Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Current View on How Human Gut Microbiota Mediate Metabolic and Pharmacological Activity of Panax ginseng. A Scoping Review

Author(s): Monica Montagnani, Maria Assunta Potenza, Massimo Corsalini, Giuseppe Barile, Ioannis Alexandros Charitos, Andrea De Giacomo, Emilio Jirillo, Marica Colella and Luigi Santacroce*

Volume 24, Issue 15, 2024

Published on: 19 March, 2024

Page: [1756 - 1773] Pages: 18

DOI: 10.2174/0118715303270923240307120117

Price: $65

conference banner
Abstract

Panax ginseng is one of the most important remedies in ancient Eastern medicine. In the modern Western world, its reputation started to grow towards the end of the XIX century, but the rather approximate understanding of action mechanisms did not provide sufficient information for an appropriate use. Nowadays, Panax ginseng is frequently used in some pathological conditions, but the comprehension of its potential beneficial effects is still incomplete. The purpose of this study is to highlight the most recent knowledge on mechanisms and effects of ginseng active ingredients on the intestinal microbiota. The human microbiota takes part in the immune and metabolic balance and serves as the most important regulator for the control of local pathogens. This delicate role requires a complex interaction and reflects the interconnection with the brainand the liver-axes. Thus, by exerting their beneficial effects through the intestinal microbiota, the active ingredients of Panax ginseng (glycosides and their metabolites) might help to ameliorate both specific intestinal conditions as well as the whole organism's homeostasis.

Keywords: Gut microbiota, Panax ginseng, ginseng glycosides, ginseng metabolites, immunity, probiotics.

Graphical Abstract
[1]
Leung, K.; Wong, A. Pharmacology of ginsenosides: A literature review. Chin. Med., 2010, 5(1), 20.
[http://dx.doi.org/10.1186/1749-8546-5-20] [PMID: 20537195]
[2]
Potenza, M.A.; Montagnani, M.; Santacroce, L.; Charitos, I.A.; Bottalico, L. Ancient herbal therapy: A brief history of Panax ginseng. J. Ginseng Res., 2023, 47(3), 359-365.
[http://dx.doi.org/10.1016/j.jgr.2022.03.004] [PMID: 37252279]
[3]
Baeg, I.H.; So, S.H. The world ginseng market and the ginseng (Korea). J. Ginseng Res., 2013, 37(1), 1-7.
[http://dx.doi.org/10.5142/jgr.2013.37.1] [PMID: 23717152]
[4]
Zhang, H.; Abid, S.; Ahn, J.C.; Mathiyalagan, R.; Kim, Y.J.; Yang, D.C.; Wang, Y. Characteristics of Panax ginseng cultivars in Korea and China. Molecules, 2020, 25(11), 2635.
[http://dx.doi.org/10.3390/molecules25112635] [PMID: 32517049]
[5]
Wei, X.; Wang, X.; Cao, P.; Gao, Z.; Chen, A.J.; Han, J. Microbial community changes in the rhizosphere soil of healthy and rusty panax ginseng and discovery of pivotal fungal genera associated with rusty roots. BioMed Res. Int., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/8018525] [PMID: 32016120]
[6]
Jiao, X.L.; Zhang, X.S.; Lu, X.H.; Qin, R.; Bi, Y.M.; Gao, W.W. Effects of maize rotation on the physicochemical properties and microbial communities of American ginseng cultivated soil. Sci. Rep., 2019, 9(1), 8615.
[http://dx.doi.org/10.1038/s41598-019-44530-7] [PMID: 31197229]
[7]
Hou, J.P. The chemical constituents of ginseng plants. Comp. Med. East West, 1977, 5(2), 123-145.
[PMID: 608333]
[8]
Qi, L.W.; Wang, C.Z.; Yuan, C.S. Ginsenosides from American ginseng: Chemical and pharmacological diversity. Phytochemistry, 2011, 72(8), 689-699.
[http://dx.doi.org/10.1016/j.phytochem.2011.02.012] [PMID: 21396670]
[9]
Yang, W.; Hu, Y.; Wu, W.; Ye, M.; Guo, D. Saponins in the genus Panax L. (Araliaceae): A systematic review of their chemical diversity. Phytochemistry, 2014, 106, 7-24.
[http://dx.doi.org/10.1016/j.phytochem.2014.07.012] [PMID: 25108743]
[10]
He, M.; Huang, X.; Liu, S.; Guo, C.; Xie, Y.; Meijer, A.H.; Wang, M. The difference between white and red ginseng: Variations in ginsenosides and immunomodulation. Planta Med., 2018, 84(12/13), 845-854.
[http://dx.doi.org/10.1055/a-0641-6240] [PMID: 29925101]
[11]
Zheng, M.; Xu, F.; Li, Y.; Xi, X.; Cui, X.; Han, C.; Zhang, X. Study on transformation of ginsenosides in different methods. Bio.Med. Res. Int., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/8601027] [PMID: 29387726]
[12]
Qi, L.W.; Wang, C.Z.; Du, G.J.; Zhang, Z.Y.; Calway, T.; Yuan, C.S. Metabolism of ginseng and its interactions with drugs. Curr. Drug Metab., 2011, 12(9), 818-822.
[http://dx.doi.org/10.2174/138920011797470128] [PMID: 21619519]
[13]
Yu, K.; Chen, F.; Li, C. Absorption, disposition, and pharmacokinetics of saponins from Chinese medicinal herbs: What do we know and what do we need to know more? Curr. Drug Metab., 2012, 13(5), 577-598.
[http://dx.doi.org/10.2174/1389200211209050577] [PMID: 22292787]
[14]
Qi, L.W.; Wang, C.Z.; Yuan, C.S. Isolation and analysis of ginseng: Advances and challenges. Nat. Prod. Rep., 2011, 28(3), 467-495.
[http://dx.doi.org/10.1039/c0np00057d] [PMID: 21258738]
[15]
Panossian, A.G.; Efferth, T.; Shikov, A.N.; Pozharitskaya, O.N.; Kuchta, K.; Mukherjee, P.K.; Banerjee, S.; Heinrich, M.; Wu, W.; Guo, D.; Wagner, H. Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress‐ and aging‐related diseases. Med. Res. Rev., 2021, 41(1), 630-703.
[http://dx.doi.org/10.1002/med.21743] [PMID: 33103257]
[16]
Arring, N.M.; Millstine, D.; Marks, L.A.; Nail, L.M. Ginseng as a treatment for fatigue: A systematic review. J. Altern. Complement. Med., 2018, 24(7), 624-633.
[http://dx.doi.org/10.1089/acm.2017.0361] [PMID: 29624410]
[17]
Goodwin, J.S.; Atluru, D.; Sierakowski, S.; Lianos, E.A. Mechanism of action of glucocorticosteroids. Inhibition of T cell proliferation and interleukin 2 production by hydrocortisone is reversed by leukotriene B4. J. Clin. Invest., 1986, 77(4), 1244-1250.
[http://dx.doi.org/10.1172/JCI112427] [PMID: 3007577]
[18]
Scaglione, F.; Cattaneo, G.; Alessandria, M.; Cogo, R. Efficacy and safety of the standardised Ginseng extract G115 for potentiating vaccination against the influenza syndrome and protection against the common cold. Drugs Exp. Clin. Res., 1996, 22(2), 65-72.
[PMID: 8879982]
[19]
Kang, S.W.; Min, H.Y. Ginseng, the ‘Immunity Boost’: The effects of panax ginseng on immune system. J. Ginseng Res., 2012, 36(4), 354-368.
[http://dx.doi.org/10.5142/jgr.2012.36.4.354] [PMID: 23717137]
[20]
Xue, C.C.; Shergis, J.L.; Zhang, A.L.; Worsnop, C.; Fong, H.; Story, D.; Da Costa, C.; Thien, F.C.K. Panax ginseng C.A Meyer root extract for moderate chronic obstructive pulmonary disease (COPD): Study protocol for a randomised controlled trial. Trials, 2011, 12(1), 164.
[http://dx.doi.org/10.1186/1745-6215-12-164] [PMID: 21718484]
[21]
Chen, Z.Y.; Du, T.M.; Chen, S.C. Effects of ginsenoside Rg1 on learning and memory function and morphology of hippocampal neurons of rats with electrical hippocampal injuries. Nan Fang Yi Ke Da Xue Xue Bao, 2011, 31(6), 1039-1042.
[PMID: 21690064]
[22]
Hou, W.; Wang, Y.; Zheng, P.; Cui, R. Effects of ginseng on neurological disorders. Front. Cell. Neurosci., 2020, 14, 55.
[http://dx.doi.org/10.3389/fncel.2020.00055] [PMID: 32265659]
[23]
Ong, W.Y.; Farooqui, T.; Koh, H.L.; Farooqui, A.A.; Ling, E.A. Protective effects of ginseng on neurological disorders. Front. Aging Neurosci., 2015, 7, 129.
[http://dx.doi.org/10.3389/fnagi.2015.00129] [PMID: 26236231]
[24]
Wang, Y.; Li, X.; Wang, X.; Lau, W.; Wang, Y.; Xing, Y.; Zhang, X.; Ma, X.; Gao, F. Ginsenoside Rd attenuates myocardial ischemia/reperfusion injury via Akt/GSK-3β signaling and inhibition of the mitochondria-dependent apoptotic pathway. PLoS One, 2013, 8(8), e70956.
[http://dx.doi.org/10.1371/journal.pone.0070956] [PMID: 23976968]
[25]
Sun, J.; Sun, G.; Meng, X.; Wang, H.; Wang, M.; Qin, M.; Ma, B.; Luo, Y.; Yu, Y.; Chen, R.; Ai, Q.; Sun, X. Ginsenoside RK3 prevents hypoxia-reoxygenation induced apoptosis in H9c2 cardiomyocytes via AKT and MAPK pathway. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-12.
[http://dx.doi.org/10.1155/2013/690190] [PMID: 23935671]
[26]
Chen, X. Cardiovascular protection by ginsenosides and their nitric oxide releasing action. Clin. Exp. Pharmacol. Physiol., 1996, 23(8), 728-732.
[http://dx.doi.org/10.1111/j.1440-1681.1996.tb01767.x] [PMID: 8886498]
[27]
Tsai, S.C.; Chiao, Y.C.; Lu, C.C.; Wang, P.S. Stimulation of the secretion of luteinizing hormone by ginsenoside-Rb1 in male rats. Chin. J. Physiol., 2003, 46(1), 1-7.
[PMID: 12817698]
[28]
Wang, X.; Chu, S.; Qian, T.; Chen, J.; Zhang, J. Ginsenoside Rg1 improves male copulatory behavior via nitric oxide/cyclic guanosine monophosphate pathway. J. Sex. Med., 2010, 7(2), 743-750.
[http://dx.doi.org/10.1111/j.1743-6109.2009.01482.x] [PMID: 19751391]
[29]
Shang, W.; Yang, Y.; Zhou, L.; Jiang, B.; Jin, H.; Chen, M. Ginsenoside Rb1 stimulates glucose uptake through insulin-like signaling pathway in 3T3-L1 adipocytes. J. Endocrinol., 2008, 198(3), 561-569.
[http://dx.doi.org/10.1677/JOE-08-0104] [PMID: 18550785]
[30]
Bang, H.; Kwak, J.H.; Ahn, H.Y.; Shin, D.Y.; Lee, J.H. Korean red ginseng improves glucose control in subjects with impaired fasting glucose, impaired glucose tolerance, or newly diagnosed type 2 diabetes mellitus. J. Med. Food, 2014, 17(1), 128-134.
[http://dx.doi.org/10.1089/jmf.2013.2889] [PMID: 24456363]
[31]
Sotaniemi, E.A.; Haapakoski, E.; Rautio, A. Ginseng therapy in non-insulin-dependent diabetic patients: Effects on psychophysical performance, glucose homeostasis, serum lipids, serum aminoterminalpropeptide concentration, and body weight. Diabetes Care, 1995, 18(10), 1373-1375.
[http://dx.doi.org/10.2337/diacare.18.10.1373] [PMID: 8721940]
[32]
Vuksan, V.; Stavro, M.P.; Sievenpiper, J.L.; Koo, V.Y.Y.; Wong, E.; Beljan-Zdravkovic, U.; Francis, T.; Jenkins, A.L.; Leiter, L.A.; Josse, R.G.; Xu, Z. American ginseng improves glycemia in individuals with normal glucose tolerance: Effect of dose and time escalation. J. Am. Coll. Nutr., 2000, 19(6), 738-744.
[http://dx.doi.org/10.1080/07315724.2000.10718073] [PMID: 11194526]
[33]
Paik, D.J.; Lee, C.H. Review of cases of patient risk associated with ginseng abuse and misuse. J. Ginseng Res., 2015, 39(2), 89-93.
[http://dx.doi.org/10.1016/j.jgr.2014.11.005] [PMID: 26045681]
[34]
Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J., 2017, 474(11), 1823-1836.
[http://dx.doi.org/10.1042/BCJ20160510] [PMID: 28512250]
[35]
Varro, E. Tyler. Herbs of Choice: The Therapeutic Use of Phytomedicinals; Haworth Pr Inc, 1994.
[36]
Coon, J.T.; Ernst, E. Panax ginseng. Drug Saf., 2002, 25(5), 323-344.
[http://dx.doi.org/10.2165/00002018-200225050-00003] [PMID: 12020172]
[37]
Seely, D.; Dugoua, J.J.; Perri, D.; Mills, E.; Koren, G. Safety and efficacy of panax ginseng during pregnancy and lactation. J. Popul. Ther. Clin. Pharmacol., 2008, 15(1), e87-e94.
[PMID: 18204104]
[38]
Liu, Y.; Zhang, J.W.; Li, W.; Ma, H.; Sun, J.; Deng, M.C.; Yang, L. Ginsenoside metabolites, rather than naturally occurring ginsenosides, lead to inhibition of human cytochrome P450 enzymes. Toxicol. Sci., 2006, 91(2), 356-364.
[http://dx.doi.org/10.1093/toxsci/kfj164] [PMID: 16547074]
[39]
Wang, F.; Li, Y.; Zhang, Y.J.; Zhou, Y.; Li, S.; Li, H.B. Natural products for the prevention and treatment of hangover and alcohol use disorder. Molecules, 2016, 21(1), 64.
[http://dx.doi.org/10.3390/molecules21010064] [PMID: 26751438]
[40]
Kim, Y.S.; Woo, J.Y.; Han, C.K.; Chang, I.M. Safety analysis of panax ginseng in randomized clinical trials: A systematic review. Medicines, 2015, 2(2), 106-126.
[http://dx.doi.org/10.3390/medicines2020106] [PMID: 28930204]
[41]
AL Shabanah, O.A.; Alotaibi, M.R.; Al Rejaie, S.S.; Alhoshani, A.R.; Almutairi, M.M.; Alshammari, M.A.; Hafez, M.M. Inhibitory effect of ginseng on breast cancer cell line growth via up-regulation of cyclin dependent kinase inhibitor, p21 and p53. Asian Pac. J. Cancer Prev., 2016, 17(11), 4965-4971.
[PMID: 28032724]
[42]
Dogra, A.; Kumar, J. Biosynthesis of anticancer phytochemical compounds and their chemistry. Front. Pharmacol., 2023, 14, 1136779.
[http://dx.doi.org/10.3389/fphar.2023.1136779] [PMID: 36969868]
[43]
Vuksan, V.; Sung, M.K.; Sievenpiper, J.L.; Stavro, P.M.; Jenkins, A.L.; Di Buono, M.; Lee, K.S.; Leiter, L.A.; Nam, K.Y.; Arnason, J.T.; Choi, M.; Naeem, A. Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: Results of a randomized, double-blind, placebo-controlled study of efficacy and safety. Nutr. Metab. Cardiovasc. Dis., 2008, 18(1), 46-56.
[http://dx.doi.org/10.1016/j.numecd.2006.04.003] [PMID: 16860976]
[44]
Jones, B.D.; Runikis, A.M. Interaction of ginseng with phenelzine. J. Clin. Psychopharmacol., 1987, 7(3), 201-202.
[http://dx.doi.org/10.1097/00004714-198706000-00030] [PMID: 3597812]
[45]
Myers, A.P.; Watson, T.A.; Strock, S.B. Drug reaction with eosinophilia and systemic symptoms syndrome probably induced by a lamotrigine-ginseng drug interaction. Pharmacotherapy, 2015, 35(3), e9-e12.
[http://dx.doi.org/10.1002/phar.1550] [PMID: 25756365]
[46]
Ong Lai Teik, D.; Lee, X.S.; Lim, C.J.; Low, C.M.; Muslima, M.; Aquili, L. Ginseng and ginkgo biloba effects on cognition as modulated by cardiovascular reactivity: A randomised trial. PLoS One, 2016, 11(3), e0150447.
[http://dx.doi.org/10.1371/journal.pone.0150447] [PMID: 26938637]
[47]
Kim, Y.; Jo, J.J.; Cho, P.; Shrestha, R.; Kim, K.M.; Ki, S.H.; Song, K.S.; Liu, K.H.; Song, I.S.; Kim, J.H.; Lee, J.M.; Lee, S. Characterization of red ginseng–drug interaction by CYP3A activity increased in high dose administration in mice. Biopharm. Drug Dispos., 2020, 41(7), 295-306.
[http://dx.doi.org/10.1002/bdd.2246] [PMID: 32557706]
[48]
Santacroce, L.; Man, A.; Charitos, I.A.; Haxhirexha, K.; Topi, S. Current knowledge about the connection between health status and gut microbiota from birth to elderly. A narrative review. Front. Biosci., 2021, 26(6), 135-148.
[http://dx.doi.org/10.52586/4930] [PMID: 34162042]
[49]
Liang, D.; Leung, R.K.K.; Guan, W.; Au, W.W. Correction to: Involvement of gut microbiome in human health and disease: Brief overview, knowledge gaps and research opportunities. Gut Pathog., 2019, 11(1), 57.
[http://dx.doi.org/10.1186/s13099-019-0339-0] [PMID: 31832105]
[50]
Azim, T. Lymphocytes in the intestine: Role and distribution. J. Diarrhoeal Dis. Res., 1991, 9(1), 1-10.
[PMID: 1869795]
[51]
Wu, H.J.; Wu, E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes, 2012, 3(1), 4-14.
[http://dx.doi.org/10.4161/gmic.19320] [PMID: 22356853]
[52]
Cheng, M.; Ning, K. Stereotypes about enterotype: The old and new ideas. Genomics Proteomics Bioinformatics, 2019, 17(1), 4-12.
[http://dx.doi.org/10.1016/j.gpb.2018.02.004] [PMID: 31026581]
[53]
Roager, H.M.; Licht, T.R.; Poulsen, S.K.; Larsen, T.M.; Bahl, M.I. Microbial enterotypes, inferred by the prevotella-to-bacteroides ratio, remained stable during a 6-month randomized controlled diet intervention with the new nordic diet. Appl. Environ. Microbiol., 2014, 80(3), 1142-1149.
[http://dx.doi.org/10.1128/AEM.03549-13] [PMID: 24296500]
[54]
Satokari, R.; Grönroos, T.; Laitinen, K.; Salminen, S.; Isolauri, E. Bifidobacterium and Lactobacillus DNA in the human placenta. Lett. Appl. Microbiol., 2009, 48(1), 8-12.
[http://dx.doi.org/10.1111/j.1472-765X.2008.02475.x] [PMID: 19018955]
[55]
Arboleya, S.; Watkins, C.; Stanton, C.; Ross, R.P. Gut bifidobacteria populations in human health and aging. Front. Microbiol., 2016, 7, 1204.
[http://dx.doi.org/10.3389/fmicb.2016.01204] [PMID: 27594848]
[56]
Penders, J.; Thijs, C.; Vink, C.; Stelma, F.F.; Snijders, B.; Kummeling, I.; van den Brandt, P.A.; Stobberingh, E.E. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics, 2006, 118(2), 511-521.
[http://dx.doi.org/10.1542/peds.2005-2824] [PMID: 16882802]
[57]
Salazar, N.; Valdés-Varela, L.; González, S.; Gueimonde, M.; de los Reyes-Gavilán, C.G. Nutrition and the gut microbiome in the elderly. Gut Microbes, 2017, 8(2), 82-97.
[http://dx.doi.org/10.1080/19490976.2016.1256525] [PMID: 27808595]
[58]
McBurney, M.I.; Davis, C.; Fraser, C.M.; Schneeman, B.O.; Huttenhower, C.; Verbeke, K.; Walter, J.; Latulippe, M.E. Establishing what constitutes a healthy human gut microbiome: State of the science, regulatory considerations, and future directions. J. Nutr., 2019, 149(11), 1882-1895.
[http://dx.doi.org/10.1093/jn/nxz154] [PMID: 31373365]
[59]
Sartor, R.B. Microbial influences in inflammatory bowel diseases. Gastroenterology, 2008, 134(2), 577-594.
[http://dx.doi.org/10.1053/j.gastro.2007.11.059] [PMID: 18242222]
[60]
Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science, 2005, 308(5728), 1635-1638.
[http://dx.doi.org/10.1126/science.1110591] [PMID: 15831718]
[61]
Menees, S.; Chey, W. The gut microbiome and irritable bowel syndrome. F1000 Res., 2018, 7, 1029.
[http://dx.doi.org/10.12688/f1000research.14592.1] [PMID: 30026921]
[62]
Cani, P.D.; Delzenne, N.M.; Amar, J.; Burcelin, R. Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding. Pathol. Biol., 2008, 56(5), 305-309.
[http://dx.doi.org/10.1016/j.patbio.2007.09.008] [PMID: 18178333]
[63]
Harris, K.; Kassis, A.; Major, G.; Chou, C.J. Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J. Obes., 2012, 2012, 879151.
[PMID: 22315672]
[64]
Santacroce, L.; Palmirotta, R.; Bottalico, L.; Charitos, I.A.; Colella, M.; Topi, S.; Jirillo, E. Crosstalk between the resident microbiota and the immune cells regulates female genital tract health. Life, 2023, 13(7), 1531.
[http://dx.doi.org/10.3390/life13071531] [PMID: 37511906]
[65]
de Punder, K.; Pruimboom, L. Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability. Front. Immunol., 2015, 6, 223.
[http://dx.doi.org/10.3389/fimmu.2015.00223] [PMID: 26029209]
[66]
Zeng, X.Y.; Li, M. Looking into key bacterial proteins involved in gut dysbiosis. World J. Methodol., 2021, 11(4), 130-143.
[http://dx.doi.org/10.5662/wjm.v11.i4.130] [PMID: 34322365]
[67]
Colella, M.; Charitos, I.A.; Ballini, A.; Cafiero, C.; Topi, S.; Palmirotta, R.; Santacroce, L. Microbiota revolution: How gut microbes regulate our lives. World J. Gastroenterol., 2023, 29(28), 4368-4383.
[http://dx.doi.org/10.3748/wjg.v29.i28.4368] [PMID: 37576701]
[68]
Quan, L.H.; Zhang, C.; Dong, M.; Jiang, J.; Xu, H.; Yan, C.; Liu, X.; Zhou, H.; Zhang, H.; Chen, L.; Zhong, F.L.; Luo, Z.B.; Lam, S.M.; Shui, G.; Li, D.; Jin, W. Myristoleic acid produced by enterococci reduces obesity through brown adipose tissue activation. Gut, 2020, 69(7), 1239-1247.
[http://dx.doi.org/10.1136/gutjnl-2019-319114] [PMID: 31744910]
[69]
Potenza, M.A.; Nacci, C.; De Salvia, M.A.; Sgarra, L.; Collino, M.; Montagnani, M. Targeting endothelial metaflammation to counteract diabesity cardiovascular risk: Current and perspective therapeutic options. Pharmacol. Res., 2017, 120, 226-241.
[http://dx.doi.org/10.1016/j.phrs.2017.04.009] [PMID: 28408314]
[70]
Festi, D.; Schiumerini, R.; Eusebi, L.H.; Marasco, G.; Taddia, M.; Colecchia, A. Gut microbiota and metabolic syndrome. World J. Gastroenterol., 2014, 20(43), 16079-16094.
[http://dx.doi.org/10.3748/wjg.v20.i43.16079] [PMID: 25473159]
[71]
Diamant, M.; Blaak, E.E.; de Vos, W.M. Do nutrient–gut–microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes? Obes. Rev., 2011, 12(4), 272-281.
[http://dx.doi.org/10.1111/j.1467-789X.2010.00797.x] [PMID: 20804522]
[72]
Ghosh, S.S.; Wang, J.; Yannie, P.J.; Ghosh, S. Intestinal barrier dysfunction, LPS translocation, and disease development. J. Endocr. Soc., 2020, 4(2), bvz039.
[http://dx.doi.org/10.1210/jendso/bvz039] [PMID: 32099951]
[73]
Zhang, Q.; Xiao, X.; Zheng, J.; Li, M.; Yu, M.; Ping, F.; Wang, T.; Wang, X. Featured article: Structure moderation of gut microbiota in liraglutide-treated diabetic male rats. Exp. Biol. Med., 2018, 243(1), 34-44.
[http://dx.doi.org/10.1177/1535370217743765] [PMID: 29171288]
[74]
Pais, R.; Gribble, F.M.; Reimann, F. Stimulation of incretin secreting cells. Ther. Adv. Endocrinol. Metab., 2016, 7(1), 24-42.
[http://dx.doi.org/10.1177/2042018815618177] [PMID: 26885360]
[75]
Gérard, C.; Vidal, H. Impact of gut microbiota on host glycemic control. Front. Endocrinol., 2019, 10, 29.
[http://dx.doi.org/10.3389/fendo.2019.00029] [PMID: 30761090]
[76]
Santacroce, L., Mavaddati, S., Hamedi, J., Zeinali, B., Ballini, A., Bilancia, M. (2020). Expressive analysis of gut microbiota in preand post- solid organ transplantation using bayesian topic models. In: Gervasi, O., et al. Computational science and its applications – ICCSA 2020. ICCSA 2020. Lecture notes in computer science, vol 12252. Springer, Cham, 2020.
[http://dx.doi.org/10.1007/978-3-030-58811-3_11]
[77]
Sears, C.L.; Garrett, W.S. Microbes, microbiota, and colon cancer. Cell Host Microbe, 2014, 15(3), 317-328.
[http://dx.doi.org/10.1016/j.chom.2014.02.007] [PMID: 24629338]
[78]
Vinasco, K.; Mitchell, H.M.; Kaakoush, N.O.; Castaño-Rodríguez, N. Microbial carcinogenesis: Lactic acid bacteria in gastric cancer. Biochim. Biophys. Acta Rev. Cancer, 2019, 1872(2), 188309.
[http://dx.doi.org/10.1016/j.bbcan.2019.07.004] [PMID: 31394110]
[79]
Kelly, D.; Yang, L.; Pei, Z. Gut microbiota, fusobacteria, and colorectal cancer. Diseases, 2018, 6(4), 109.
[http://dx.doi.org/10.3390/diseases6040109] [PMID: 30544946]
[80]
Carding, S.; Verbeke, K.; Vipond, D.T.; Corfe, B.M.; Owen, L.J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis., 2015, 26, 26191.
[PMID: 25651997]
[81]
Polimeno, L.; Francavilla, A.; Piscitelli, D.; Fiore, M.G.; Polimeno, R.; Topi, S.; Haxhirexha, K.; Ballini, A.; Daniele, A.; Santacroce, L. The role of PIAS3, p-STAT3 and ALR in colorectal cancer: New translational molecular features for an old disease. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(20), 10496-10511.
[http://dx.doi.org/10.26355/eurrev_202010_23402] [PMID: 33155205]
[82]
Signorini, L.; Ballini, A.; Arrigoni, R.; De Leonardis, F.; Saini, R.; Cantore, S.; De Vito, D.; Coscia, M.F.; Dipalma, G.; Santacroce, L.; Inchingolo, F. Evaluation of a nutraceutical product with probiotics, vitamin d, plus banaba leaf extracts (lagerstroemia speciosa) in glycemic control. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(7), 1356-1365.
[http://dx.doi.org/10.2174/1871530320666201109115415] [PMID: 33167849]
[83]
Polimeno, L.; Barone, M.; Mosca, A.; Viggiani, M.T.; Joukar, F.; Mansour-Ghanaei, F.; Mavaddati, S.; Daniele, A.; Debellis, L.; Bilancia, M.; Santacroce, L.; Di Leo, A. Soy metabolism by gut microbiota from patients with precancerous intestinal lesions. Microorganisms, 2020, 8(4), 469.
[http://dx.doi.org/10.3390/microorganisms8040469] [PMID: 32218321]
[84]
Arrigoni, R.; Ballini, A.; Santacroce, L.; Cantore, S.; Inchingolo, A.; Inchingolo, F.; Di Domenico, M.; Quagliuolo, L.; Boccellino, M. Another look at dietary polyphenols: challenges in cancer prevention and treatment. Curr. Med. Chem., 2022, 29(6), 1061-1082.
[http://dx.doi.org/10.2174/0929867328666210810154732] [PMID: 34375181]
[85]
Montagnani, M.; Bottalico, L.; Potenza, M.A.; Charitos, I.A.; Topi, S.; Colella, M.; Santacroce, L. The crosstalk between gut microbiota and nervous system: A bidirectional interaction between microorganisms and metabolome. Int. J. Mol. Sci., 2023, 24(12), 10322.
[http://dx.doi.org/10.3390/ijms241210322] [PMID: 37373470]
[86]
Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol., 2015, 28(2), 203-209.
[PMID: 25830558]
[87]
Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(8), 461-478.
[http://dx.doi.org/10.1038/s41575-019-0157-3] [PMID: 31123355]
[88]
Kim, Y.K.; Yum, K.S. Effects of red ginseng extract on gut microbial distribution. J. Ginseng Res., 2022, 46(1), 91-103.
[http://dx.doi.org/10.1016/j.jgr.2021.04.005] [PMID: 35035242]
[89]
Liang, W.; Zhou, K.; Jian, P.; Chang, Z.; Zhang, Q.; Liu, Y.; Xiao, S.; Zhang, L. Ginsenosides improve nonalcoholic fatty liver disease via integrated regulation of gut microbiota, inflammation and energy homeostasis. Front. Pharmacol., 2021, 12, 622841.
[http://dx.doi.org/10.3389/fphar.2021.622841] [PMID: 33679403]
[90]
Jeon, H.; Bae, C.H.; Lee, Y.; Kim, H.Y.; Kim, S. Korean red ginseng suppresses 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced inflammation in the substantia nigra and colon. Brain Behav. Immun., 2021, 94, 410-423.
[http://dx.doi.org/10.1016/j.bbi.2021.02.028] [PMID: 33662500]
[91]
Xu, Y.; Wang, N.; Tan, H.Y.; Li, S.; Zhang, C.; Feng, Y. Gut-liver axis modulation of Panax notoginseng saponins in nonalcoholic fatty liver disease. Hepatol. Int., 2021, 15(2), 350-365.
[http://dx.doi.org/10.1007/s12072-021-10138-1] [PMID: 33656663]
[92]
Chen, H.; Yang, H.; Deng, J.; Fan, D. Ginsenoside Rk3 ameliorates obesity-induced colitis by regulating of intestinal flora and the TLR4/NF-κB signaling pathway in C57BL/6 mice. J. Agric. Food Chem., 2021, 69(10), 3082-3093.
[http://dx.doi.org/10.1021/acs.jafc.0c07805] [PMID: 33621094]
[93]
Yang, Y.; Hu, N.; Gao, X.J.; Li, T.; Yan, Z.X.; Wang, P.P.; Wei, B.; Li, S.; Zhang, Z.J.; Li, S.L.; Yan, R. Dextran sulfate sodium-induced colitis and ginseng intervention altered oral pharmacokinetics of cyclosporine A in rats. J. Ethnopharmacol., 2021, 265, 113251.
[http://dx.doi.org/10.1016/j.jep.2020.113251] [PMID: 32810615]
[94]
Qu, Q.; Yang, F.; Zhao, C.; Liu, X.; Yang, P.; Li, Z.; Han, L.; Shi, X. Effects of fermented ginseng on the gut microbiota and immunity of rats with antibiotic-associated diarrhea. J. Ethnopharmacol., 2021, 267, 113594.
[http://dx.doi.org/10.1016/j.jep.2020.113594] [PMID: 33217518]
[95]
Xu, Y.; Wang, N.; Tan, H.Y.; Li, S.; Zhang, C.; Zhang, Z.; Feng, Y. Panax notoginseng saponins modulate the gut microbiota to promote thermogenesis and beige adipocyte reconstruction via leptin-mediated AMPKα/STAT3 signaling in diet-induced obesity. Theranostics, 2020, 10(24), 11302-11323.
[http://dx.doi.org/10.7150/thno.47746] [PMID: 33042284]
[96]
Zhu, J.H.; Xu, J.D.; Zhou, S.S.; Zhang, X.Y.; Zhou, J.; Kong, M.; Mao, Q.; Zhu, H.; Li, S.L. Differences in intestinal metabolism of ginseng between normal and immunosuppressed rats. Eur. J. Drug Metab. Pharmacokinet., 2021, 46(1), 93-104.
[http://dx.doi.org/10.1007/s13318-020-00645-1] [PMID: 32894450]
[97]
Xu, J.; Li, T.; Xia, X.; Fu, C.; Wang, X.; Zhao, Y. Dietary ginsenoside T19 supplementation regulates glucose and lipid metabolism via AMPK and PI3K pathways and its effect on intestinal microbiota. J. Agric. Food Chem., 2020, 68(49), 14452-14462.
[http://dx.doi.org/10.1021/acs.jafc.0c04429] [PMID: 33237753]
[98]
Xie, Y.; Liu, J.; Wang, H.; Luo, J.; Chen, T.; Xi, Q.; Zhang, Y.; Sun, J. Effects of fermented feeds and ginseng polysaccharides on the intestinal morphology and microbiota composition of Xuefeng black-bone chicken. PLoS One, 2020, 15(8), e0237357.
[http://dx.doi.org/10.1371/journal.pone.0237357] [PMID: 32780763]
[99]
Luo, Z.; Xu, W.; Zhang, Y.; Di, L.; Shan, J. A review of saponin intervention in metabolic syndrome suggests further study on intestinal microbiota. Pharmacol. Res., 2020, 160, 105088.
[http://dx.doi.org/10.1016/j.phrs.2020.105088] [PMID: 32683035]
[100]
Wang, J.L.; Xiu, C.K.; Yang, J.; Wang, X.; Hu, Y.H.; Fang, J.Y.; Lei, Y. Effect of ginseng radix et rhizoma, notoginseng radix et rhizoma and chuanxiong rhizoma extracts on intestinal flora of vascular aging mice induced by high glucose and high lipid. Zhongguo Zhongyao Zazhi, 2020, 45(12), 2938-2946.
[PMID: 32627470]
[101]
Kim, J.K.; Choi, M.S.; Jeung, W.; Ra, J.; Yoo, H.H.; Kim, D.H. Effects of gut microbiota on the pharmacokinetics of protopanaxadiol ginsenosides Rd, Rg3, F2, and compound K in healthy volunteers treated orally with red ginseng. J. Ginseng Res., 2020, 44(4), 611-618.
[http://dx.doi.org/10.1016/j.jgr.2019.05.012] [PMID: 32617041]
[102]
Chen, L.; Chen, M.Y.; Shao, L.; Zhang, W.; Rao, T.; Zhou, H.H.; Huang, W.H. Panax notoginseng saponins prevent colitis-associated colorectal cancer development: The role of gut microbiota. Chin. J. Nat. Med., 2020, 18(7), 500-507.
[http://dx.doi.org/10.1016/S1875-5364(20)30060-1] [PMID: 32616190]
[103]
Guo, Y.P.; Shao, L.; Chen, M.Y.; Qiao, R.F.; Zhang, W.; Yuan, J.B.; Huang, W.H. In vivo metabolic profiles of panax notoginseng saponins mediated by gut microbiota in rats. J. Agric. Food Chem., 2020, 68(25), 6835-6844.
[http://dx.doi.org/10.1021/acs.jafc.0c01857] [PMID: 32449854]
[104]
Yang, L.; Zou, H.; Gao, Y.; Luo, J.; Xie, X.; Meng, W.; Zhou, H.; Tan, Z. Insights into gastrointestinal microbiota-generated ginsenoside metabolites and their bioactivities. Drug Metab. Rev., 2020, 52(1), 125-138.
[http://dx.doi.org/10.1080/03602532.2020.1714645] [PMID: 31984805]
[105]
Chen, H.; Shen, J.; Li, H.; Zheng, X.; Kang, D.; Xu, Y.; Chen, C.; Guo, H.; Xie, L.; Wang, G.; Liang, Y. Ginsenoside Rb1 exerts neuroprotective effects through regulation of Lactobacillus helveticus abundance and GABAA receptor expression. J. Ginseng Res., 2020, 44(1), 86-95.
[http://dx.doi.org/10.1016/j.jgr.2018.09.002] [PMID: 32095096]
[106]
Han, S.K.; Joo, M.K.; Kim, J.K.; Jeung, W.; Kang, H.; Kim, D.H. Bifidobacteria-fermented red ginseng and its constituents ginsenoside rd and protopanaxatriol alleviate anxiety/depression in mice by the amelioration of gut dysbiosis. Nutrients, 2020, 12(4), 901.
[http://dx.doi.org/10.3390/nu12040901] [PMID: 32224881]
[107]
Zhang, J.; Wei, L.; Yang, J.; Ahmed, W.; Wang, Y.; Fu, L.; Ji, G. Probiotic consortia: Reshaping the rhizospheric microbiome and its role in suppressing root-rot disease of panax notoginseng. Front. Microbiol., 2020, 11, 701.
[http://dx.doi.org/10.3389/fmicb.2020.00701] [PMID: 32425904]
[108]
Fan, J.; Wang, Y.; You, Y.; Ai, Z.; Dai, W.; Piao, C.; Liu, J.; Wang, Y. Fermented ginseng improved alcohol liver injury in association with changes in the gut microbiota of mice. Food Funct., 2019, 10(9), 5566-5573.
[http://dx.doi.org/10.1039/C9FO01415B] [PMID: 31429848]
[109]
Zhou, S.S.; Auyeung, K.K.W.; Yip, K.M.; Ye, R.; Zhao, Z.Z.; Mao, Q.; Xu, J.; Chen, H.B.; Li, S.L. Stronger anti-obesity effect of white ginseng over red ginseng and the potential mechanisms involving chemically structural/compositional specificity to gut microbiota. Phytomedicine, 2020, 74, 152761.
[http://dx.doi.org/10.1016/j.phymed.2018.11.021] [PMID: 31005370]
[110]
Zhang, T.; Dong, K.; Xiao, L.; Li, G.; Zhang, Z. Effects of co-administration of icariin and panax notoginseng saponins on intestinal microbiota and hippocampal protein expression in a mouse model of alzheimer’s disease. Neuropsychiatr. Dis. Treat., 2020, 16, 2169-2179.
[http://dx.doi.org/10.2147/NDT.S253972] [PMID: 33061388]
[111]
Qi, Y.L.; Li, S.S.; Qu, D.; Chen, L.X.; Gong, R.Z.; Gao, K.; Sun, Y.S. Effects of ginseng neutral polysaccharide on gut microbiota in antibiotic-associated diarrhea mice. Zhongguo Zhongyao Zazhi, 2019, 44(4), 811-818.
[PMID: 30989896]
[112]
Guo, Y.P.; Chen, M.Y.; Shao, L.; Zhang, W.; Rao, T.; Zhou, H.H.; Huang, W.H. Quantification of panax notoginseng saponins metabolites in rat plasma with in vivo gut microbiota-mediated biotransformation by HPLC-MS/MS. Chin. J. Nat. Med., 2019, 17(3), 231-240.
[http://dx.doi.org/10.1016/S1875-5364(19)30026-3] [PMID: 30910060]
[113]
Kim, J.C.; Jeon, J.Y.; Yang, W.; Kim, C.H.; Eom, D.W. Combined amelioration of ginsenoside (Rg1, Rb1, and Rg3)-enriched korean red ginseng and probiotic lactobacillus on non-alcoholic fatty liver disease. Curr. Pharm. Biotechnol., 2019, 20(3), 222-231.
[http://dx.doi.org/10.2174/1389201020666190311143554] [PMID: 30854954]
[114]
Zhou, P.; Xie, W.; He, S.; Sun, Y.; Meng, X.; Sun, G.; Sun, X. Ginsenoside Rb1 as an anti-diabetic agent and its underlying mechanism analysis. Cells, 2019, 8(3), 204.
[http://dx.doi.org/10.3390/cells8030204] [PMID: 30823412]
[115]
Santacroce, L.; Inchingolo, F.; Topi, S.; Del Prete, R.; Di Cosola, M.; Charitos, I.A.; Montagnani, M. Potential beneficial role of probiotics on the outcome of COVID-19 patients: An evolving perspective. Diabetes Metab. Syndr., 2021, 15(1), 295-301.
[http://dx.doi.org/10.1016/j.dsx.2020.12.040] [PMID: 33484986]
[116]
Li, C.; Niu, Z.; Zou, M.; Liu, S.; Wang, M.; Gu, X.; Lu, H.; Tian, H.; Jha, R. Probiotics, prebiotics, and synbiotics regulate the intestinal microbiota differentially and restore the relative abundance of specific gut microorganisms. J. Dairy Sci., 2020, 103(7), 5816-5829.
[http://dx.doi.org/10.3168/jds.2019-18003] [PMID: 32418689]
[117]
Jeong, J.J.; Van Le, T.H.; Lee, S.Y.; Eun, S.H.; Nguyen, M.D.; Park, J.H.; Kim, D.H. Anti-inflammatory effects of vina-ginsenoside R2 and majonoside R2 isolated from Panax vietnamensis and their metabolites in lipopolysaccharide-stimulated macrophages. Int. Immunopharmacol., 2015, 28(1), 700-706.
[http://dx.doi.org/10.1016/j.intimp.2015.07.025] [PMID: 26256699]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy