri, A.K. SynToxProfiler: An interactive analysis of drug combination synergy, toxicity and efficacy. PLOS Comput. Biol., 2020, 16(2), e1007604.
[http://dx.doi.org/10.1371/journal.pcbi.1007604] [PMID: 32012154]
[56]
Mouchlis, V.D.; Afantitis, A.; Serra, A.; Fratello, M.; Papadiamantis, A.G.; Aidinis, V.; Lynch, I.; Greco, D.; Melagraki, G. Advances in de novo drug design: from conventional to machine learning methods. Int. J. Mol. Sci., 2021, 22(4), 1676.
[http://dx.doi.org/10.3390/ijms22041676] [PMID: 33562347]
[57]
Schmidt, T.; Bergner, A.; Schwede, T. Modelling three-dimensional protein structures for applications in drug design. Drug Discov. Today, 2014, 19(7), 890-897.
[http://dx.doi.org/10.1016/j.drudis.2013.10.027] [PMID: 24216321]
[58]
Jisna, V.A.; Jayaraj, P.B. Protein structure prediction: conventional and deep learning perspectives. Protein J., 2021, 40(4), 522-544.
[http://dx.doi.org/10.1007/s10930-021-10003-y] [PMID: 34050498]
[59]
Pinzi, L.; Rastelli, G. Molecular docking: shifting paradigms in drug discovery. Int. J. Mol. Sci., 2019, 20(18), 4331.
[http://dx.doi.org/10.3390/ijms20184331] [PMID: 31487867]
[60]
Pagadala, N.S.; Syed, K.; Tuszynski, J. Software for molecular docking: a review. Biophys. Rev., 2017, 9(2), 91-102.
[http://dx.doi.org/10.1007/s12551-016-0247-1] [PMID: 28510083]
[61]
Salo-Ahen, O.M.H.; Alanko, I.; Bhadane, R.; Bonvin, A.M.J.J.; Honorato, R.V.; Hossain, S.; Juffer, A.H.; Kabedev, A.; Lahtela-Kakkonen, M.; Larsen, A.S.; Lescrinier, E.; Marimuthu, P.; Mirza, M.U.; Mustafa, G.; Nunes-Alves, A.; Pantsar, T.; Saadabadi, A.; Singaravelu, K.; Vanmeert, M. Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes, 2020, 9(1), 71.
[http://dx.doi.org/10.3390/pr9010071]
[62]
Ou-Yang, S.; Lu, J.; Kong, X.; Liang, Z.; Luo, C.; Jiang, H. Computational drug discovery. Acta Pharmacol. Sin., 2012, 33(9), 1131-1140.
[http://dx.doi.org/10.1038/aps.2012.109] [PMID: 22922346]
[63]
Shim, J.; MacKerell, A.D., Jr Computational ligand-based rational design: role of conformational sampling and force fields in model development. MedChemComm, 2011, 2(5), 356-370.
[http://dx.doi.org/10.1039/c1md00044f] [PMID: 21716805]
[64]
Aparoy, P.; Kumar Reddy, K.; Reddanna, P. Structure and ligand based drug design strategies in the development of novel 5- LOX inhibitors. Curr. Med. Chem., 2012, 19(22), 3763-3778.
[http://dx.doi.org/10.2174/092986712801661112] [PMID: 22680930]
[65]
Gan, J.; Liu, J.; Liu, Y.; Chen, S.; Dai, W.; Xiao, Z.X.; Cao, Y. DrugRep: an automatic virtual screening server for drug repurposing. Acta Pharmacol. Sin., 2023, 44(4), 888-896.
[http://dx.doi.org/10.1038/s41401-022-00996-2] [PMID: 36216900]
[66]
Cha, Y.; Erez, T.; Reynolds, I.J.; Kumar, D.; Ross, J.; Koytiger, G.; Kusko, R.; Zeskind, B.; Risso, S.; Kagan, E.; Papapetropoulos, S.; Grossman, I.; Laifenfeld, D. Drug repurposing from the perspective of pharmaceutical companies. Br. J. Pharmacol., 2018, 175(2), 168-180.
