Generic placeholder image

Recent Advances in Drug Delivery and Formulation

Editor-in-Chief

ISSN (Print): 2667-3878
ISSN (Online): 2667-3886

Mini-Review Article

Technical Considerations, Applications, and Benefits of Organogels in Topical Drug Delivery Systems

Author(s): Abhishek Yadav, Vikas Jhawat*, Rahul Pratap Singh, Sunita Chauhan, Rohit Dutt, Rajesh Goyal and Deependra Singh

Volume 18, Issue 1, 2024

Published on: 21 February, 2024

Page: [12 - 20] Pages: 9

DOI: 10.2174/0126673878277455240214110033

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Organogels represent semi-solid systems where an organic liquid phase is entrapped within a three-dimensional network formed by self-assembled, crosslinked, or entangled gelator fibers. These versatile materials find applications in a wide range of fields, including chemistry, pharmaceuticals, cosmetics, biotechnology, and food technology. Notably, in pharmacology, they serve as valuable platforms for drug and vaccine delivery, facilitating the transport of active ingredients through various routes such as transdermal, oral, and parenteral. However, their previous utility as drug delivery systems was hindered by the toxicity associated with the organic solvents used. The pharmacokinetics of medications delivered via organogels are primarily influenced by the distinctive properties of these materials, specifically their "high permeability and poor aqueous solubility," which can impact the bioavailability of the drugs. Organogels can be employed topically or for the controlled release of medications through cutaneous administration and percutaneous absorption, expanding their scope of application beyond conventional drug delivery methods. Organogels hold significant promise as drug delivery vehicles due to their biocompatibility, non-irritating properties, and thermoremanent characteristics. They enable the formulation of diverse drug delivery systems by incorporating both hydrophilic and hydrophobic bioactive compounds within the gel matrix. This comprehensive review offers an overview of organogels, encompassing their nature, synthesis, characterization, and properties. Special attention is directed towards cutting-edge technologies employed in designing organogels as potential controlled delivery systems, with a focus on their emerging therapeutic applications.

Keywords: Organogels, skin permeation, drug delivery, topical route, solubility, bioavailability.

Graphical Abstract
[1]
Esposito CL, Kirilov P, Roullin VG. Organogels, promising drug delivery systems: An update of state-of-the-art and recent applications. J Control Release 2018; 271: 1-20.
[http://dx.doi.org/10.1016/j.jconrel.2017.12.019] [PMID: 29269143]
[2]
Bedse A, Singh D, Raut S, Baviskar K, Wable A, Pagare P, et al. Organogel: A Propitious Carman in Drug Delivery System. Advanced Drug Delivery Systems. IntechOpen 2023.
[http://dx.doi.org/10.5772/intechopen.107951]
[3]
Kuzina MA, Kartsev DD, Stratonovich AV, Levkin PA. Organogels versus hydrogels: Advantages, challenges, and applications. Adv Funct Mater 2023; 33(27): 2301421.
[http://dx.doi.org/10.1002/adfm.202301421]
[4]
Sravan B, Kamalakar K, Karuna MSL, Palanisamy A. Studies on organogelation of self assembling bis urea type low molecular weight molecules. J Sol-Gel Sci Technol 2014; 71(2): 372-9.
[http://dx.doi.org/10.1007/s10971-014-3386-5]
[5]
Zhang S, Wang X. Inorganic subnanometer nanowire-based organogels: Trends, challenges, and opportunities. ACS Nano 2023; 17(1): 20-6.
[http://dx.doi.org/10.1021/acsnano.2c10056] [PMID: 36546727]
[6]
Ayarza J, Wang J, Kim H, et al. Bioinspired mechanical mineralization of organogels. Nat Commun 2023; 14(1): 8319.
[http://dx.doi.org/10.1038/s41467-023-43733-x] [PMID: 38097549]
[7]
Cao X, Zhao X, Gao A, Xu R. Organogel formation based on bis-urea derivative. Supramol Chem 2014; 26(10-12): 804-8.
[http://dx.doi.org/10.1080/10610278.2013.877138]
[8]
Behera B, Sagiri SS, Pal K, Srivastava A. Modulating the physical properties of sunflower oil and sorbitan monopalmitate-based organogels. J Appl Polym Sci 2013; 127(6): 4910-7.
[http://dx.doi.org/10.1002/app.37506]
[9]
Sagiri SS. Studies on the Synthesis and Characterization of Encapsulated Organogels for Controlled Drug Delivery Applications 2014.
[10]
Vintiloiu A, Leroux JC. Organogels and their use in drug delivery — A review. J Control Release 2008; 125(3): 179-92.
[http://dx.doi.org/10.1016/j.jconrel.2007.09.014] [PMID: 18082283]
[11]
Pal A, Dey J. Gelation of organic solvents by N -(n -tetradecylcarbamoyl)- l -amino acids. Supramol Chem 2015; 27(1-2): 127-35.
[http://dx.doi.org/10.1080/10610278.2014.914628]
[12]
Jiao T, Wang Y, Zhang Q, Zhou J, Gao F. Regulation of substituent groups on morphologies and self-assembly of organogels based on some azobenzene imide derivatives. Nanoscale Res Lett 2013; 8(1): 160.
[http://dx.doi.org/10.1186/1556-276X-8-160] [PMID: 23566628]
[13]
Sagiri SS, Behera B, Rafanan RR, et al. Organogels as matrices for controlled drug delivery: A review on the current state. Soft Mater 2014; 12(1): 47-72.
[http://dx.doi.org/10.1080/1539445X.2012.756016]
[14]
Ibrahim MM, Hafez SA, Mahdy MM. Organogels, hydrogels and bigels as transdermal delivery systems for diltiazem hydrochloride. Asian J Pharm Sci 2013; 8(1): 48-57.
[http://dx.doi.org/10.1016/j.ajps.2013.07.006]
[15]
Vigato AA, Querobino SM, de Faria NC, et al. Synthesis and characterization of nanostructured lipid-poloxamer organogels for enhanced skin local anesthesia. Eur J Pharm Sci 2019; 128: 270-8.
[http://dx.doi.org/10.1016/j.ejps.2018.12.009] [PMID: 30553060]
[16]
Villa C, Rum S, Russo E, Kirilov P. Green synthesis of organogelators from renewable natural sources for cosmetic and pharmaceutical applications. Mater Lett 2023; 340: 134170.
[http://dx.doi.org/10.1016/j.matlet.2023.134170]
[17]
Plourde F, Motulsky A, Couffin-Hoarau AC, Hoarau D, Ong H, Leroux JC. First report on the efficacy of l-alanine-based in situ-forming implants for the long-term parenteral delivery of drugs. J Control Release 2005; 108(2-3): 433-41.
[http://dx.doi.org/10.1016/j.jconrel.2005.08.016] [PMID: 16182402]
[18]
Garner CM, Terech P, Allegraud JJ, et al. Thermoreversible gelation of organic liquids by arylcyclohexanol derivatives synthesis and characterisation of the gels. J Chem Soc, Faraday Trans 1998; 94(15): 2173-9.
[http://dx.doi.org/10.1039/a801922c]
[19]
Suzuki M, Setoguchi C, Shirai H, Hanabusa K. Organogelation by polymer organogelators with a L-lysine derivative: formation of a three-dimensional network consisting of supramolecular and conventional polymers. Chemistry 2007; 13(29): 8193-200.
[http://dx.doi.org/10.1002/chem.200700146] [PMID: 17639539]
[20]
Suzuki M, Hanabusa K. Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly. Chem Soc Rev 2010; 39(2): 455-63.
[http://dx.doi.org/10.1039/B910604A] [PMID: 20111770]
[21]
Suzuki M, Nigawara T, Yumoto M, Kimura M, Shirai H, Hanabusa K. l-Lysine based gemini organogelators: Their organogelation properties and thermally stable organogels. Org Biomol Chem 2003; 1(22): 4124-31.
[http://dx.doi.org/10.1039/b308371c] [PMID: 14664402]
[22]
Malik S, et al. A synthetic tripeptide as organogelator: Elucidation of gelation mechanism. J Chem Soc Perkin Trans 2002; 2: 1177-86.
[http://dx.doi.org/10.1039/b111598g]
[23]
Maji SK, Malik S, Drew MGB, Nandi AK, Banerjee A. A synthetic tripeptide as a novel organo-gelator: A structural investigation. Tetrahedron Lett 2003; 44(21): 4103-7.
[http://dx.doi.org/10.1016/S0040-4039(03)00839-6]
[24]
Omar J, Ponsford D, Dreiss CA, Lee TC, Loh XJ. Supramolecular hydrogels: Design strategies and contemporary biomedical applications. Chem Asian J 2022; 17(9): e202200081.
[http://dx.doi.org/10.1002/asia.202200081] [PMID: 35304978]
[25]
Toro-Vazquez JF, Morales-Rueda JA, Dibildox-Alvarado E, Charó-Alonso M, Alonzo-Macias M, González-Chávez MM. Thermal and textural properties of organogels developed by candelilla wax in safflower oil. J Am Oil Chem Soc 2007; 84(11): 989-1000.
[http://dx.doi.org/10.1007/s11746-007-1139-0]
[26]
Cao Z, Chen Y, Bai S, et al. In situ formation of injectable organogels for punctal occlusion and sustained release of therapeutics: Design, preparation, in vitro and in vivo evaluation. Int J Pharm 2023; 638: 122933.
[http://dx.doi.org/10.1016/j.ijpharm.2023.122933] [PMID: 37030642]
[27]
Raut S, Bhadoriya SS, Uplanchiwar V, Mishra V, Gahane A, Jain SK. Lecithin organogel: A unique micellar system for the delivery of bioactive agents in the treatment of skin aging. Acta Pharm Sin B 2012; 2(1): 8-15.
[http://dx.doi.org/10.1016/j.apsb.2011.12.005]
[28]
Jose J, Gopalan K. Organogels: A versatile drug delivery tool in pharmaceuticals. Res J Pharm Technol 2018; 11(3): 1242-6.
[http://dx.doi.org/10.5958/0974-360X.2018.00231.7]
[29]
Mujawar NK, Ghatage SL, Yeligar VC. Organogel: Factors and its importance. Int J Biol Chem Sci 2014; 4(3): 758-73.
[30]
Saha S, Shivarajakumar R, Karri VVSR. Pluronic lecithin organogels: An effective topical and transdermal drug delivery system. Int J Pharm Sci Res 2018; 9(11): 4540-50.
[31]
Elnaggar YSR, El-Refaie WM, El-Massik MA, Abdallah OY. Lecithin-based nanostructured gels for skin delivery: An update on state of art and recent applications. J Control Release 2014; 180: 10-24.
[http://dx.doi.org/10.1016/j.jconrel.2014.02.004] [PMID: 24531009]
[32]
Mehta C, Bhatt G, Kothiyal P. A Review on organogel for skin aging. Indian J Pharm Biol Res 2016; 4(3): 28-37.
[http://dx.doi.org/10.30750/ijpbr.4.3.5]
[33]
Sahoo S, Kumar N, Bhattacharya C, et al. Organogels: Properties and applications in drug delivery. Des Monomers Polym 2011; 14(2): 95-108.
[http://dx.doi.org/10.1163/138577211X555721]
[34]
Chang CE, Hsieh CM, Chen LC, et al. Novel application of pluronic lecithin organogels (PLOs) for local delivery of synergistic combination of docetaxel and cisplatin to improve therapeutic efficacy against ovarian cancer. Drug Deliv 2018; 25(1): 632-43.
[http://dx.doi.org/10.1080/10717544.2018.1440444] [PMID: 29463123]
[35]
Belgamwar V, Pandey M, Chauk D, Surana S. Pluronic lecithin organogel. Asian J Pharm 2008; 2(3): 134-8.
[http://dx.doi.org/10.4103/0973-8398.43295]
[36]
Sharma J, Agrawal D, Sharma AK, Khandelwal M, Aman S. New topical drug delivery system pharmaceutical organogel: A review. Asian J [p]harm. Res Dev 2022; 10(1): 75-8.
[http://dx.doi.org/10.22270/ajprd.v10i1.1088]
[37]
Charoensumran P, Ajiro H. Controlled release of testosterone by polymer-polymer interaction enriched organogel as a novel transdermal drug delivery system: Effect of limonene/PG and carbon-chain length on drug permeability. React Funct Polym 2020; 148: 104461.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.104461]
[38]
Lim PFC, Liu XY, Kang L, Ho PCL, Chan YW, Chan SY. Limonene GP1/PG organogel as a vehicle in transdermal delivery of haloperidol. Int J Pharm 2006; 311(1-2): 157-64.
[http://dx.doi.org/10.1016/j.ijpharm.2005.12.042] [PMID: 16451823]
[39]
Scartazzini R, Luisi PL. Organogels from lecithins. J Phys Chem 1988; 92(3): 829-33.
[http://dx.doi.org/10.1021/j100314a047]
[40]
Rees GD, Robinson BH. Microemulsions and organogels: Properties and novel applications. Adv Mater 1993; 5(9): 608-19.
[http://dx.doi.org/10.1002/adma.19930050903]
[41]
Jenta TRJ, Batts G, Rees GD, Robinson BH. Biocatalysis using gelatin microemulsion-based organogels containing immobilizedChromobacterium viscosum lipase. Biotechnol Bioeng 1997; 53(2): 121-31.
[http://dx.doi.org/10.1002/(SICI)1097-0290(19970120)53:2<121::AID-BIT1>3.0.CO;2-Q] [PMID: 18633956]
[42]
Madamwar D, Thakar A. Entrapment of enzyme in water-restricted microenvironment for enzyme-mediated catalysis under microemulsion-based organogels. Appl Biochem Biotechnol 2004; 118(1-3): 361-70.
[http://dx.doi.org/10.1385/ABAB:118:1-3:361] [PMID: 15304763]
[43]
Upadhyay KK, Tiwari C, Khopade AJ, Bohidar HB, Jain SK. Sorbitan ester organogels for transdermal delivery of sumatriptan. Drug Dev Ind Pharm 2007; 33(6): 617-25.
[http://dx.doi.org/10.1080/03639040701199266] [PMID: 17613026]
[44]
Murdan S, Gregoriadis G, Florence AT. Novel sorbitan monostearate organogels. J Pharm Sci 1999; 88(6): 608-14.
[http://dx.doi.org/10.1021/js980342r] [PMID: 10350496]
[45]
Shah DK, Sagiri SS, Behera B, Pal K, Pramanik K. Development of olive oil based organogels using sorbitan monopalmitate and sorbitan monostearate: A comparative study. J Appl Polym Sci 2013; 129(2): 793-805.
[http://dx.doi.org/10.1002/app.38834]
[46]
Liao L, Zhong X, Jia X, et al. Supramolecular organogels fabricated with dicarboxylic acids and primary alkyl amines: Controllable self-assembled structures. RSC Advances 2020; 10(49): 29129-38.
[http://dx.doi.org/10.1039/D0RA05072E] [PMID: 35521101]
[47]
Couffin-Hoarau AC, Motulsky A, Delmas P, Leroux JC. In situ-forming pharmaceutical organogels based on the self-assembly of L-alanine derivatives. Pharm Res 2004; 21(3): 454-7.
[http://dx.doi.org/10.1023/B:PHAM.0000019299.01265.05] [PMID: 15070096]
[48]
Rinada H. Hassan, Heba A Gad, Dalia S Shaker, Rania A H Ishak. Exploring the potential of intranasal drug delivery systems in the management of hypertension. RPS Pharmacy and Pharmacology Reports 2023; 2: 1-18.
[49]
Thakur VK, Thakur MK, Voicu SI. Polymer Gels: Perspectives and Applications Gels Horizons: From Science to Smart Materials. Singapore: Springer 2018; p. 419.
[50]
Shalaby ES, Shalaby SI. Optimization of folic acid Span 60-organogel to enhance its in vitro and in vivo photoprotection: A comparative study. Ther Deliv 2022; 13(11): 517-30.
[http://dx.doi.org/10.4155/tde-2022-0048]
[51]
Yu H, Huang Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J Agric Food Chem 2012; 60(21): 5373-9.
[http://dx.doi.org/10.1021/jf300609p] [PMID: 22506728]
[52]
Garg T, Bilandi A, Kapoor B, Kumar S, Joshi R. Organogels: Advanced and novel drug delivery system. Int Res J Pharm 2011; 2(12): 15-21.
[53]
Gökçe EH, Yurdasiper A, Korkmaz E, Özer Ö. A novel preparation method for organogels: High-speed homogenization and micro-irradiation. AAPS PharmSciTech 2013; 14(1): 391-7.
[http://dx.doi.org/10.1208/s12249-013-9922-8] [PMID: 23344854]
[54]
Priyanka S Sadgir. Organogel: A potential carrier for transdermal drug delivery system In:. 2014; 5: pp. (3)2062-7.
[55]
Sangale PT, Manoj G. Organogel: A novel approach for transdermal drug delivery system. World J Pharm Res 2015; 4(3): 423-42.
[56]
Murdan S. Organogels in drug delivery. Expert Opin Drug Deliv 2005; 2(3): 489-505.
[http://dx.doi.org/10.1517/17425247.2.3.489] [PMID: 16296770]
[57]
Shashikant A. Pawar, Moreswar P Patil, Priyanka S Sadgir, Navneet B Wankhede. Review on organogel as topical delivery system. Mater Sci 2014; 3(10): 393-409.
[58]
Almeida H, Amaral MH, Lobão P, Lobo JMS. Pluronic® F-127 and pluronic lecithin organogel (PLO): Main features and their applications in topical and transdermal administration of drugs. J Pharm Pharm Sci 2012; 15(4): 592-605.
[http://dx.doi.org/10.18433/J3HW2B] [PMID: 23106961]
[59]
Peter Vidya. Organogel: In novel drug delivery system 2014; 2(3): 733-51.
[60]
Pisal S, Shelke V, Mahadik K, Kadam S. Effect of organogel components on in vitro nasal delivery of propranolol hydrochloride. AAPS PharmSciTech 2004; 5(4): 92-100.
[http://dx.doi.org/10.1208/pt050463] [PMID: 15760060]
[61]
Liu H, Wang Y, Han F, Yao H, Li S. Gelatin-stabilised microemulsion-based organogels facilitates percutaneous penetration of cyclosporin a in vitro and dermal pharmacokinetics in vivo. J Pharm Sci 2007; 96(11): 3000-9.
[http://dx.doi.org/10.1002/jps.20898] [PMID: 17705159]
[62]
Rahman M, Hussain A. Lecithin-microemulsion based organogels as topical drug delivery system (TDDS). IJCRR. Int J Curr Res Rev 2011; 3(3): 22-33.
[63]
Jadhav K, Kadam V, Pisal S. Formulation and evaluation of lecithin organogel for topical delivery of fluconazole. Curr Drug Deliv 2009; 6(2): 174-83.
[http://dx.doi.org/10.2174/156720109787846252] [PMID: 19450224]
[64]
Agrawal V, Gupta V, Ramteke S, Trivedi P. Preparation and evaluation of tubular micelles of pluronic lecithin organogel for transdermal delivery of sumatriptan. AAPS PharmSciTech 2010; 11(4): 1718-25.
[http://dx.doi.org/10.1208/s12249-010-9540-7] [PMID: 21128126]
[65]
Bhatia A, Singh B, Raza K, Wadhwa S, Katare OP. Tamoxifen-loaded lecithin organogel (LO) for topical application: Development, optimization and characterization. Int J Pharm 2013; 444(1-2): 47-59.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.029] [PMID: 23353077]
[66]
Boddu SH, Bonam SP, Wei Y, Alexander K. Preparation and in vitro evaluation of a pluronic lecithin organogel containing ricinoleic acid for transdermal delivery. Int J Pharm Compd 2014; 18(3): 256-61.
[PMID: 25306775]
[67]
Jatav MP, Ramteke S. Formulation and evaluation of lecithin organogel for treatment of arthritis. Int J Sci World 2015; 3(2): 267-74.
[http://dx.doi.org/10.14419/ijsw.v3i2.5028]
[68]
Jhawat V, Gupta S, Saini V. Formulation and evaluation of novel controlled release of topical pluronic lecithin organogel of mefenamic acid. Drug Deliv 2016; 23(9): 3573-81.
[http://dx.doi.org/10.1080/10717544.2016.1212439] [PMID: 27494650]
[69]
Bonde S, Mavani N, Bonde C. Formulation, optimization and evaluation of organogel for topical delivery of acyclovir. Curr Drug Deliv 2018; 15(3): 397-405.
[http://dx.doi.org/10.2174/1567201814666171013150938]
[70]
Elmowafy M, Musa A, Alnusaire TS, et al. Olive oil/pluronic oleogels for skin delivery of quercetin: in vitro characterization and ex vivo skin permeability. Polymers 2021; 13(11): 1808.
[http://dx.doi.org/10.3390/polym13111808] [PMID: 34072642]
[71]
Katariya M, Mehta D. Fabrication of an organogel-based transdermal delivery system of loxoprofen sodium. Proceedings 2021; 78: 20.
[72]
Sonia M. Hardeep Kaur, Nitan Bharti Gupta. Development and characterization of nimesulide loaded organogel. Int J Pharm Pharm Res 2023; 27(1): 230-62.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy