[1]
Sawicka, B.; Aslan, I.; Della Corte, V.; Periasamy, A. The coronavirus global pandemic and its impacts on society; Coronavirus Drug Discov, 2022, pp. 267-311.
[2]
Rohan, R. Understanding the dynamics of COVID-19 outbreak: Structure, diagnosis, prevention and treatment. Antiinfect. Agents, 2021, 19(4)
[3]
Yuan, Y.; Jiao, B.; Qu, L.; Yang, D.; Liu, R. The development of COVID-19 treatment. Front. Immunol., 2023, 14, 1125246.
[4]
Ng, YL.; Salim, CK. Chu, JJH Drug repurposing for COVID-19: Approaches, challenges and promising candidates. Pharmacol. Ther., 2021, 228, 107930.
[5]
Tanni, S.E.; Silvinato, A.; Floriano, I.; Pneumologia, D. Use of remdesivir in patients with COVID-19: A systematic review and meta-analysis. J. Bras. Pneumol., 2022, 48(1), e20210393.
[6]
Mehta, J.; Rolta, R.; Mehta, B.B.; Kaushik, N.; Choi, E.H. Role of dexamethasone and methylprednisolone corticosteroids in coronavirus disease 2019 hospitalized patients: A review. Front. Microbiol., 2022, 13, 1-17.
[7]
Zhan, X.; Dowell, S.; Shen, Y. Leea, DL Chloroquine to fight COVID-19: A consideration of mechanisms and adverse effects? Heliyon, 2020, 6(9), e04900.
[8]
Gasmi, A.; Peana, M.; Noor, S.; Lysiuk, R.; Menzel, A.; Benahmed, A.G. Chloroquine and hydroxychloroquine in the treatment of COVID-19: The never-ending story. Appl. Microbiol. Biotechnol., 2021, 105, 1333-1343.
[9]
Niraj, N.; Mahajan, S.S.; Prakash, A.; Sarma, P.; Medhi, B. Paxlovid: A promising drug for the challenging treatment of SARS-CoV-2 in the pandemic era. Indian J. Pharmacol., 2022, 54(6), 452-458.
[10]
Haddad, F.; Dokmak, G. A comprehensive review on the efficacy of several pharmacologic agents for the treatment of COVID-19. Life, 2022, 12, 1-36.
[11]
Rahmah, L.; Sunny, O. Oral antiviral treatments for COVID-19: Opportunities and challenges. Pharmacol. Rep., 2022, 74, 1255-1278.
[12]
Monica, G. La; Bono, A; Lauria, A; Martorana, A. Targeting SARS-CoV-2 main protease for treatment of COVID-19: Covalent inhibitors structure-activity relationship insights and evolution perspectives. J. Med. Chem., 2022, 65(19), 12500-12534.
[13]
Rungruangmaitree, R.S.P. Aunlika Chimprasit, PS Structural analysis of the coronavirus main protease for the design of pan-variant inhibitors. Sci. Rep., 2023, 13, 7055.
[15]
Sajjad, A. In silico methods and tools for drug discovery. Comput. Biol. Med., 2021, 137.
[16]
Moradi, M.; Golmohammadi, R.; Najafi, A.; Moghaddam, M.M.; Fasihi-Ramandi, M.; Mirnejad, R. A contemporary review on the important role of in silico approaches for managing different aspects of COVID-19 crisis. Inform. Med. Unlocked, 2022, 28, 100862.
[17]
Chan, W.K.B.; Olson, K.M.; Wotring, J.W.; Sexton, J.Z.; Carlson, H.A.; Traynor, J.R. in silico analysis of SARS-CoV-2 proteins as targets for clinically available drugs. Sci. Rep., 2022, 12.
[18]
Luo, L.; Qiu, Q.; Huang, F.; Liu, K.; Lan, Y.; Li, X. Drug repurposing against coronavirus disease 2019 (COVID-19): A review. J. Pharm. Anal., 2021, 11(6), 683-690.
[19]
Mei, X.; Gu, P.; Shen, C.; Lin, X. Computer-based immunoinformatic analysis to predict candidate T-cell epitopes for SARS-CoV-2 vaccine design. Front. Immunol., 2023, 13, 847617.
[20]
Moussa, N.; Mando, H. Novel and predictive QSAR model and molecular docking: New natural sulfonamides of potential concern against SARS-Cov-2. Anti-infect. Agents, 2023, 21(5)
[21]
Elend, L.; Jacobsen, L.; Cofala, T.; Prellberg, J.; Teusch, T. Kramer, O Design of SARS-CoV-2 main protease inhibitors using artificial intelligence and molecular dynamic simulations. Molecules, 2022, 27(13), 4020.
[23]
Hassan, M.; Raza, H.; Athar, M. Moustafa, AA Biomedicine & Pharmacotherapy The exploration of novel Alzheimer ’ s therapeutic agents from the pool of FDA approved medicines using drug repositioning, enzyme inhibition and kinetic mechanism approaches. Biomed. Pharmacother., 2019, 109, 2513-2526.
[24]
Alhadrami, H.A.; Sayed, A.M.; Al-khatabi, H.; Alhakamy, N.A.; Rateb, M.E. Scaffold hopping of α -rubromycin enables direct access to FDA-approved cromoglicic acid as a SARS-CoV-2 M pro inhibitor. Pharmaceuticals, 2021, 14(6), 541.
[25]
Najjar, A.; Platzer, C.; Luft, A.; Aßmann, C.A.; Hany, N. Ghazawy, A Computer-aided design, synthesis and biological characterization of novel inhibitors for PKMYT1. Eur. J. Med. Chem., 2018, 1(161), 479-492.
[27]
Negi, P.; Prakash, S.; Patil, V.M. Structure based drug design approach to identify potential SARS-CoV-2 polymerase inhibitors. Coronaviruses, 2021, 2(4), 507-515.
[28]
Saeed, M.; Saeed, A.; Alam, M.J. Receptor-based pharmacophore modeling in the search for natural products for COVID-19 mpro. Molecules, 2021, 26(6), 1549.
[29]
Wang, H.; Wen, J.; Yang, Y.; Liu, H.; Wang, S.; Ding, X. Identification of highly effective inhibitors against SARS-CoV-2 main protease: From virtual screening to in vitro study. Front. Pharmacol., 2022, 13, 1036208.
[31]
El-ashrey, M.K.; Bakr, R.O.; Fayed, M.A.A.; Refaey, R.H. Pharmacophore based virtual screening for natural product database revealed possible inhibitors for SARS-CoV-2 main protease. Virology, 2022, 570, 18-28.
[33]
Verma, D.K. Kapoor, S Potential inhibitors of SARS-CoV-2 Main Protease (Mpro) identified from the library of FDA-approved drugs using molecular docking studies. Biomedicines, 2022, 11(1), 85.
[34]
Dawood, A.A. The efficacy of Paxlovid against COVID-19 is the result of the tight molecular docking between Mpro and antiviral drugs (nirmatrelvir and ritonavir). Adv. Med. Sci., 2023, 68(1), 1-9.
[35]
Aki-Yalcin, M.T.M.; Molecular Docking, E. Molecular docking: Principles, advances, and its applications in drug discovery. Lett. Drug Des. Discov., 2022, 20.
[37]
Madan, R.; Pandit, K.; Kumar, H.; Kumari, N.; Singh, S. Principles and aspects of molecular docking: A bird ’ s eye view. Hans Shodh Sudha., 2020, 1(1), 110-121.
[38]
Eberhardt, Jerome AutoDock Vina 1.2.0: New docking methods, expanded force field, and Python bindings. J. Chem. Inf. Model., 2021, 61(8), 3891-3898.
[39]
Adamu, U Molecular docking studies, drug-likeness and in-silico ADMET prediction of some novel β-Amino alcohol grafted 1,4,5- trisubstituted 1,2,3-triazoles derivatives as elevators of p53 protein levels. Sci. African, 2020, 10.
[40]
Oliveira, T.A. de; Silva, MP; da; Maia, EHB; Silva, AM; Taranto, A Virtual screening algorithms in drug discovery: A review focused on machine and deep learning methods. Drugs Drug Candi., 2023, 2(2), 311-334.
[42]
Zoete, V.; Daina, A.; Bovigny, C.; Michielin, O. SwissSimilarity: A web tool for low to ultra high throughput ligand-based virtual screening. J. Chem. Inf. Model., 2016, 56, 1399-1404.
[43]
Bragina, M.E.; Daina, A.; Perez, M.A.S.; Michielin, O.; Zoete, V. The swisssimilarity 2021 web tool: Novel chemical libraries and additional methods for an enhanced ligand-based virtual screening experience. Int. J. Mol. Sci., 2022, 23, 811.
[44]
Dotolo, A.F. Pharmacophore modeling, virtual computational screening and biological evaluation studies. PeerJ Prepr., 2017, 1-5.
[48]
Halimi, M.; Bararpour, P. Natural inhibitors of SARS CoV 2 main protease: Structure based pharmacophore modeling, molecular docking and molecular dynamic simulation studies. J. Mol. Model., 2022, 28, 279.
[49]
Zadorozhnii, P.V.; Kiselev, V.V.; Kharchenko, A.V. in silico drug-likeness assessment and ADME screening were performed using the freely accessible web tool SwissADME. Fut. Pharmacol., 2022, 2(2), 160-197.
[51]
Arup, K. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1999, 1(1), 55-68.
[52]
Daniel, F. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615.
[53]
Kralj, S. Molecular filters in medicinal chemistry. Encyclopedia, 2023, 3, 501-511.
[54]
Muegge, I. Simple selection criteria for drug-like chemical matter. J. Med. Chem., 2001, 44(12), 1841-1846.
[55]
Vieira, T.F. Comparing autodock and vina in ligand/decoy discrimination for virtual screening. Appl. Sci., 2019, 9(21), 4535.
[56]
Olson, O.T. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem., 2011, 31(2), 455-461.
[57]
Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S. Olson, AJ Computational protein - ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc., 2016, 11(5), 905-919.
[58]
Melissa, FPLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res., 2021, 49(1), 530-534.
[59]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug- likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 1-13.
[60]
Riyadi, P.H. SwissADME predictions of pharmacokinetics and drug- likeness properties of small molecules present in Spirulina platensis. IOP Conf. Ser. Earth Environ. Sci., 2021.
[61]
Sahin, S. A single-molecule with multiple investigations: Synthesis, characterization, computational methods, inhibitory activity against Alzheimer’s disease, toxicity, and ADME studies. Comput. Biol. Med., 2022, 146, 105514.
[62]
Akshay, B. P-glycoprotein substrate assessment in drug discovery: Application of modeling to bridge differential protein expression across in vitro tools. J. Pharm. Sci., 2021, 110(1)
[64]
Guéniche, N.; Huguet, A.; Bruyere, A. Habauzit, Denis Comparative in silico prediction of P-glycoprotein-mediated transport for 2010-2020 US FDA-approved drugs using six Web-tools. Biopharm. Drug Dispos., 2021, 42(8), 393-398.
[65]
Refaey, R.H.; El-ashrey, M.K.; Nissan, Y.M. Repurposing of renin inhibitors as SARS-CoV-2 main protease inhibitors: A computational study. Virology, 2021, 554, 48-54.
[66]
Mochizuki, Masahiro QEX: Target-specific druglikeness filter enhances ligand-based virtual screening. Mol. Divers., 2019, 23, 11-18.
[67]
Chatterjee, A.; Walters, R.; Shafi, Z.; Ahmed, O.S.; Sebek, M.; Gysi, D. Improving the generalizability of protein-ligand binding predictions with AI-Bind. Nat. Commun., 2023, 14, 1989.
[68]
Yu, R.; Chen, L.; Lan, R. Shen, R Computational screening of antagonists against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. Int. J. Antimicrob. Agents, 2020, 56(2), 106012.
[69]
Ferreira, J.C.; Fadl, S.; Villanueva, A.J. Rabeh, WM Catalytic dyad residues His41 and Cys145 impact the catalytic activity and overall conformational fold of the main SARS-CoV-2 protease 3-chymotrypsin-like protease. Front Chem., 2021, 9, 692168.
[70]
Al-Bustany, H.A.; Ercan, S.; Ince, E.; Pirinccioglu, N. Investigation of angucycline compounds as potential drug candidates against SARS Cov-2 main protease using docking and molecular dynamic approaches. Mol. Divers., 2021, 26, 293-308.
[71]
Antonopoulou, I.; Sapountzaki, E.; Rova, U.; Christakopoulos, P. Inhibition of the main protease of SARS-CoV-2 (M pro) by repurposing/designing drug-like substances and utilizing nature’s toolbox of bioactive compounds. Comput. Struct. Biotechnol. J., 2022, 20, 1306-1344.
[72]
Hai, Ping Shao; Wang, TH; Zhai, HL; Bi, KX; Zhao, BQ Discovery of inhibitors against SARS-CoV-2 main protease using fragment-based drug design. Chem. Biol. Interact., 2023, 371.
[74]
Ryunosuke, Yoshino NY Identification of key interactions between SARS-CoV-2 main protease and inhibitor drug candidates. Sci. Rep., 2020, 10.