[http://dx.doi.org/10.1111/bph.13798] [PMID: 28369768]
[67]
Zhang, Q.; Liu, F.; Zeng, M.; Mao, Y.; Song, Z. Drug repurposing strategies in the development of potential antifungal agents. Appl. Microbiol. Biotechnol., 2021, 105(13), 5259-5279.
[http://dx.doi.org/10.1007/s00253-021-11407-7] [PMID: 34151414]
[68]
Nour, E.M.; El-Habashy, S.E.; Shehat, M.G.; Essawy, M.M.; El-Moslemany, R.M.; Khalafallah, N.M. Atorvastatin liposomes in a 3D-printed polymer film: a repurposing approach for local treatment of oral candidiasis. Drug Deliv. Transl. Res., 2023, 13(11), 2847-2868.
[http://dx.doi.org/10.1007/s13346-023-01353-4] [PMID: 37184748]
[69]
Liu, Z.; Fang, H.; Reagan, K.; Xu, X.; Mendrick, D.L.; Slikker, W., Jr; Tong, W. In silico drug repositioning – what we need to know. Drug Discov. Today, 2013, 18(3-4), 110-115.
[http://dx.doi.org/10.1016/j.drudis.2012.08.005] [PMID: 22935104]
[70]
Parvathaneni, V.; Kulkarni, N.S.; Muth, A.; Gupta, V. Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov. Today, 2019, 24(10), 2076-2085.
[http://dx.doi.org/10.1016/j.drudis.2019.06.014] [PMID: 31238113]
[71]
Park, K. A review of computational drug repurposing. Transl. Clin. Pharmacol., 2019, 27(2), 59-63.
[http://dx.doi.org/10.12793/tcp.2019.27.2.59] [PMID: 32055582]
[72]
Cheng, F.; Lu, W.; Liu, C.; Fang, J.; Hou, Y.; Handy, D.E.; Wang, R.; Zhao, Y.; Yang, Y.; Huang, J.; Hill, D.E.; Vidal, M.; Eng, C.; Loscalzo, J. A genome-wide positioning systems network algorithm for in silico drug repurposing. Nat. Commun., 2019, 10(1), 3476.
[http://dx.doi.org/10.1038/s41467-019-10744-6] [PMID: 31375661]
[73]
Weersma, R.K.; Zhernakova, A.; Fu, J. Interaction between drugs and the gut microbiome. Gut, 2020, 69(8), 1510-1519.
[http://dx.doi.org/10.1136/gutjnl-2019-320204] [PMID: 32409589]
[74]
McCoubrey, L.E.; Elbadawi, M.; Orlu, M.; Gaisford, S.; Basit, A.W. Harnessing machine learning for development of microbiome therapeutics. Gut Microbes, 2021, 13(1), 1872323.
[http://dx.doi.org/10.1080/19490976.2021.1872323] [PMID: 33522391]
[75]
Gilbert, J.A. Our unique microbial identity. Genome Biol., 2015, 16(1), 97.
[http://dx.doi.org/10.1186/s13059-015-0664-7] [PMID: 25971745]
[76]
Doestzada, M.; Vila, A.V.; Zhernakova, A.; Koonen, D.P.Y.; Weersma, R.K.; Touw, D.J. Pharmacomicrobiomics: a novel route towards personalized medicine Protein cell, 2018, 9(5), 432-445.
[http://dx.doi.org/10.1007/s13238-018-0547-2] [PMID: 29705929]
[77]
Heng, X.; Jiang, Y.; Chu, W. Influence of fluconazole administration on gut microbiome, intestinal barrier, and immune response in mice. Antimicrob. Agents Chemother., 2021, 65(6), e02552-20.
[http://dx.doi.org/10.1128/AAC.02552-20] [PMID: 33722893]
[78]
Sharma, A.K.; Jaiswal, S.K.; Chaudhary, N.; Sharma, V.K. A novel approach for the prediction of species-specific biotransformation of xenobiotic/drug molecules by the human gut microbiota. Sci. Rep., 2017, 7(1), 9751.
[http://dx.doi.org/10.1038/s41598-017-10203-6] [PMID: 28852076]
[79]
McCoubrey, L.E.; Gaisford, S.; Orlu, M.; Basit, A.W. Predicting drug-microbiome interactions with machine learning. Biotechnol. Adv., 2022, 54, 107797.
[http://dx.doi.org/10.1016/j.biotechadv.2021.107797] [PMID: 34260950]
[80]
Sun, Y.Z.; Zhang, D.H.; Cai, S.B.; Ming, Z.; Li, J.Q.; Chen, X. MDAD: a special resource for microbe-drug associations. Front. Cell. Infect. Microbiol., 2018, 8, 424.
[http://dx.doi.org/10.3389/fcimb.2018.00424] [PMID: 30581775]
[81]
Rizkallah, R.; Rizkallah, R.M.; Gamal-Eldin, S.; Saad, R.; K Aziz, R. The pharmacomicrobiomics portal: a database for drug-microbiome interactions. Curr. Pharmacogenomics Person. Med., 2012, 10(3), 195-203.
[http://dx.doi.org/10.2174/187569212802510030]
[82]
Zeng, X.; Yang, X.; Fan, J.; Tan, Y.; Ju, L.; Shen, W.; Wang, Y.; Wang, X.; Chen, W.; Ju, D.; Chen, Y.Z. MASI: microbiota—active substance interactions database. Nucleic Acids Res., 2021, 49(D1), D776-D782.
[http://dx.doi.org/10.1093/nar/gkaa924] [PMID: 33125077]
[83]
Curreri, A.; Sankholkar, D.; Mitragotri, S.; Zhao, Z. RNA therapeutics in the clinic. Bioeng. Transl. Med., 2023, 8(1), e10374.
[http://dx.doi.org/10.1002/btm2.10374] [PMID: 36684099]
[84]
Bruch, A.; Kelani, A.A.; Blango, M.G. RNA-based therapeutics to treat human fungal infections. Trends Microbiol., 2022, 30(5), 411-420.
[http://dx.doi.org/10.1016/j.tim.2021.09.007] [PMID: 34635448]
[85]
Dammes, N.; Peer, D. Paving the road for RNA therapeutics. Trends Pharmacol. Sci., 2020, 41(10), 755-775.
[http://dx.doi.org/10.1016/j.tips.2020.08.004] [PMID: 32893005]
[86]
Selvam, C.; Mutisya, D.; Prakash, S.; Ranganna, K.; Thilagavathi, R. Therapeutic potential of chemically modified si RNA : Recent trends. Chem. Biol. Drug Des., 2017, 90(5), 665-678.
[http://dx.doi.org/10.1111/cbdd.12993] [PMID: 28378934]
[87]
Esposito, C.; Catuogno, S.; Condorelli, G.; Ungaro, P.; de Franciscis, V. Aptamer chimeras for therapeutic delivery: the challenging perspectives. Genes (Basel), 2018, 9(11), 529.
[http://dx.doi.org/10.3390/genes9110529] [PMID: 30384431]
[88]
Khatri, M.; Rajam, M.V. Targeting polyamines of Aspergillus nidulans by siRNA specific to fungal ornithine decarboxylase gene. Med. Mycol., 2007, 45(3), 211-220.
[http://dx.doi.org/10.1080/13693780601158779] [PMID: 17464842]
[89]
Mouyna, I.; Henry, C.; Doering, T.L.; Latgé, J.P. Gene silencing with RNA interference in the human pathogenic fungus Aspergillus fumigatus. FEMS Microbiol. Lett., 2004, 237(2), 317-324.
[http://dx.doi.org/10.1111/j.1574-6968.2004.tb09713.x] [PMID: 15321679]
[90]
Nagpal, G.; Chaudhary, K.; Dhanda, S.K.; Raghava, G.P.S. Computational prediction of the immunomodulatory potential of RNA sequences. RNA Nanostruct.: Meth. Proto., 2017, 1632, 75-90.
[http://dx.doi.org/10.1007/978-1-4939-7138-1_5] [PMID: 28730433]
[91]
Hoinka, J.; Wang, Y.; Przytycka, T.M. AptaBlocks online: A web-based toolkit for the in silico design of oligonucleotide sticky bridges. J. Comput. Biol., 2020, 27(3), 356-360.
[http://dx.doi.org/10.1089/cmb.2019.0470] [PMID: 32160038]
[92]
Sciabola, S.; Xi, H.; Cruz, D.; Cao, Q.; Lawrence, C.; Zhang, T.; Rotstein, S.; Hughes, J.D.; Caffrey, D.R.; Stanton, R.V. PFRED: A computational platform for siRNA and antisense oligonucleotides design. PLoS One, 2021, 16(1), e0238753.
[http://dx.doi.org/10.1371/journal.pone.0238753] [PMID: 33481821]
[93]
Lück, S.; Kreszies, T.; Strickert, M.; Schweizer, P.; Kuhlmann, M.; Douchkov, D. siRNA-Finder (si-Fi) software for RNAi-target design and off-target prediction. Front. Plant Sci., 2019, 10, 1023.
[http://dx.doi.org/10.3389/fpls.2019.01023] [PMID: 31475020]
[94]
Wong, L.; Wang, L.; You, Z.H.; Yuan, C.A.; Huang, Y.A.; Cao, M.Y. GKLOMLI: a link prediction model for inferring miRNA–lncRNA interactions by using Gaussian kernel-based method on network profile and linear optimization algorithm. BMC Bioinformatics, 2023, 24(1), 188.
[http://dx.doi.org/10.1186/s12859-023-05309-w] [PMID: 37158823]
[95]
Zheng, K.; Zhang, X.L.; Wang, L.; You, Z.H.; Ji, B.Y.; Liang, X.; Li, Z.W. SPRDA: a link prediction approach based on the structural perturbation to infer disease-associated Piwi-interacting RNAs. Brief. Bioinform., 2023, 24(1), bbac498.
[http://dx.doi.org/10.1093/bib/bbac498] [PMID: 36445194]
[96]
Wang, L.; Wong, L.; You, Z.H.; Huang, D.S. AMDECDA: attention mechanism combined with data ensemble strategy for predicting CircRNA-disease association. IEEE Trans. Big Data, 2023.
[97]
Dhanda, S.K.; Usmani, S.S.; Agrawal, P.; Nagpal, G.; Gautam, A.; Raghava, G.P. Novel in silico tools for designing peptide-based subunit vaccines and immunotherapeutics. Brief Bioinform, 2017, 18(3), 467-468.
[http://dx.doi.org/10.1093/bib/bbw025] [PMID: 27016393]
[98]
Thomas, S.; Abraham, A.; Baldwin, J.; Piplani, S.; Petrovsky, N. Artificial intelligence in vaccine and drug design. Methods Mol Biol, 2022, 2410, 131-146.
[http://dx.doi.org/10.1007/978-1-0716-1884-4_6] [PMID: 34914045]
[99]
Solanki, V.; Tiwari, V. Subtractive proteomics to identify novel drug targets and reverse vaccinology for the development of chimeric vaccine against Acinetobacter baumannii. Sci. Rep., 2018, 8(1), 9044.
[http://dx.doi.org/10.1038/s41598-018-26689-7] [PMID: 29899345]
[100]
Jalal, K.; Abu-Izneid, T.; Khan, K.; Abbas, M.; Hayat, A.; Bawazeer, S.; Uddin, R. Identification of vaccine and drug targets in Shigella dysenteriae sd197 using reverse vaccinology approach. Sci. Rep., 2022, 12(1), 251.
[http://dx.doi.org/10.1038/s41598-021-03988-0] [PMID: 34997046]
[101]
Lathwal, A.; Kumar, R.; Raghava, G.P.S. In-silico identification of subunit vaccine candidates against lung cancer-associated oncogenic viruses. Comput. Biol. Med., 2021, 130, 104215.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104215] [PMID: 33465550]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy