Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Healthy Diets and Lifestyles in the World: Mediterranean and Blue Zone People Live Longer. Special Focus on Gut Microbiota and Some Food Components

Author(s): Luigi Santacroce*, Lucrezia Bottalico*, Ioannis Alexandros Charitos, Kastriot Haxhirexha, Skender Topi and Emilio Jirillo

Volume 24, Issue 15, 2024

Published on: 02 April, 2024

Page: [1774 - 1784] Pages: 11

DOI: 10.2174/0118715303271634240319054728

Price: $65

conference banner
Abstract

Longevity has been associated with healthy lifestyles, including some dietary regimens, such as the Mediterranean diet (MedDiet) and the Blue Zone (BZ) diets. MedDiet relies on a large consumption of fruit, vegetables, cereals, and extra-virgin olive oil, with less red meat and fat intake. Four major BZ have been recognized in the world, namely, Ogliastra in Sardinia (Italy), Ikaria (Greece), the Peninsula of Nicoya (Costa Rica), and Okinawa (Japan). Extreme longevity in these areas has been associated with correct lifestyles and dietary regimens. Fibers, polyphenols, beta-glucans, and unsaturated fatty acids represent the major constituents of both MedDiet and BZ diets, given their anti-inflammatory and antioxidant activities. Particularly, inhibition of the NF-kB pathway, with a reduced release of pro-inflammatory cytokines, and induction of T regulatory cells, with the production of the anti-inflammatory cytokine, interleukin- 10, are the main mechanisms that prevent or attenuate the “inflammaging.” Notably, consistent physical activity, intense social interactions, and an optimistic attitude contribute to longevity in BZD areas. Commonalities and differences between MedDIet and BZ diets will be outlined, with special reference to microbiota and food components, which may contribute to longevity.

Keywords: Aging, blue zones, gut microbiota, beta-glucans, extra-virgin olive oil, longevity, mediterranean diet, oleic acid, polyphenols.

Graphical Abstract
[1]
Trichopoulou, A. Diversity v. globalization: Traditional foods at the epicentre. Public Health Nutr., 2012, 15(6), 951-954.
[http://dx.doi.org/10.1017/S1368980012000304] [PMID: 23418631]
[2]
Fan, H.; Wang, Y.; Ren, Z.; Liu, X.; Zhao, J.; Yuan, Y.; Fei, X.; Song, X.; Wang, F.; Liang, B. Mediterranean diet lowers all-cause and cardiovascular mortality for patients with metabolic syndrome. Diabetol. Metab. Syndr., 2023, 15(1), 107.
[http://dx.doi.org/10.1186/s13098-023-01052-7] [PMID: 37221569]
[3]
Dominguez, L.J.; Veronese, N.; Bella, G.D.; Cusumano, C.; Parisi, A.; Tagliaferri, F.; Ciriminna, S.; Barbagallo, M. Mediterranean diet in the management and prevention of obesity. Exp. Gerontol., 2023, 174, 112121.
[http://dx.doi.org/10.1016/j.exger.2023.112121]
[4]
Lorenzo, D. The Mediterranean diet: Culture, health and science. Br. J. Nutr., 2015, 113(S2), S1-S3.
[http://dx.doi.org/10.1017/S0007114515001087]
[5]
Sotos-Prieto, M.; Moreno-Franco, B.; Ordovás, J.M.; León, M.; Casasnovas, J.A.; Peñalvo, J.L. Design and development of an instrument to measure overall lifestyle habits for epidemiological research: the Mediterranean Lifestyle (MEDLIFE) index. Public Health Nutr., 2015, 18(6), 959-967.
[http://dx.doi.org/10.1017/S1368980014001360] [PMID: 25025396]
[6]
Divella, R.; Marino, G.; Infusino, S.; Lanotte, L.; Gadaleta-Caldarola, G.; Gadaleta-Caldarola, G. The mediterranean lifestyle to contrast low-grade inflammation behavior in cancer. Nutrients, 2023, 15(7), 1667.
[http://dx.doi.org/10.3390/nu15071667] [PMID: 37049508]
[7]
Keys, A.B. Seven Countries: A Multivariate Analysis of Death and Coronary Heart Disease; Harvard University Press, Cambridge, 1980.
[http://dx.doi.org/10.4159/harvard.9780674497887]
[8]
Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a mediterranean diet and survival in a greek population. N. Engl. J. Med., 2003, 348(26), 2599-2608.
[http://dx.doi.org/10.1056/NEJMoa025039] [PMID: 12826634]
[9]
Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; Lamuela-Raventos, R.M.; Serra-Majem, L.; Pintó, X.; Basora, J.; Muñoz, M.A.; Sorlí, J.V.; Martínez, J.A.; Fitó, M.; Gea, A.; Hernán, M.A.; Martínez-González, M.A. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med., 2018, 378(25), e34.
[http://dx.doi.org/10.1056/NEJMoa1800389] [PMID: 29897866]
[10]
Willett, W.C.; Sacks, F.; Trichopoulou, A.; Drescher, G.; Ferro-Luzzi, A.; Helsing, E.; Trichopoulos, D. Mediterranean diet pyramid: A cultural model for healthy eating. Am. J. Clin. Nutr., 1995, 61(S6), 1402S-1406S.
[http://dx.doi.org/10.1093/ajcn/61.6.1402S] [PMID: 7754995]
[11]
Villani, A.; Sultana, J.; Doecke, J.; Mantzioris, E. Differences in the interpretation of a modernized Mediterranean diet prescribed in intervention studies for the management of type 2 diabetes: how closely does this align with a traditional Mediterranean diet? Eur. J. Nutr., 2019, 58(4), 1369-1380.
[http://dx.doi.org/10.1007/s00394-018-1757-3] [PMID: 29943276]
[12]
Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean diet and health status: An updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr., 2014, 17(12), 2769-2782.
[http://dx.doi.org/10.1017/S1368980013003169] [PMID: 24476641]
[13]
Toledo, E.; Salas-Salvadó, J.; Donat-Vargas, C.; Buil-Cosiales, P.; Estruch, R.; Ros, E.; Corella, D.; Fitó, M.; Hu, F.B.; Arós, F.; Gómez-Gracia, E.; Romaguera, D.; Ortega-Calvo, M.; Serra-Majem, L.; Pintó, X.; Schröder, H.; Basora, J.; Sorlí, J.V.; Bulló, M.; Serra-Mir, M.; Martínez-González, M.A. Mediterranean diet and invasive breast cancer risk among women at high cardiovascular risk in the PREDIMED trial. JAMA Intern. Med., 2015, 175(11), 1752-1760.
[http://dx.doi.org/10.1001/jamainternmed.2015.4838] [PMID: 26365989]
[14]
Wan, D.; Dehghan, M.; de Souza, R.J.; Ramasundarahettige, C.; Eikelboom, J.W.; Bosch, J.; Maggioni, A.P.; Bhatt, D.L.; Yusuf, S.; Anand, S.S. Dietary intake and cardiovascular outcomes in patients with chronic vascular disease: Insights from the COMPASS trial cohort. Eur. J. Prev. Cardiol., 2023, 30(8), zwad062.
[http://dx.doi.org/10.1093/eurjpc/zwad062] [PMID: 37080912]
[15]
Rowe, J.W.; Kahn, R.L. Successful aging. Gerontologist, 1997, 37(4), 433-440.
[http://dx.doi.org/10.1093/geront/37.4.433] [PMID: 9279031]
[16]
Thomas, A.; Belsky, D.W.; Gu, Y. Healthy lifestyle behaviors and biological aging in the US National Health and Nutrition Examination Surveys 1999-2018. J. Gerontol. A Biol. Sci. Med. Sci., 2023, 78(9), 1535-1542. Epub ahead of print
[http://dx.doi.org/10.1093/gerona/glad082] [PMID: 36896965]
[17]
Legrand, R.; Manckoundia, P.; Nuemi, G.; Poulain, M. Assessment of the health status of the oldest olds living on the greek island of Ikaria: A population based-study in a blue zone. Curr. Gerontol. Geriatr. Res., 2019, 2019, 1-8.
[http://dx.doi.org/10.1155/2019/8194310] [PMID: 31885554]
[18]
Pes, G.M.; Dore, M.P.; Tsofliou, F.; Poulain, M. Diet and longevity in the blue zones: A set-and-forget issue? Maturitas, 2022, 164, 31-37.
[http://dx.doi.org/10.1016/j.maturitas.2022.06.004] [PMID: 35780634]
[19]
Poulain, M.; Pes, G.M.; Grasland, C.; Carru, C.; Ferrucci, L.; Baggio, G.; Franceschi, C.; Deiana, L. Identification of a geographic area characterized by extreme longevity in the Sardinia island: The AKEA study. Exp. Gerontol., 2004, 39(9), 1423-1429.
[http://dx.doi.org/10.1016/j.exger.2004.06.016] [PMID: 15489066]
[20]
Pes, G.M.; Tolu, F.; Poulain, M.; Errigo, A.; Masala, S.; Pietrobelli, A.; Battistini, N.C.; Maioli, M. Lifestyle and nutrition related to male longevity in Sardinia: An ecological study. Nutr. Metab. Cardiovasc. Dis., 2013, 23(3), 212-219.
[http://dx.doi.org/10.1016/j.numecd.2011.05.004] [PMID: 21958760]
[21]
Trichopoulou, A. Traditional Mediterranean diet and longevity in the elderly: A review. Public Health Nutr., 2004, 7(7), 943-947.
[http://dx.doi.org/10.1079/PHN2004558] [PMID: 15482622]
[22]
Mirzaei, H.; Suarez, J.A.; Longo, V.D. Protein and amino acid restriction, aging and disease: From yeast to humans. Trends Endocrinol. Metab., 2014, 25(11), 558-566.
[http://dx.doi.org/10.1016/j.tem.2014.07.002] [PMID: 25153840]
[23]
Willcox, B.J.; Willcox, D.C.; Todoriki, H.; Fujiyoshi, A.; Yano, K.; He, Q.; Curb, J.D.; Suzuki, M. Caloric restriction, the traditional Okinawan diet, and healthy aging: The diet of the world’s longest-lived people and its potential impact on morbidity and life span. Ann. N. Y. Acad. Sci., 2007, 1114(1), 434-455.
[http://dx.doi.org/10.1196/annals.1396.037] [PMID: 17986602]
[24]
Pinti, M.; Gibellini, L.; Lo Tartaro, D.; De Biasi, S.; Nasi, M.; Borella, R.; Fidanza, L.; Neroni, A.; Troiano, L.; Franceschi, C.; Cossarizza, A. A comprehensive analysis of cytokine network in centenarians. Int. J. Mol. Sci., 2023, 24(3), 2719.
[http://dx.doi.org/10.3390/ijms24032719] [PMID: 36769039]
[25]
Franceschi, C.; Capri, M.; Monti, D.; Giunta, S.; Olivieri, F.; Sevini, F.; Panourgia, M.P.; Invidia, L.; Celani, L.; Scurti, M.; Cevenini, E.; Castellani, G.C.; Salvioli, S. Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev., 2007, 128(1), 92-105.
[http://dx.doi.org/10.1016/j.mad.2006.11.016] [PMID: 17116321]
[26]
Caruso, C.; Puca, A.A. Special issue “centenarians—a model to study the molecular basis of lifespan and healthspan”. Int. J. Mol. Sci., 2021, 22(4), 2044.
[http://dx.doi.org/10.3390/ijms22042044] [PMID: 33669501]
[27]
Magrone, T.; Magrone, M.; Russo, M.A.; Jirillo, E. Peripheral immunosenescence and central neuroinflammation: A dangerous liaison - a dietary approach. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(9), 1391-1411.
[http://dx.doi.org/10.2174/1871530320666200406123734] [PMID: 32250234]
[28]
Cavazos, A.; Gonzalez de Mejia, E. Identification of bioactive peptides from cereal storage proteins and their potential role in prevention of chronic diseases. Compr. Rev. Food Sci. Food Saf., 2013, 12(4), 364-380.
[http://dx.doi.org/10.1111/1541-4337.12017] [PMID: 33412684]
[29]
Ruggiero, E.; Bonaccio, M.; Di Castelnuovo, A.; Bonanni, A.; Costanzo, S.; Persichillo, M.; Bracone, F.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L. Consumption of whole grain food and its determinants in a general Italian population: Results from the INHES study. Nutr. Metab. Cardiovasc. Dis., 2019, 29(6), 611-620.
[http://dx.doi.org/10.1016/j.numecd.2019.03.001] [PMID: 30956028]
[30]
Seal, C.J.; Brownlee, I.A. Whole-grain foods and chronic disease: Evidence from epidemiological and intervention studies. Proc. Nutr. Soc., 2015, 74(3), 313-319.
[http://dx.doi.org/10.1017/S0029665115002104] [PMID: 26062574]
[31]
Costabile, A.; Klinder, A.; Fava, F.; Napolitano, A.; Fogliano, V.; Leonard, C.; Gibson, G.R.; Tuohy, K.M. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: A double-blind, placebo-controlled, crossover study. Br. J. Nutr., 2008, 99(1), 110-120.
[http://dx.doi.org/10.1017/S0007114507793923] [PMID: 17761020]
[32]
Kelly, S.A.M.; Hartley, L.; Loveman, E.; Colquitt, J.L.; Jones, H.M.; Al-Khudairy, L.; Clar, C.; Germanò, R.; Lunn, H.R.; Frost, G.; Rees, K. Whole grain cereals for the primary or secondary prevention of cardiovascular disease. Cochrane Libr., 2017, 2021(5), CD005051.
[http://dx.doi.org/10.1002/14651858.CD005051.pub3] [PMID: 28836672]
[33]
Shewry, P.R.; Hawkesford, M.J.; Piironen, V.; Lampi, A.M.; Gebruers, K.; Boros, D.; Andersson, A.A.M.; Åman, P.; Rakszegi, M.; Bedo, Z.; Ward, J.L. Natural variation in grain composition of wheat and related cereals. J. Agric. Food Chem., 2013, 61(35), 8295-8303.
[http://dx.doi.org/10.1021/jf3054092] [PMID: 23414336]
[34]
Stone, B. Wheat: Chemistry and Technology, 4th ed; Khan, K.; Shewzy, P.R., Eds.; AACC: St Paul, MN, USA, 2009, pp. 299-362.
[http://dx.doi.org/10.1094/9781891127557.009]
[35]
Nutrition value. 2023. Available from: www.Nutrtionvalue.org
[36]
Adom, K.K.; Sorrells, M.E.; Liu, R.H. Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. J. Agric. Food Chem., 2005, 53(6), 2297-2306.
[http://dx.doi.org/10.1021/jf048456d] [PMID: 15769171]
[37]
Qu, H.; Madl, R.L.; Takemoto, D.J.; Baybutt, R.C.; Wang, W. Lignans are involved in the antitumor activity of wheat bran in colon cancer SW480 cells. J. Nutr., 2005, 135(3), 598-602.
[http://dx.doi.org/10.1093/jn/135.3.598] [PMID: 15735100]
[38]
Hui, S.; Liu, K.; Lang, H.; Liu, Y.; Wang, X.; Zhu, X.; Doucette, S.; Yi, L.; Mi, M. Comparative effects of different whole grains and brans on blood lipid: A network meta-analysis. Eur. J. Nutr., 2019, 58(7), 2779-2787.
[http://dx.doi.org/10.1007/s00394-018-1827-6] [PMID: 30244379]
[39]
Malunga, L.N.; Ames, N.; Zhouyao, H.; Blewett, H.; Thandapilly, S.J. Beta-glucan from barley attenuates post-prandial glycemic response by inhibiting the activities of glucose transporters but not intestinal brush border enzymes and amylolysis of starch. Front. Nutr., 2021, 8, 628571.
[http://dx.doi.org/10.3389/fnut.2021.628571] [PMID: 33937305]
[40]
Tosh, S.M.; Bordenave, N. Emerging science on benefits of whole grain oat and barley and their soluble dietary fibers for heart health, glycemic response, and gut microbiota. Nutr. Rev., 2020, 78(S1), 13-20.
[http://dx.doi.org/10.1093/nutrit/nuz085] [PMID: 32728756]
[41]
Henrion, M.; Francey, C.; Lê, K.A.; Lamothe, L. Cereal B-glucans: The impact of processing and how it affects physiological responses. Nutrients, 2019, 11(8), 1729.
[http://dx.doi.org/10.3390/nu11081729] [PMID: 31357461]
[42]
Di Domenico, M.; Ballini, A.; Boccellino, M.; Scacco, S.; Lovero, R.; Charitos, I.A.; Santacroce, L. The intestinal microbiota may be a potential theranostic tool for personalized medicine. J. Pers. Med., 2022, 12(4), 523.
[http://dx.doi.org/10.3390/jpm12040523] [PMID: 35455639]
[43]
Novak, M.; Vetvicka, V. Beta-glucans, history, and the present: Immunomodulatory aspects and mechanisms of action. J. Immunotoxicol., 2008, 5(1), 47-57.
[http://dx.doi.org/10.1080/15476910802019045] [PMID: 18382858]
[44]
Zhang, Y.; Liu, X.; Zhao, J.; Wang, J.; Song, Q.; Zhao, C. The phagocytic receptors of β-glucan. Int. J. Biol. Macromol., 2022, 205, 430-441.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.02.111] [PMID: 35202631]
[45]
Żyła, E.; Dziendzikowska, K.; Kamola, D.; Wilczak, J.; Sapierzyński, R.; Harasym, J.; Gromadzka-Ostrowska, J. Anti-inflammatory activity of oat beta-glucans in a crohn’s disease model: Time- and molar mass-dependent effects. Int. J. Mol. Sci., 2021, 22(9), 4485.
[http://dx.doi.org/10.3390/ijms22094485] [PMID: 33923129]
[46]
Ahuja, I.; Kissen, R.; Bones, A.M. Phytoalexins in defense against pathogens. Trends Plant Sci., 2012, 17(2), 73-90.
[http://dx.doi.org/10.1016/j.tplants.2011.11.002] [PMID: 22209038]
[47]
Joukar, F.; Yeganeh, S.; Shafaghi, A.; Mahjoub-Jalali, M.R.; Hassanipour, S.; Santacroce, L.; Mavaddati, S.; Mansour-Ghanaei, F. The seroprevalence of celiac disease in patients with symptoms of irritable bowel syndrome: A cross-sectional study in the north of Iran. Hum. Antibodies, 2022, 30(2), 97-103.
[http://dx.doi.org/10.3233/HAB-211516] [PMID: 35342083]
[48]
Magrone, T.; Magrone, M.; Russo, M.A.; Jirillo, E. Taking advantage of plant defense mechanisms to promote human health. Exploitation of plant natural products for preventing or treating human disease: Second of two parts. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(11), 1961-1973.
[http://dx.doi.org/10.2174/1871530321666201229125400] [PMID: 33372886]
[49]
GutiErrez-Grijalva, E.P.; Ambriz-Pere, D.L.; Leyva-Lopez, N.; Castillo-Lopez, R.I.; Heiedia, J.B. Review: dietary phenolic compounds, health benefits and bioaccessibility. Arch. Latinoam. Nutr., 2016, 66(2), 87-100.
[PMID: 29737665]
[50]
Nichols, J.A.; Katiyar, S.K. Skin photoprotection by natural polyphenols: Anti-inflammatory, antioxidant and DNA repair mechanisms. Arch. Dermatol. Res., 2010, 302(2), 71-83.
[http://dx.doi.org/10.1007/s00403-009-1001-3] [PMID: 19898857]
[51]
Dunaway, S.; Odin, R.; Zhou, L.; Ji, L.; Zhang, Y.; Kadekaro, A.L. Natural antioxidants: Multiple mechanisms to protect skin from solar radiation. Front. Pharmacol., 2018, 9, 392.
[http://dx.doi.org/10.3389/fphar.2018.00392] [PMID: 29740318]
[52]
Barbosa, M.; Valentão, P.; Andrade, P.B. Polyphenols from brown seaweeds (Ochrophyta, Phaeophyceae): Phlorotannins in the pursuit of natural alternatives to tackle neurodegeneration. Mar. Drugs, 2020, 18(12), 654.
[http://dx.doi.org/10.3390/md18120654] [PMID: 33353007]
[53]
Magrone, T.; Magrone, M.; Russo, M.A.; Jirillo, E. Recent advances on the anti-inflammatory and antioxidant properties of red grape polyphenols: In vitro and in vivo studies. Antioxidants, 2019, 9(1), 35.
[http://dx.doi.org/10.3390/antiox9010035] [PMID: 31906123]
[54]
Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients, 2018, 10(11), 1618.
[http://dx.doi.org/10.3390/nu10111618] [PMID: 30400131]
[55]
Tili, E.; Michaille, J.J.; Adair, B.; Alder, H.; Limagne, E.; Taccioli, C.; Ferracin, M.; Delmas, D.; Latruffe, N.; Croce, C.M. Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis, 2010, 31(9), 1561-1566.
[http://dx.doi.org/10.1093/carcin/bgq143] [PMID: 20622002]
[56]
Ong, A.L.C.; Ramasamy, T.S. Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. Ageing Res. Rev., 2018, 43, 64-80.
[http://dx.doi.org/10.1016/j.arr.2018.02.004] [PMID: 29476819]
[57]
Zou, P.; Liu, X.; Li, G.; Wang, Y. Resveratrol pretreatment attenuates traumatic brain injury in rats by suppressing NLRP3 inflammasome activation via SIRT1. Mol. Med. Rep., 2017, 17(2), 3212-3217.
[http://dx.doi.org/10.3892/mmr.2017.8241] [PMID: 29257276]
[58]
Gomes, E.C.; Silva, A.N.; Oliveira, M.R. Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive species. Oxid. Med. Cell. Longev., 2012, 2012, 1-12.
[http://dx.doi.org/10.1155/2012/756132] [PMID: 22701757]
[59]
Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol., 2013, 14(10), R115.
[http://dx.doi.org/10.1186/gb-2013-14-10-r115] [PMID: 24138928]
[60]
Peng, K.; Tao, Y.; Zhang, J.; Wang, J.; Ye, F.; Dan, G.; Zhao, Y.; Cai, Y.; Zhao, J.; Wu, Q.; Zou, Z.; Cao, J.; Sai, Y. Resveratrol regulates mitochondrial biogenesis and fission/fusion to attenuate rotenone-induced neurotoxicity. Oxid. Med. Cell. Longev., 2016, 2016, 1-12.
[http://dx.doi.org/10.1155/2016/6705621] [PMID: 26770656]
[61]
Shi, J.; Yu, J.; Pohorly, J.E.; Kakuda, Y. Polyphenolics in grape seeds-biochemistry and functionality. J. Med. Food, 2003, 6(4), 291-299.
[http://dx.doi.org/10.1089/109662003772519831] [PMID: 14977436]
[62]
Li, W.; Zhu, S.; Li, J.; Assa, A.; Jundoria, A.; Xu, J.; Fan, S.; Eissa, N.T.; Tracey, K.J.; Sama, A.E.; Wang, H. EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages. Biochem. Pharmacol., 2011, 81(9), 1152-1163.
[http://dx.doi.org/10.1016/j.bcp.2011.02.015] [PMID: 21371444]
[63]
Eggler, A.L.; Savinov, S.N. Chemical and biological mechanisms of phytochemical activation of Nrf2 and importance in disease prevention. Recent Adv. Phytochem., 2013, 43, 121-155.
[http://dx.doi.org/10.1007/978-3-319-00581-2_7] [PMID: 26855455]
[64]
Kim, E.N.; Lim, J.H.; Kim, M.Y.; Ban, T.H.; Jang, I.A.; Yoon, H.E.; Park, C.W.; Chang, Y.S.; Choi, B.S. Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury. Aging, 2018, 10(1), 83-99.
[http://dx.doi.org/10.18632/aging.101361] [PMID: 29326403]
[65]
Klaips, C.L.; Jayaraj, G.G.; Hartl, F.U. Pathways of cellular proteostasis in aging and disease. J. Cell Biol., 2018, 217(1), 51-63.
[http://dx.doi.org/10.1083/jcb.201709072] [PMID: 29127110]
[66]
Hipp, M.S.; Kasturi, P.; Hartl, F.U. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol., 2019, 20(7), 421-435.
[http://dx.doi.org/10.1038/s41580-019-0101-y] [PMID: 30733602]
[67]
Medzhitov, R. Inflammation 2010: New adventures of an old flame. Cell, 2010, 140(6), 771-776.
[http://dx.doi.org/10.1016/j.cell.2010.03.006] [PMID: 20303867]
[68]
Murphy, K.J.; Dyer, K.A.; Hyde, B.; Davis, C.R.; Bracci, E.L.; Woodman, R.J.; Hodgson, J.M. Long-term adherence to a mediterranean diet 1-year after completion of the medley study. Nutrients, 2022, 14(15), 3098.
[http://dx.doi.org/10.3390/nu14153098] [PMID: 35956274]
[69]
Coniglio, S.; Shumskaya, M.; Vassiliou, E. Unsaturated fatty acids and their immunomodulatory properties. Biology, 2023, 12(2), 279.
[http://dx.doi.org/10.3390/biology12020279] [PMID: 36829556]
[70]
Mantzioris, E.; Muhlhausler, B.S.; Villani, A. Impact of the mediterranean dietary pattern on n-3 fatty acid tissue levels–a systematic review. Prostaglandins Leukot. Essent. Fatty Acids, 2022, 176, 102387.
[http://dx.doi.org/10.1016/j.plefa.2021.102387] [PMID: 34929617]
[71]
Lopez, S.; Bermudez, B.; Montserrat-de la Paz, S.; Jaramillo, S.; Varela, L.M.; Ortega-Gomez, A.; Abia, R.; Muriana, F.J.G. Membrane composition and dynamics: A target of bioactive virgin olive oil constituents. Biochim. Biophys. Acta Biomembr., 2014, 1838(6), 1638-1656.
[http://dx.doi.org/10.1016/j.bbamem.2014.01.007] [PMID: 24440426]
[72]
Santacroce, L.; Man, A.; Charitos, I.A.; Haxhirexha, K.; Topi, S. Current knowledge about the connection between health status and gut microbiota from birth to elderly. A narrative review. Front. Biosci., 2021, 26(6), 135-148.
[http://dx.doi.org/10.52586/4930] [PMID: 34162042]
[73]
Bhattacharjee, B.; Pal, P.K.; Chattopadhyay, A.; Bandyopadhyay, D. Oleic acid protects against cadmium induced cardiac and hepatic tissue injury in male Wistar rats: A mechanistic study. Life Sci., 2020, 244, 117324.
[http://dx.doi.org/10.1016/j.lfs.2020.117324] [PMID: 31958420]
[74]
Santacroce, L.; Cagiano, R.; Del Prete, R.; Bottalico, L.; Sabatini, R.; Carlaio, R.G.; Prejbeanu, R.; Vermesan, H.; Dragulescu, S.I.; Vermesan, D.; Motoc, A.; Losacco, T. Helicobacter pylori infection and gastric MALTomas: An up-to-date and therapy highlight. Clin. Ter., 2008, 159(6), 457-462.
[PMID: 19169609]
[75]
Yang, Z.H.; Nill, K.; Takechi-Haraya, Y.; Playford, M.P.; Nguyen, D.; Yu, Z.X.; Pryor, M.; Tang, J.; Rojulpote, K.V.; Mehta, N.N.; Wen, H.; Remaley, A.T. Differential effect of dietary supplementation with a soybean oil enriched in oleic acid versus linoleic acid on plasma lipids and atherosclerosis in LDLR-deficient mice. Int. J. Mol. Sci., 2022, 23(15), 8385.
[http://dx.doi.org/10.3390/ijms23158385] [PMID: 35955518]
[76]
Oh, Y.T.; Lee, J.Y.; Lee, J.; Kim, H.; Yoon, K.S.; Choe, W.; Kang, I. Oleic acid reduces lipopolysaccharide-induced expression of iNOS and COX-2 in BV2 murine microglial cells: Possible involvement of reactive oxygen species, p38 MAPK, and IKK/NF-κB signaling pathways. Neurosci. Lett., 2009, 464(2), 93-97.
[http://dx.doi.org/10.1016/j.neulet.2009.08.040] [PMID: 19699266]
[77]
Hidalgo, M.A.; Nahuelpan, C.; Manosalva, C.; Jara, E.; Carretta, M.D.; Conejeros, I.; Loaiza, A.; Chihuailaf, R.; Burgos, R.A. Oleic acid induces intracellular calcium mobilization, MAPK phosphorylation, superoxide production and granule release in bovine neutrophils. Biochem. Biophys. Res. Commun., 2011, 409(2), 280-286.
[http://dx.doi.org/10.1016/j.bbrc.2011.04.144] [PMID: 21575602]
[78]
Halperin, S.T.; ’t Hart, B.A.; Luchicchi, A.; Schenk, G.J. The forgotten brother: The innate-like B1 cell in multiple sclerosis. Biomedicines, 2022, 10(3), 606.
[http://dx.doi.org/10.3390/biomedicines10030606] [PMID: 35327408]
[79]
Parackova, Z.; Vrabcova, P.; Zentsova, I.; Sediva, A.; Bloomfield, M. Neutrophils in STAT1 Gain-Of-function have a pro-inflammatory signature which is not rescued by JAK inhibition. J. Clin. Immunol., 2023, 43(7), 1640-1659. Epub ahead of print
[http://dx.doi.org/10.1007/s10875-023-01528-1] [PMID: 37358695]
[80]
Yang, Y.; Liu, Y.; Wang, Y.; Chao, Y.; Zhang, J.; Jia, Y.; Tie, J.; Hu, D. Regulation of SIRT1 and its roles in inflammation. Front. Immunol., 2022, 13, 831168.
[http://dx.doi.org/10.3389/fimmu.2022.831168] [PMID: 35359990]
[81]
Topi, S.; Bottalico, L.; Charitos, I.A.; Colella, M.; Di Domenico, M.; Palmirotta, R.; Santacroce, L. Biomolecular mechanisms of autoimmune diseases and their relationship with the resident microbiota: Friend or foe? Pathophysiology, 2022, 29(3), 507-536.
[http://dx.doi.org/10.3390/pathophysiology29030041] [PMID: 36136068]
[82]
Charlet, R.; Le Danvic, C.; Sendid, B.; Nagnan-Le Meillour, P.; Jawhara, S. Oleic acid and palmitic acid from Bacteroides thetaiotaomicron and lactobacillus johnsonii exhibit anti-inflammatory and antifungal properties. Microorganisms, 2022, 10(9), 1803.
[http://dx.doi.org/10.3390/microorganisms10091803] [PMID: 36144406]
[83]
Han, R.; Yu, Y.; Zhao, K.; Wei, J.; Hui, Y.; Gao, J.M. Lignans from eucommia ulmoides oliver leaves exhibit neuroprotective effects via activation of the PI3K/Akt/GSK-3β/Nrf2 signaling pathways in H2O2-treated PC-12 cells. Phytomedicine, 2022, 101, 154124.
[http://dx.doi.org/10.1016/j.phymed.2022.154124] [PMID: 35487038]
[84]
Singh, V.; Ubaid, S. Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation. Inflammation, 2020, 43(5), 1589-1598.
[http://dx.doi.org/10.1007/s10753-020-01242-9] [PMID: 32410071]
[85]
Li, J.; Yan, D.; Chen, L.; Zhang, Y.; Song, Y.; Zhu, S.; Ji, T.; Zhou, W.; Gan, F.; Wang, X.; Hong, M.; Guan, L.; Shi, Y.; Wu, G.; Xu, W. Multiple genotypes of Echovirus 11 circulated in mainland China between 1994 and 2017. Sci. Rep., 2019, 9(1), 10583.
[http://dx.doi.org/10.1038/s41598-019-46870-w] [PMID: 31332200]
[86]
Charitos, I.A.; Topi, S.; Gagliano-Candela, R.; De Nitto, E.; Polimeno, L.; Montagnani, M.; Santacroce, L. The toxic effects of endocrine disrupting chemicals (EDCs) on gut microbiota: Bisphenol A (BPA) A review. Endocr. Metab. Immune Disord. Drug Targets, 2022, 22(7), 716-727.
[http://dx.doi.org/10.2174/1871530322666220325114045] [PMID: 35339192]
[87]
Pauwels, E.K.J. The protective effect of the Mediterranean diet: Focus on cancer and cardiovascular risk. Med. Princ. Pract., 2011, 20(2), 103-111.
[http://dx.doi.org/10.1159/000321197] [PMID: 21252562]
[88]
Ponnappan, S.; Ponnappan, U. Aging and immune function: Molecular mechanisms to interventions. Antioxid. Redox Signal., 2011, 14(8), 1551-1585.
[http://dx.doi.org/10.1089/ars.2010.3228] [PMID: 20812785]
[89]
Buettner, D.; Pes, G.M. Blue Zones. In: Encyclopedia of Biomedical Gerontology; Rattan, SIS Elsevier. vol. 1, Academic Press, 2020.
[90]
Franceschi, C.; Bezrukov, V.; Blanché, H.; Bolund, L.; Christensen, K.; Benedictis, G.D.; Deiana, L.; Gonos, E.; Hervonen, A.; Yang, H.; Jeune, B.; Kirkwood, B.L.; Kristensen, P.; Leon, A.; Pelicci, P.G.; Peltonen, L.; Poulain, M.; Rea, I.M.; Remacle, J.; Robine, J.M.; Schreiber, S.; Sikora, E.; Slagboom, P.E.; Spazzafumo, L.; Stazi, M.A.; Toussaint, O.; Vaupel, J.W. Genetics of healthy aging in Europe: The EU-integrated project GEHA (GEnetics of Healthy Aging). Ann. N. Y. Acad. Sci., 2007, 1100(1), 21-45.
[http://dx.doi.org/10.1196/annals.1395.003] [PMID: 17460163]
[91]
Cevenini, E.; Cotichini, R.; Stazi, M.A.; Toccaceli, V.; Palmas, M.G.; Capri, M.; De Rango, F.; Dato, S.; Passarino, G.; Jeune, B.; Franceschi, C. Health status and 6 years survival of 552 90+ Italian sib-ships recruited within the EU Project GEHA (GEnetics of Healthy Ageing). Age, 2014, 36(2), 949-966.
[http://dx.doi.org/10.1007/s11357-013-9604-1] [PMID: 24323371]
[92]
Arrigoni, R.; Ballini, A.; Topi, S.; Bottalico, L.; Jirillo, E.; Santacroce, L. Antibiotic resistance to Mycobacterium tuberculosis and potential use of natural and biological products as alternative anti-mycobacterial agents. Antibiotics, 2022, 11(10), 1431.
[http://dx.doi.org/10.3390/antibiotics11101431] [PMID: 36290089]
[93]
Pes, G.M.; Tognotti, E.; Poulain, M.; Chambre, D.; Dore, M.P. Why were Sardinians the shortest Europeans? A journey through genes, infections, nutrition, and sex. Am. J. Phys. Anthropol., 2017, 163(1), 3-13.
[http://dx.doi.org/10.1002/ajpa.23177] [PMID: 28138956]
[94]
Maioli, M.; Pes, G.M.; Sanna, M.; Cherchi, S.; Dettori, M.; Manca, E.; Farris, G.A. Sourdough-leavened bread improves postprandial glucose and insulin plasma levels in subjects with impaired glucose tolerance. Acta Diabetol., 2008, 45(2), 91-96.
[http://dx.doi.org/10.1007/s00592-008-0029-8] [PMID: 18317680]
[95]
Levine, M.E.; Suarez, J.A.; Brandhorst, S.; Balasubramanian, P.; Cheng, C.W.; Madia, F.; Fontana, L.; Mirisola, M.G.; Guevara-Aguirre, J.; Wan, J.; Passarino, G.; Kennedy, B.K.; Wei, M.; Cohen, P.; Crimmins, E.M.; Longo, V.D. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab., 2014, 19(3), 407-417.
[http://dx.doi.org/10.1016/j.cmet.2014.02.006] [PMID: 24606898]
[96]
Gundogdu, A.; Nalbantoglu, O.U. The role of the Mediterranean diet in modulating the gut microbiome: A review of current evidence. Nutrition, 2023, 114, 112118.
[http://dx.doi.org/10.1016/j.nut.2023.112118] [PMID: 37437419]
[97]
Garcia-Mantrana, I.; Selma-Royo, M.; Alcantara, C.; Collado, M.C. Shifts on gut microbiota associated to mediterranean diet adherence and specific dietary intakes on general adult population. Front. Microbiol., 2018, 9, 890.
[http://dx.doi.org/10.3389/fmicb.2018.00890] [PMID: 29867803]
[98]
Corder, R.; Mullen, W.; Khan, N.Q.; Marks, S.C.; Wood, E.G.; Carrier, M.J.; Crozier, A. Red wine procyanidins and vascular health. Nature, 2006, 444(7119), 566.
[http://dx.doi.org/10.1038/444566a] [PMID: 17136085]
[99]
Merinas-Amo, T.; Tasset-Cuevas, I.; Díaz-Carretero, A.M.; Alonso-Moraga, Á.; Calahorro, F. Role of choline in the modulation of degenerative processes: In vivo and in vitro studies. J. Med. Food, 2017, 20(3), 223-234.
[http://dx.doi.org/10.1089/jmf.2016.0075] [PMID: 28103133]
[100]
Angelino, D.; Pietrangeli, F.; Serafini, M. Early dinner time and caloric restriction lapse contribute to the longevity of nonagenarians and centenarians of the italian abruzzo region: A cross-sectional study. Front. Nutr., 2022, 9, 863106.
[http://dx.doi.org/10.3389/fnut.2022.863106] [PMID: 35392292]
[101]
Montagnani, M.; Bottalico, L.; Potenza, M.A.; Charitos, I.A.; Topi, S.; Colella, M.; Santacroce, L. The crosstalk between gut microbiota and nervous system: A bidirectional interaction between microorganisms and metabolome. Int. J. Mol. Sci., 2023, 24(12), 10322.
[http://dx.doi.org/10.3390/ijms241210322] [PMID: 37373470]
[102]
Wegierska, A.E.; Charitos, I.A.; Topi, S.; Potenza, M.A.; Montagnani, M.; Santacroce, L. The connection between physical exercise and gut microbiota: Implications for competitive sports athletes. Sports Med., 2022, 52(10), 2355-2369.
[http://dx.doi.org/10.1007/s40279-022-01696-x] [PMID: 35596883]
[103]
Foscolou, A.; Polychronopoulos, E.; Paka, E.; Tyrovolas, S.; Bountziouka, V.; Zeimbekis, A.; Tyrovola, D.; Ural, D.; Panagiotakos, D. Lifestyle and health determinants of cardiovascular disease among Greek older adults living in Eastern Aegean Islands: An adventure within the MEDIS study. Hellenic J. Cardiol., 2016, 57(6), 407-414.
[http://dx.doi.org/10.1016/j.hjc.2016.11.021] [PMID: 28202216]
[104]
Zhu, G.; Ma, F.; Wang, G.; Wang, Y.; Zhao, J.; Zhang, H.; Chen, W. Bifidobacteria attenuate the development of metabolic disorders, with inter- and intra-species differences. Food Funct., 2018, 9(6), 3509-3522.
[http://dx.doi.org/10.1039/C8FO00100F] [PMID: 29892745]
[105]
de Koning Gans, J.M.; Uiterwaal, C.S.P.M.; van der Schouw, Y.T.; Boer, J.M.A.; Grobbee, D.E.; Verschuren, W.M.M.; Beulens, J.W.J. Tea and coffee consumption and cardiovascular morbidity and mortality. Arterioscler. Thromb. Vasc. Biol., 2010, 30(8), 1665-1671.
[http://dx.doi.org/10.1161/ATVBAHA.109.201939] [PMID: 20562351]
[106]
Rosero-Bixby, L.; Dow, W.H.; Rehkopf, D.H. The nicoya region of costa rica: A high longevity island for elderly males. Vienna Yearb. Popul. Res., 2014, 11, 109-136.
[http://dx.doi.org/10.1553/populationyearbook2013s109] [PMID: 25426140]
[107]
Mattei, J.; Hu, F.B.; Campos, H. A higher ratio of beans to white rice is associated with lower cardiometabolic risk factors in Costa Rican adults. Am. J. Clin. Nutr., 2011, 94(3), 869-872.
[http://dx.doi.org/10.3945/ajcn.111.013219] [PMID: 21813808]
[108]
Ruiz-Narváez, E.A.; Baylin, A.; Azofeifa, J.; Leal, A.; Rosero-Bixby, L. Diet and leukocyte telomere length in a population with extended longevity: The costa rican longevity and healthy aging study (CRELES). Nutrients, 2021, 13(8), 2585.
[http://dx.doi.org/10.3390/nu13082585] [PMID: 34444746]
[109]
Mora-Alvarado, D.A.; Portuguez-Barquero, C.F.; Alfaro-Herrera, N.; Hernandez-Miraulth, M. Differences in water hardness and longevity rates in the nicoya peninsula and the other districts of guanacaste. Revista Tecnología en Marcha., 2015, 28(3), 3-14.
[http://dx.doi.org/10.18845/tm.v28i3.2407]
[110]
Willcox, BJ; Willcox, DC; Suzuki, M Demographic, phenotypic, and genetic characteristics of centenarians in Okinawa and Japan: Part 1-centenarians in Okinawa. Mech Ageing Dev., 2017, 165(Pt B), 75-79.
[http://dx.doi.org/10.1016/j.mad.2016.11.001]
[111]
Willcox, D.C.; Willcox, B.J.; Todoriki, H.; Suzuki, M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J. Am. Coll. Nutr., 2009, 28(S4), 500S-516S.
[http://dx.doi.org/10.1080/07315724.2009.10718117] [PMID: 20234038]
[112]
Isacco, C.G.; Ballini, A.; De Vito, D.; Nguyen, K.C.D.; Cantore, S.; Bottalico, L.; Quagliuolo, L.; Boccellino, M.; Di Domenico, M.; Santacroce, L.; Arrigoni, R.; Dipalma, G.; Inchingolo, F. Rebalancing the oral microbiota as an efficient tool in endocrine, metabolic and immune disorders. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(5), 777-784.
[http://dx.doi.org/10.2174/1871530320666200729142504] [PMID: 32727337]
[113]
Sittipo, P.; Lobionda, S.; Lee, Y.K.; Maynard, C.L. Intestinal microbiota and the immune system in metabolic diseases. J. Microbiol., 2018, 56(3), 154-162.
[http://dx.doi.org/10.1007/s12275-018-7548-y] [PMID: 29492872]
[114]
Fenneman, A.C.; Rampanelli, E.; Yin, Y.S.; Ames, J.; Blaser, M.J.; Fliers, E.; Nieuwdorp, M. Gut microbiota and metabolites in the pathogenesis of endocrine disease. Biochem. Soc. Trans., 2020, 48(3), 915-931.
[http://dx.doi.org/10.1042/BST20190686] [PMID: 32412045]
[115]
Gupta, V.K.; Scheunemann, L.; Eisenberg, T.; Mertel, S.; Bhukel, A.; Koemans, T.S.; Kramer, J.M.; Liu, K.S.Y.; Schroeder, S.; Stunnenberg, H.G.; Sinner, F.; Magnes, C.; Pieber, T.R.; Dipt, S.; Fiala, A.; Schenck, A.; Schwaerzel, M.; Madeo, F.; Sigrist, S.J. Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nat. Neurosci., 2013, 16(10), 1453-1460.
[http://dx.doi.org/10.1038/nn.3512] [PMID: 23995066]
[116]
Marinho, G.; Holdt, S.; Jacobsen, C.; Angelidaki, I. Lipids and composition of fatty acids of saccharina latissima cultivated year-round in integrated multi-trophic aquaculture. Mar. Drugs, 2015, 13(7), 4357-4374.
[http://dx.doi.org/10.3390/md13074357] [PMID: 26184241]
[117]
Suzuki, M.; Wu, S.; Ootawa, T.; Smith, H.; Shiraishi, M.; Miyamoto, A.; Matsuoka, Y.; Sawa, S.; Mori, M.; Mori, H.; Yamori, Y. Relationship between regional distribution of centenarians and drinking water hardness in the amami islands, kagoshima prefecture, Japan. Nutrients, 2023, 15(7), 1569.
[http://dx.doi.org/10.3390/nu15071569] [PMID: 37049410]
[118]
Catling, L.A.; Abubakar, I.; Lake, I.R.; Swift, L.; Hunter, P.R. A systematic review of analytical observational studies investigating the association between cardiovascular disease and drinking water hardness. J. Water Health, 2008, 6(4), 433-442.
[http://dx.doi.org/10.2166/wh.2008.054] [PMID: 18401109]
[119]
Fastame, M.C.; Ruiu, M.; Mulas, I. Mental health and religiosity in the sardinian blue zone: Life satisfaction and optimism for aging well. J. Relig. Health, 2021, 60(4), 2450-2462.
[http://dx.doi.org/10.1007/s10943-021-01261-2] [PMID: 33881687]
[120]
Ben-Zur, H. Loneliness, optimism, and well-being among married, divorced, and widowed individuals. J. Psychol., 2012, 146(1-2), 23-36.
[http://dx.doi.org/10.1080/00223980.2010.548414] [PMID: 22303610]
[121]
Rendall, M.S.; Weden, M.M.; Favreault, M.M.; Waldron, H. The protective effect of marriage for survival: A review and update. Demography, 2011, 48(2), 481-506.
[http://dx.doi.org/10.1007/s13524-011-0032-5] [PMID: 21526396]
[122]
Soloski, M.J.; Poulain, M.; Pes, G.M. Does the trained immune system play an important role in the extreme longevity that is seen in the Sardinian blue zone? Front. Aging, 2022, 3, 1069415.
[http://dx.doi.org/10.3389/fragi.2022.1069415] [PMID: 36601618]
[123]
Vázquez-Palacios, F.R.; Tovar-Cabañas, R. Natural and cultural longevity zones from an anthropological and geographical viewpoint. J. Popul. Ageing, 2022, 15(3), 707-723.
[http://dx.doi.org/10.1007/s12062-022-09370-w] [PMID: 35965639]
[124]
Popkin, B.M. The nutrition transition in low-income countries: An emerging crisis. Nutr. Rev., 1994, 52(9), 285-298.
[http://dx.doi.org/10.1111/j.1753-4887.1994.tb01460.x] [PMID: 7984344]
[125]
Dominguez, L.J.; Di Bella, G.; Veronese, N.; Barbagallo, M. Impact of mediterranean diet on chronic non-communicable diseases and longevity. Nutrients, 2021, 13(6), 2028.
[http://dx.doi.org/10.3390/nu13062028] [PMID: 34204683]
[126]
Polimeno, L.; Barone, M.; Mosca, A.; Viggiani, M.T.; Di Leo, A.; Debellis, L.; Troisi, M.; Daniele, A.; Santacroce, L. Gut microbiota imbalance is related to sporadic colorectal neoplasms. A pilot study. Appl. Sci., 2019, 9(24), 5491.
[http://dx.doi.org/10.3390/app9245491]
[127]
Tsugane, S. Why has Japan become the world’s most long-lived country: Insights from a food and nutrition perspective. Eur. J. Clin. Nutr., 2021, 75(6), 921-928.
[http://dx.doi.org/10.1038/s41430-020-0677-5] [PMID: 32661353]
[128]
Sekikawa, A.; Doyle, M.F.; Kuller, L.H. Recent findings of long-chain n-3 polyunsaturated fatty acids (LCn-3 PUFAs) on atherosclerosis and coronary heart disease (CHD) contrasting studies in Western countries to Japan. Trends Cardiovasc. Med., 2015, 25(8), 717-723.
[http://dx.doi.org/10.1016/j.tcm.2015.03.001] [PMID: 25850978]
[129]
Yu, E.; Hu, F.B. Dairy products, dairy fatty acids, and the prevention of cardiometabolic disease: A review of recent evidence. Curr. Atheroscler. Rep., 2018, 20(5), 24.
[http://dx.doi.org/10.1007/s11883-018-0724-z] [PMID: 29564646]
[130]
Tsugane, S. Salt, salted food intake, and risk of gastric cancer: Epidemiologic evidence. Cancer Sci., 2005, 96(1), 1-6.
[http://dx.doi.org/10.1111/j.1349-7006.2005.00006.x] [PMID: 15649247]
[131]
Rehkopf, D.H.; Dow, W.H.; Rosero-Bixby, L.; Lin, J.; Epel, E.S.; Blackburn, E.H. Longer leukocyte telomere length in Costa Rica’s Nicoya Peninsula: A population-based study. Exp. Gerontol., 2013, 48(11), 1266-1273.
[http://dx.doi.org/10.1016/j.exger.2013.08.005] [PMID: 23988653]
[132]
Arai, Y.; Martin-Ruiz, C.M.; Takayama, M.; Abe, Y.; Takebayashi, T.; Koyasu, S.; Suematsu, M.; Hirose, N.; von Zglinicki, T. Inflammation, but not telomere length, predicts successful ageing at extreme old age: A longitudinal study of semi-supercentenarians. EBioMedicine, 2015, 2(10), 1549-1558.
[http://dx.doi.org/10.1016/j.ebiom.2015.07.029] [PMID: 26629551]
[133]
Bostock, E.L.; Morse, C.I.; Winwood, K.; McEwan, I.M.; Onambélé-Pearson, G.L. Omega-3 fatty acids and vitamin D in immobilisation: Part B- Modulation of muscle functional, vascular and activation profiles. J. Nutr. Health Aging, 2017, 21(1), 59-66.
[http://dx.doi.org/10.1007/s12603-016-0711-4] [PMID: 27999851]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy