Generic placeholder image

Recent Advances in Drug Delivery and Formulation

Editor-in-Chief

ISSN (Print): 2667-3878
ISSN (Online): 2667-3886

Review Article

A Comprehensive Review on Potential Chemical and Herbal Permeation Enhancers Used in Transdermal Drug Delivery Systems

Author(s): Rajat Singh Raghav, Sushma Verma* and Monika

Volume 18, Issue 1, 2024

Published on: 22 January, 2024

Page: [21 - 34] Pages: 14

DOI: 10.2174/0126673878272043240114123908

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Using skin patches to deliver drugs is dependable and doesn't have the same issues as permeation enhancers, which help drugs get through the skin but struggle because of the skin's natural barrier. Strategies are required to increase topical bioavailability to enhance drug absorption. Natural compounds offer a promising solution by temporarily reducing skin barrier resistance and improving drug absorption. Natural substances allow a wider variety of medications to be distributed through the stratum corneum, offering a dependable approach to enhancing transdermal drug delivery. Natural substances have distinct advantages as permeability enhancers. They are pharmacologically effective and safe, inactive, non-allergenic, and non-irritating. These characteristics ensure their suitability for use without causing adverse effects. Natural compounds are readily available and well tolerated by the body. Studies investigating the structure-activity relationship of natural chemicals have demonstrated significant enhancer effects. By understanding the connection between chemical composition and enhancer activity, researchers can identify effective natural compounds for improving drug penetration. In conclusion, current research focuses on utilizing natural compounds as permeability enhancers in transdermal therapy systems. These substances offer safety, non-toxicity, pharmacological inactivity, and non-irritation. Through structure-activity relationship investigations, promising advancements have been made in enhancing drug delivery. Using natural compounds holds enormous potential for improving the penetration of trans-dermally delivered medications.

Keywords: Herbal, transdermal delivery system, permeation, enhancer, TDD, fluidity.

Graphical Abstract
[1]
Chaudhari SP, Patil PS. Pharmaceutical excipients: A review. Int J Adv Pharm Biol Chem 2012; 1(1): 21.
[2]
Liu L, Chen G, Fishman ML, Hicks KB. Pectin gel vehicles for controlled fragrance delivery. Drug Deliv 2005; 12(3): 149-57.
[http://dx.doi.org/10.1080/10717540590929966] [PMID: 16025844]
[3]
Hu A, Jiao S, Zheng J, et al. Ultrasonic frequency effect on corn starch and its cavitation. Lebensm Wiss Technol 2015; 60(2): 941-7.
[http://dx.doi.org/10.1016/j.lwt.2014.10.048]
[4]
Rodrigues A, Emeje M. Recent applications of starch derivatives in nanodrug delivery. Carbohydr Polym 2012; 87(2): 987-94.
[http://dx.doi.org/10.1016/j.carbpol.2011.09.044]
[5]
Beninca C, Demiate IM, Lacerda LG, Carvalho Filho MAS, Ionashiro M, Schnitzler E. Thermal behavior of corn starch granules modified by acid treatment at 30 and 50°C. Eclét Quím 2008; 33(3): 13-7.
[http://dx.doi.org/10.26850/1678-4618eqj.v33.3.2008.p13-17]
[6]
Visser RGF, Suurs LCJM, Bruinenberg PM, Bleeker I, Jacobsen E. Comparison between amylose-free and amylose-containing potato starches. Starch/Stärke. Stärke 1997; 49(11): 438-43.
[http://dx.doi.org/10.1002/star.19970491103]
[7]
Liu H, Ramsden L, Corke H. Physical properties and enzymatic digestibility of hydroxypropylated ae, wx, and normal maize starch. Carbohydr Polym 1999; 40(3): 175-82.
[http://dx.doi.org/10.1016/S0144-8617(99)00052-1]
[8]
Manek RV, Kunle OO, Emeje MO, Builders P, Rao GVR, Lopez GP, et al. Physical, thermal and sorption profile of starch obtained from Tacca leontopetaloides. Starch - Strke 2005; 57(2): 55-61.
[http://dx.doi.org/10.1002/star.200400341]
[9]
Barry BW. Lipid-Protein-Partitioning theory of skin penetration enhancement. J Control Release 1991; 15(3): 237-48.
[http://dx.doi.org/10.1016/0168-3659(91)90115-T]
[10]
Barry BW. Modern methods of promoting drug absorption through the skin. Mol Aspects Med 1991; 12(3): 195-241.
[http://dx.doi.org/10.1016/0098-2997(91)90002-4] [PMID: 1770837]
[11]
Patil UK, Saraogi R. Natural products as potential drug permeation enhancer in transdermal drug delivery system. Arch Dermatol Res 2014; 306(5): 419-26.
[http://dx.doi.org/10.1007/s00403-014-1445-y] [PMID: 24481830]
[12]
Barry BW, Williams AC. Terpenes as skin penetration enhancers. Drugs Pharm Sci 1993; 59: 95-111.
[13]
Ben-Shabat S, Baruch N, Sintov AC. Conjugates of unsaturated fatty acids with propylene glycol as potentially less-irritant skin penetration enhancers. Drug Dev Ind Pharm 2007; 33(11): 1169-75.
[http://dx.doi.org/10.1080/03639040701199258] [PMID: 18058312]
[14]
Benson H. Transdermal drug delivery: Penetration enhancement techniques. Curr Drug Deliv 2005; 2(1): 23-33.
[http://dx.doi.org/10.2174/1567201052772915] [PMID: 16305405]
[15]
Bhatia KS, Singh J. Synergistic effect of iontophoresis and a series of fatty acids on LHRH permeability through porcine skin. J Pharm Sci 1998; 87(4): 462-9.
[http://dx.doi.org/10.1021/js970301f] [PMID: 9548900]
[16]
Brain K, Hadgraft J, Al-Shatalebi M. Membrane modification in activity of plant molluscicides. Planta Med 1990; 56(6): 663.
[http://dx.doi.org/10.1055/s-2006-961323]
[17]
Brown MB, Martin GP, Jones SA, Akomeah FK. Dermal and transdermal drug delivery systems: Current and future prospects. Drug Deliv 2006; 13(3): 175-87.
[http://dx.doi.org/10.1080/10717540500455975] [PMID: 16556569]
[18]
Chi S, Park ES, Kim H. Effect of penetration enhancers on flurbiprofen permeation through rat skin. Int J Pharm 1995; 126(1-2): 267-74.
[http://dx.doi.org/10.1016/0378-5173(95)04137-0]
[19]
Cho CW, Choi JS, Kim SJ, Shin SC. Enhanced transdermal delivery of loratadine from the EVA matrix. Drug Deliv 2009; 16(4): 230-5.
[http://dx.doi.org/10.1080/10717540902872264] [PMID: 19514983]
[20]
Cho CW, Choi JS, Yang KH, Shin SC. Enhanced transdermal absorption and pharmacokinetic evaluation of pranoprofen-ethylene-vinyl acetate matrix containing penetration enhancer in rats. Arch Pharm Res 2009; 32(5): 747-53.
[http://dx.doi.org/10.1007/s12272-009-1514-5] [PMID: 19471890]
[21]
Choi S, Jung SY, Kim CH, et al. Effect of ginsenosides on voltage-dependent Ca2+ channel subtypes in bovine chromaffin cells. J Ethnopharmacol 2001; 74(1): 75-81.
[http://dx.doi.org/10.1016/S0378-8741(00)00353-6] [PMID: 11137351]
[22]
Cole L, Heard C. Skin permeation enhancement potential of Aloe Vera and a proposed mechanism of action based upon size exclusion and pull effect. Int J Pharm 2007; 333(1-2): 10-6.
[http://dx.doi.org/10.1016/j.ijpharm.2006.09.047] [PMID: 17088033]
[23]
Fang JY, Hwang TL, Fang CL, Chiu HC. In vitro and in vivo evaluations of the efficacy and safety of skin permeation enhancers using flurbiprofen as a model drug. Int J Pharm 2003; 255(1-2): 153-66.
[http://dx.doi.org/10.1016/S0378-5173(03)00086-3] [PMID: 12672611]
[24]
Francis G, Kerem Z, Makkar HPS, Becker K. The biological action of saponins in animal systems: A review. Br J Nutr 2002; 88(6): 587-605.
[http://dx.doi.org/10.1079/BJN2002725] [PMID: 12493081]
[25]
Gao S, Singh J. Mechanism of transdermal transport of 5-fluorouracil by terpenes: Carvone, 1,8-cineole and thymol. Int J Pharm 1997; 154(1): 67-77.
[http://dx.doi.org/10.1016/S0378-5173(97)00123-3]
[26]
Ghafourian T, Zandasrar P, Hamishekar H, Nokhodchi A. The effect of penetration enhancers on drug delivery through skin: A QSAR study. J Control Release 2004; 99(1): 113-25.
[http://dx.doi.org/10.1016/j.jconrel.2004.06.010] [PMID: 15342185]
[27]
Godwin DA, Michniak BB. Influence of drug lipophilicity on terpenes as transdermal penetration enhancers. Drug Dev Ind Pharm 1999; 25(8): 905-15.
[http://dx.doi.org/10.1081/DDC-100102251] [PMID: 10434134]
[28]
Guy RH, Hadgraft J. The effect of penetration enhancers on the kinetics of percutaneous absorption. J Control Release 1987; 5(1): 43-51.
[http://dx.doi.org/10.1016/0168-3659(87)90036-8]
[29]
Guy RH, Hadgraft J. Selection of drug candidates for transdermal drug delivery. In: Transdermal drug delivery. New York: Marcel Dekker 1989; pp. 59-81.
[30]
Lane ME, Santos P, Watkinson AC, Hadgraft J. Passive skin permeation enhancement. In: Topical and transdermal drug delivery. Hoboken: Wiley 2012; pp. 23-42.
[31]
Heard CM, Kung D, Thomas CP. Skin penetration enhancement of mefenamic acid by ethanol and 1,8-cineole can be explained by the ‘pull’ effect. Int J Pharm 2006; 321(1-2): 167-70.
[http://dx.doi.org/10.1016/j.ijpharm.2006.05.018] [PMID: 16787720]
[32]
Hostettmann K, Marston A. Chemistry, and pharmacology of natural products. Cambridge: Cambridge University Press 1995.
[33]
Li-Ren H, Yaw-Bin H, Pao-Chu W, Yi-Hung T. Percutaneous absorption of piroxicam from FAPG base through rat skin: effects of fatty acid added to FAPG base. Int J Pharm 1994; 106(1): 1-6.
[http://dx.doi.org/10.1016/0378-5173(94)90269-0]
[34]
Ibrahim SA, Li SK. Efficiency of fatty acids as chemical penetration enhancers: Mechanisms and structure enhancement relationship. Pharm Res 2010; 27(1): 115-25.
[http://dx.doi.org/10.1007/s11095-009-9985-0] [PMID: 19911256]
[35]
Jain R, Aqil M, Ahad A, Ali A, Khar RK. Basil oil is a promising skin penetration enhancer for transdermal delivery of labetolol hydrochloride. Drug Dev Ind Pharm 2008; 34(4): 384-9.
[http://dx.doi.org/10.1080/03639040701657958] [PMID: 18401780]
[36]
Kang L, Yap CW, Lim PFC, et al. Formulation development of transdermal dosage forms: Quantitative structure-activity relationship model for predicting activities of terpenes that enhance drug penetration through human skin. J Control Release 2007; 120(3): 211-9.
[http://dx.doi.org/10.1016/j.jconrel.2007.05.006] [PMID: 17582639]
[37]
Kanikkannan N, Babu RJ, Singh M. Structure–activity relationship of chemical penetration enhancers. In: Percutaneous penetration enhancers. CRC Press 2005.
[38]
Kanikkannan N, Singh M. Skin permeation enhancement effect and skin irritation of saturated fatty alcohols. Int J Pharm 2002; 248(1-2): 219-28.
[http://dx.doi.org/10.1016/S0378-5173(02)00454-4] [PMID: 12429475]
[39]
Kim MJ, Doh HJ, Choi MK, et al. Skin permeation enhancement of diclofenac by fatty acids. Drug Deliv 2008; 15(6): 373-9.
[http://dx.doi.org/10.1080/10717540802006898] [PMID: 18686081]
[40]
Kimura C, Nakanishi T, Tojo K. Skin permeation of ketotifen applied from stick-type formulation. Eur J Pharm Biopharm 2007; 67(2): 420-4.
[http://dx.doi.org/10.1016/j.ejpb.2007.02.022] [PMID: 17433642]
[41]
Klang V, Matsko N, Zimmermann AM, Vojnikovic E, Valenta C. Enhancement of stability and skin permeation by sucrose stearate and cyclodextrins in progesterone nanoemulsions. Int J Pharm 2010; 393(1-2): 153-61.
[http://dx.doi.org/10.1016/j.ijpharm.2010.04.029] [PMID: 20434531]
[42]
Kligman AM. Topical pharmacology and toxicology ofDimethyl sulfoxide (DMSO) Part 2. JAMA 1965; 193: 151-6.
[43]
Komata Y, Inaoka M, Kaneko A, Fujie T. In vitro percutaneous absorption of thiamine disulfide from a mixture of propylene glycol and fatty acid. J Pharm Sci 1992; 81(8): 744-6.
[http://dx.doi.org/10.1002/jps.2600810804] [PMID: 1403716]
[44]
Jeevan R, Venkat R, Khan MA, et al. Effect of menthol and related terpenes on the percutaneous absorption of propranolol across excised hairless mouse skin. J Pharm Sci 1997; 86(12): 1369-73.
[http://dx.doi.org/10.1021/js970161+] [PMID: 9423148]
[45]
Melzig MF, Bader G, Loose R. Investigations of the mechanism of membrane activity of selected triterpenoid saponins. Planta Med 2001; 67(1): 43-8.
[http://dx.doi.org/10.1055/s-2001-10632] [PMID: 11270721]
[46]
Menin L, Panchichkina M, Keriel C, et al. Macrocompartmentation of total creatine in cardiomyocytes revisited. Mol Cell Biochem 2001; 220(1/2): 149-59.
[http://dx.doi.org/10.1023/A:1010960309898] [PMID: 11451375]
[47]
Merfort I, Heilmann J, Hagedorn-Leweke U, Lippold BC. In vivo skin penetration studies of camomile flavones. Pharmazie 1994; 49(7): 509-11.
[PMID: 8073060]
[48]
Moghimipour E. Enhanced permeability of gentamicin sulfate through shed snake-skin and liposomal membranes by different enhancers. IJBMS 2003; 6(1): 1-14.
[49]
Mohammadi-Samani S, Jamshidzadeh A, Montaseri H, Rangbar-Zahedani M, Kianrad R. The effects of some permeability enhancers on the percutaneous absorption of lidocaine. Pak J Pharm Sci 2010; 23(1): 83-8.
[PMID: 20067872]
[50]
Morimoto K, Tojima H, Haruta T, Suzuki M, Kakemi M. Enhancing effects of unsaturated fatty acids with various structures on the permeation of indomethacin through rat skin. J Pharm Pharmacol 2011; 48(11): 1133-7.
[http://dx.doi.org/10.1111/j.2042-7158.1996.tb03908.x] [PMID: 8961160]
[51]
Namba T, Sekiya K, Toshinai A, et al. Study on baths with crude drug. II.: The effects of coptidis rhizoma extracts as skin permeation enhancer. Yakugaku Zasshi 1995; 115(8): 618-25.
[http://dx.doi.org/10.1248/yakushi1947.115.8_618] [PMID: 7473059]
[52]
Nokhodchi A, Nazemiyeh H, Ghafourian T, Hassan-Zadeh D, Valizadeh H, Bahary LAS. The effect of glycyrrhizin on the release rate and skin penetration of diclofenac sodium from topical formulations. Farmaco 2002; 57(11): 883-8.
[http://dx.doi.org/10.1016/S0014-827X(02)01298-3] [PMID: 12484536]
[53]
Shintani M, Ogiso T. Mechanism for the enhancement effect of fatty acids on the percutaneous absorption of propranolol. J Pharm Sci 1990; 79(12): 1065-71.
[http://dx.doi.org/10.1002/jps.2600791206] [PMID: 2079652]
[54]
Oh H, Oh YK, Kim CK. Effects of vehicles and enhancers on transdermal delivery of melatonin. Int J Pharm 2001; 212(1): 63-71.
[http://dx.doi.org/10.1016/S0378-5173(00)00598-6] [PMID: 11165821]
[55]
Okamoto H, Ohyabu M, Hashida M, Sezaki H. Enhanced penetration of mitomycin C through hairless mouse and rat skin by enhancers with terpene moieties. J Pharm Pharmacol 2011; 39(7): 531-4.
[http://dx.doi.org/10.1111/j.2042-7158.1987.tb03172.x] [PMID: 2886622]
[56]
Pfister WR, Hsieh DS. Permeation enhancers compatible with transdermal drug delivery systems. Part I: selection and formulation considerations. Med Device Technol 1990; 1(5): 48-55.
[PMID: 10171148]
[57]
Plock A, Sokolowska-Köhler W, Presber W. Application of flow cytometry and microscopical methods to characterize the effect of herbal drugs on Leishmania Spp. Exp Parasitol 2001; 97(3): 141-53.
[http://dx.doi.org/10.1006/expr.2001.4598] [PMID: 11312576]
[58]
Rhee YS, Choi JG, Park ES, Chi SC. Transdermal delivery of ketoprofen using microemulsions. Int J Pharm 2001; 228(1-2): 161-70.
[http://dx.doi.org/10.1016/S0378-5173(01)00827-4] [PMID: 11576778]
[59]
Sapra B, Jain S, Tiwary AK. Transdermal delivery of carvedilol containing glycyrrhizin and chitosan as permeation enhancers: biochemical, biophysical, microscopic and pharmacodynamic evaluation. Drug Deliv 2008; 15(7): 443-54.
[http://dx.doi.org/10.1080/10717540802327047] [PMID: 18712622]
[60]
Sapra B, Jain S, Tiwary AK. Effect of Asparagus racemosus extract on transdermal delivery of carvedilol: A mechanistic study. AAPS PharmSciTech 2009; 10(1): 199-210.
[61]
Seeman P. Ultrastructure of membrane lesions in immune lysis, osmotic lysis, and drug-induced lysis. Federation Proc 1974; 33(10): 2116-4.
[62]
Seeman P, Cheng D, Iles GH. Structure of membrane holes in osmotic and saponin hemolysis. J Cell Biol 1973; 56(2): 519-27.
[http://dx.doi.org/10.1083/jcb.56.2.519] [PMID: 4566525]
[63]
Southwell D, Barry BW. Penetration enhancers for human skin: mode of action of 2-pyrrolidone and dimethylformamide on partition and diffusion of model compounds water, n-alcohols, and caffeine. J Invest Dermatol 1983; 80(6): 507-14.
[http://dx.doi.org/10.1111/1523-1747.ep12535090] [PMID: 6854051]
[64]
Law RM, Ngo MA, Maibach HI. Twenty clinically pertinent factors/ observations for percutaneous absorption in humans. Dermal Absorp Decontamin: A Comprehen Guide 2022; 6: 203-1.
[65]
Vaddi HK, Ho PC, Chan SY. Terpenes in propylene glycol as skin-penetration enhancers: Permeation and partition of haloperidol, fourier transform infrared spectroscopy, and differential scanning calorimetry. J Pharm Sci 2002; 91(7): 1639-51.
[http://dx.doi.org/10.1002/jps.10160] [PMID: 12115825]
[66]
Wang Y, Thakur R, Fan Q, Michniak B. Transdermal iontophoresis: combination strategies to improve transdermal iontophoretic drug delivery. Eur J Pharm Biopharm 2005; 60(2): 179-91.
[http://dx.doi.org/10.1016/j.ejpb.2004.12.008] [PMID: 15939232]
[67]
Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev 2012; 64: 128-37.
[http://dx.doi.org/10.1016/j.addr.2012.09.032] [PMID: 15019749]
[68]
Williams AC, Barry BW. The enhancement index concept applied to terpene penetration enhancers for human skin and model lipophilic (oestradiol) and hydrophilic (5-fluorouracil) drugs. Int J Pharm 1991; 74(2-3): 157-68.
[http://dx.doi.org/10.1016/0378-5173(91)90232-D]
[69]
Woldemichael GM, Wink M. Identification and biological activities of triterpenoid saponins from Chenopodium quinoa. J Agric Food Chem 2001; 49(5): 2327-32.
[http://dx.doi.org/10.1021/jf0013499] [PMID: 11368598]
[70]
Yamane MA, Williams AC, Barry BW. Effects of terpenes and oleic acid as skin penetration enhancers towards 5-fluorouracil as assessed with time; permeation, partitioning and differential scanning calorimetry. Int J Pharm 1995; 116(2): 237-51.
[http://dx.doi.org/10.1016/0378-5173(94)00312-S]
[71]
Yamane MA, Williams AC, Barry BW. Terpene penetration enhancers in propylene glycol/water co-solvent systems: Effectiveness and mechanism of action. J Pharm Pharmacol 2011; 47(12A): 978-89.
[http://dx.doi.org/10.1111/j.2042-7158.1995.tb03282.x] [PMID: 8932680]
[72]
Yamasaki Y, Ito K, Enomoto Y, Sutko JL. Alterations by saponins of passive Ca2+ permeability and Na+-Ca2+ exchange activity of canine cardiac sarcolemmal vesicles. Biochim Biophys Acta Biomembr 1987; 897(3): 481-7.
[http://dx.doi.org/10.1016/0005-2736(87)90445-7] [PMID: 3814597]
[73]
Deng S, May BH, Zhang AL, Lu C, Xue CCL. Topical herbal medicine combined with pharmacotherapy for psoriasis: A systematic review and meta-analysis. Arch Dermatol Res 2013; 305(3): 179-89.
[http://dx.doi.org/10.1007/s00403-013-1316-y] [PMID: 23354931]
[74]
Kage M, Tokudome Y, Hashimoto F. Permeation of hyaluronan tetrasaccharides through hairless mouse skin: An in vitro and in vivo study. Arch Dermatol Res 2013; 305(1): 69-77.
[http://dx.doi.org/10.1007/s00403-012-1252-2] [PMID: 22740084]
[75]
Kataoka S, Hattori K, Date A, Tamura H. Human keratinocyte caspase-14 expression is altered in human epidermal 3D models by dexamethasone and by natural products used in cosmetics. Arch Dermatol Res 2013; 305(8): 683-9.
[http://dx.doi.org/10.1007/s00403-013-1359-0] [PMID: 23604963]
[76]
Hmingthansanga V, Singh N, Banerjee S, Manickam S, Velayutham R, Natesan S. Improved topical drug delivery: Role of permeation enhancers and advanced approaches. Pharmaceutics 2022; 14(12): 2818.
[http://dx.doi.org/10.3390/pharmaceutics14122818] [PMID: 36559311]
[77]
Schafer N, Balwierz R, Biernat P. Ochędzan-Siodłak W, Lipok J. Natural ingredients of transdermal drug delivery systems as permeation enhancers of active substances through the stratum corneum. Mol Pharm 2023; 20(7): 3278-97.
[http://dx.doi.org/10.1021/acs.molpharmaceut.3c00126] [PMID: 37279070]
[78]
Zwara A, Wertheim-Tysarowska K, Mika A. Alterations of ultra long-chain fatty acids in hereditary skin diseases-review article. Front Med 2021; 8: 730855.
[http://dx.doi.org/10.3389/fmed.2021.730855] [PMID: 34497816]
[79]
Fandrei F, Engberg O, Opálka L, et al. Cholesterol sulfate fluidizes the sterol fraction of the stratum corneum lipid phase and increases its permeability. J Lipid Res 2022; 63(3): 100177.
[http://dx.doi.org/10.1016/j.jlr.2022.100177] [PMID: 35143845]
[80]
Fujii M. The pathogenic and therapeutic implications of ceramide abnormalities in atopic dermatitis. Cells 2021; 10(9): 2386.
[http://dx.doi.org/10.3390/cells10092386] [PMID: 34572035]
[81]
Imokawa G, Terrinoni A. Cutting edge of the pathogenesis of atopic dermatitis: Sphingomyelin deacylase, the enzyme involved in its ceramide deficiency, plays a pivotal role. Int J Mol Sci 2021; 22(4): 335.
[http://dx.doi.org/10.3390/ijms22041613]
[82]
Yamamoto M, Sassa T, Kyono Y, et al. Comprehensive stratum corneum ceramide profiling reveals reduced acylceramides in ichthyosis patient with CERS3 mutations. J Dermatol 2021; 48(4): 447-56.
[http://dx.doi.org/10.1111/1346-8138.15725] [PMID: 33492757]
[83]
Uchida Y, Park K. Ceramides in skin health and disease: An update. Am J Clin Dermatol 2021; 22(6): 853-66.
[http://dx.doi.org/10.1007/s40257-021-00619-2] [PMID: 34283373]
[84]
Gunnarsson M, Mojumdar EH, Topgaard D, Sparr E. Extraction of natural moisturizing factor from the stratum corneum and its implication on skin molecular mobility. J Colloid Interface Sci 2021; 604: 480-91.
[http://dx.doi.org/10.1016/j.jcis.2021.07.012] [PMID: 34273783]
[85]
Piquero-Casals J, Morgado-Carrasco D, Granger C, Trullàs C, Jesús-Silva A, Krutmann J. Urea in dermatology: A review of its emollient, moisturizing, keratolytic, skin barrier enhancing and antimicrobial properties. Dermatol Ther 2021; 11(6): 1905-15.
[http://dx.doi.org/10.1007/s13555-021-00611-y] [PMID: 34596890]
[86]
Intarakumhaeng R, Alsheddi L, Wanasathop A, Shi Z, Li SK. Skin permeation of urea under finite dose condition. J Pharm Sci 2019; 108(2): 987-95.
[http://dx.doi.org/10.1016/j.xphs.2018.10.026] [PMID: 30696548]
[87]
Pavlačková J, Egner P, Polašková J, et al. Transdermal absorption of active substances from cosmetic vehicles. J Cosmet Dermatol 2019; 18(5): 1410-5.
[http://dx.doi.org/10.1111/jocd.12873] [PMID: 30701646]
[88]
Shams L, Khodabandeh Shahraky M, Mirtaleb MS. Transdermal co-delivery of urea and recombinant human growth hormone. Iran J Biotechnol 2021; 19(4): e2891.
[http://dx.doi.org/10.30498/IJB.2021.252676.2891] [PMID: 35350646]
[89]
Mendes de Moraes F, Trauthman SC, Zimmer F, et al. A polysaccharide-based hydrogel as a green platform for enhancing transdermal delivery. Sustain Chem Pharm 2022; 25: 100604.
[http://dx.doi.org/10.1016/j.scp.2022.100604]
[90]
Li J, Xiang H, Zhang Q, Miao X. Polysaccharide-based transdermal drug delivery. Pharmaceuticals 2022; 15(5): 602.
[http://dx.doi.org/10.3390/ph15050602] [PMID: 35631428]
[91]
Rial-Hermida MI, Rey-Rico A, Blanco-Fernandez B, Carballo-Pedrares N, Byrne EM, Mano JF. Recent progress on polysaccharide-based hydrogels for controlled delivery of therapeutic biomolecules. ACS Biomater Sci Eng 2021; 7(9): 4102-27.
[http://dx.doi.org/10.1021/acsbiomaterials.0c01784] [PMID: 34137581]
[92]
Sudha PN, Rose MH. Beneficial effects of hyaluronic acid. Adv Food Nutr Res 2014; 72: 137-76.
[http://dx.doi.org/10.1016/B978-0-12-800269-8.00009-9] [PMID: 25081082]
[93]
Karami M, Shahraky MK, Ranjbar M, Tabandeh F, Morshedi D, Aminzade S. Preparation, purification, and characterization of low-molecular-weight hyaluronic acid. Biotechnol Lett 2021; 43(1): 133-42.
[http://dx.doi.org/10.1007/s10529-020-03035-4] [PMID: 33131008]
[94]
Zhu J, Tang X, Jia Y, Ho CT, Huang Q. Applications and delivery mechanisms of hyaluronic acid used for topical/transdermal delivery - A review. Int J Pharm 2020; 578: 119127.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119127] [PMID: 32036009]
[95]
Zhang X, Wei D, Xu Y, Zhu Q. Hyaluronic acid in ocular drug delivery. Carbohydr Polym 2021; 264: 118006.
[http://dx.doi.org/10.1016/j.carbpol.2021.118006] [PMID: 33910737]
[96]
Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther 2021; 6(1): 426.
[http://dx.doi.org/10.1038/s41392-021-00830-x] [PMID: 34916490]
[97]
Yamamoto A, Ukai H, Morishita M, Katsumi H. Approaches to improve intestinal and transmucosal absorption of peptide and protein drugs. Pharmacol Ther 2020; 211: 107537.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107537] [PMID: 32201316]
[98]
Pereira R, Silva SG, Pinheiro M, Reis S, Vale ML. Current status of amino acid-based permeation enhancers in transdermal drug delivery. Membranes 2021; 11(5): 343.
[http://dx.doi.org/10.3390/membranes11050343] [PMID: 34067194]
[99]
Zheng L, Zhao Z, Yang Y, Li Y, Wang C. Novel skin permeation enhancers based on amino acid ester ionic liquid: Design and permeation mechanism. Int J Pharm 2020; 576: 119031.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119031] [PMID: 31953082]
[100]
Atef E, Altuwaijri N. Using Raman spectroscopy in studying the effect of propylene glycol, oleic acid, and their combination on the rat skin. AAPS PharmSciTech 2018; 19(1): 114-22.
[http://dx.doi.org/10.1208/s12249-017-0800-7] [PMID: 28620762]
[101]
Manoj VR, Manoj H. Review on transdermal microneedle-based drug delivery. Asian J Pharm Clin Res 2019; 12(1): 18-29.
[http://dx.doi.org/10.22159/ajpcr.2019.v12i1.27434]
[102]
Choudhury D, Dutta KN, Kalita R. A review on transdermal patches used as an anti-inflammatory Agent. Asian J Pharm Clin Res 2021; 14(12): 21-6.
[http://dx.doi.org/10.22159/ajpcr.2021.v14i12.43277]
[103]
Anwar N, Jan SU, Gul R. Formulation and evaluation of glibenclamide gel for transdermal drug delivery. Int J Curr Pharm Res 2020; 35-9: 35-9.
[http://dx.doi.org/10.22159/ijcpr.2020v12i5.39762]
[104]
Masrijal CDP, Harmita H, Iskandarsyah I. Improving transdermal drug delivery system for medroxyprogesterone acetate by olive oil and dimethylsulfoxide (DMSO) as penetration enhancers: In vitro penetration study. Int J Pharm Pharm Sci 2020; 12(4): 12-5.
[http://dx.doi.org/10.22159/ijpps.2020v12i4.36762]
[105]
Hassan DH, Shohdy JN, El-Nabarawi M, El-Setouhy DA, Abdellatif MM. Nanostructured lipid carriers for transdermal drug delivery. Int J Appl Pharmaceut 2022; 14(4): 88-93.
[http://dx.doi.org/10.22159/ijap.2022v14i4.44564]
[106]
Prausnitz MR, Bose VG, Langer R, Weaver JC. Electroporation of mammalian skin: A mechanism to enhance transdermal drug delivery. Proc Natl Acad Sci 1993; 90(22): 10504-8.
[http://dx.doi.org/10.1073/pnas.90.22.10504] [PMID: 8248137]
[107]
Mitragotri S. Synergistic effect of enhancers for transdermal drug delivery. Pharm Res 2000; 17(11): 1354-9.
[http://dx.doi.org/10.1023/A:1007522114438] [PMID: 11205727]
[108]
Fox LT, Gerber M, Plessis JD, Hamman JH. Transdermal drug delivery enhancement by compounds of natural origin. Molecules 2011; 16(12): 10507-40.
[http://dx.doi.org/10.3390/molecules161210507]
[109]
Elkordy AA, Haj-Ahmad RR, Awaad AS, Zaki RM. An overview on natural product drug formulations from conventional medicines to nanomedicines: Past, present and future. J Drug Deliv Sci Technol 2021; 63: 102459.
[http://dx.doi.org/10.1016/j.jddst.2021.102459]
[110]
Jain S, Tripathi S, Tripathi PK. Invasomes: Potential vesicular systems for transdermal delivery of drug molecules. J Drug Deliv Sci Technol 2021; 61: 102166.
[http://dx.doi.org/10.1016/j.jddst.2020.102166]
[111]
Pinto F, Fonseca LP, de Barros DPC. Dermal delivery of lipid nanoparticles: Effects on skin and assessment of absorption and safety. In: Advances in Experimental Medicine and Biology. Cham: Springer 2022.
[http://dx.doi.org/10.1007/978-3-030-88071-2_4]
[112]
Ullah A, Ullah N, Nawaz T, Aziz T. Molecular mechanisms of sanguinarine in cancer prevention and treatment. Anticancer Agents Med Chem 2023; 23(7): 765-8.
[http://dx.doi.org/10.2174/1871520622666220831124321]
[113]
Shen J, Karges J, Xiong K, Chen Y, Ji L, Chao H. Cancer cell membrane camouflaged iridium complexes functionalized black-titanium nanoparticles for hierarchical-targeted synergistic NIR-II photothermal and sonodynamic therapy. Biomaterials 2021; 275: 120979.
[http://dx.doi.org/10.1016/j.biomaterials.2021.120979] [PMID: 34166910]
[114]
Hernández-Ledesma B, Hsieh CC, de Lumen BO. Antioxidant and anti-inflammatory properties of cancer preventive peptide lunasin in RAW 264.7 macrophages. Biochem Biophys Res Commun 2009; 390(3): 803-8.
[http://dx.doi.org/10.1016/j.bbrc.2009.10.053] [PMID: 19836349]
[115]
Attia M, Essa EA, Zaki RM, Elkordy AA. An overview of the antioxidant effects of ascorbic acid and alpha lipoic acid (in liposomal forms) as adjuvant in cancer treatment. Antioxidants 2020; 9(5): 359.
[http://dx.doi.org/10.3390/antiox9050359] [PMID: 32344912]
[116]
Ahuja A, Gupta J, Gupta R. Miracles of herbal phytomedicines in treatment of skin disorders: Natural healthcare perspective. Infect Disord Drug Targets 2021; 21(3): 328.
[http://dx.doi.org/10.2174/1871526520666200622142710]
[117]
Mao JJ, Pillai GG, Andrade CJ, et al. Integrative oncology: Addressing the global challenges of cancer prevention and treatment. CA Cancer J Clin 2022; 72(2): 144-64.
[http://dx.doi.org/10.3322/caac.21706] [PMID: 34751943]
[118]
Zeng L, Gowda BHJ, Ahmed MG, et al. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol Cancer 2023; 22(1): 10.
[http://dx.doi.org/10.1186/s12943-022-01708-4] [PMID: 36635761]
[119]
Roy A, Nishchaya K, Rai VK. Nanoemulsion-based dosage forms for the transdermal drug delivery applications: A review of recent advances. Expert Opin Drug Deliv 2022; 19(3): 303-19.
[http://dx.doi.org/10.1080/17425247.2022.2045944] [PMID: 35196938]
[120]
Nagarkar R, Singh M, Nguyen HX, Jonnalagadda S. A review of recent advances in microneedle technology for transdermal drug delivery. J Drug Deliv Sci Technol 2020; 59: 101923.
[http://dx.doi.org/10.1016/j.jddst.2020.101923]
[121]
Joshi R, Garud N. Development, optimization and characterization of flurbiprofen matrix transdermal drug delivery system using Box–Behnken statistical design. Fut J Pharmaceut Sci 2021; 7(1): 57.
[http://dx.doi.org/10.1186/s43094-021-00199-2]
[122]
Zhang Y, Liu C, Wang J, et al. Ionic liquids in transdermal drug delivery system: Current applications and future perspectives. Chin Chem Lett 2023; 34(3): 107631.
[http://dx.doi.org/10.1016/j.cclet.2022.06.054]
[123]
Shen D, Yu H, Wang L, et al. Glucose-responsive hydrogel-based microneedles containing phenylborate ester bonds and N-isopropylacrylamide moieties and their transdermal drug delivery properties. Eur Polym J 2021; 148: 110348.
[http://dx.doi.org/10.1016/j.eurpolymj.2021.110348]
[124]
Alkilani AZ, Nasereddin J, Hamed R, et al. Beneath the skin: A review of current trends and future prospects of transdermal drug delivery systems. Pharmaceutics 2022; 14(6): 1152.
[http://dx.doi.org/10.3390/pharmaceutics14061152] [PMID: 35745725]
[125]
Seah BCQ, Teo BM. Recent advances in ultrasound-based transdermal drug delivery. Int J Nanomedicine 2018; 13: 7749-63.
[http://dx.doi.org/10.2147/IJN.S174759] [PMID: 30538456]
[126]
Scheetz L, Park KS, Li Q, et al. Engineering patient-specific cancer immunotherapies. Nat Biomed Eng 2019; 3(10): 768-82.
[http://dx.doi.org/10.1038/s41551-019-0436-x] [PMID: 31406259]
[127]
Elahpour N, Pahlevanzadeh F, Kharaziha M, Bakhsheshi-Rad HR, Ramakrishna S, Berto F. 3D printed microneedles for transdermal drug delivery: A brief review of two decades. Int J Pharm 2021; 597: 120301.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120301] [PMID: 33540018]
[128]
Manikkath J, Subramony JA. Toward closed-loop drug delivery: Integrating wearable technologies with transdermal drug delivery systems. Adv Drug Deliv Rev 2021; 179: 113997.
[http://dx.doi.org/10.1016/j.addr.2021.113997] [PMID: 34634396]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy