Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Investigation of Early Growth Response Protein (EGR) Levels in Patients with Fibromyalgia Syndrome: A Cross-Sectional Study

Author(s): Ayca Tas, Tugba Agbektas, Ahmet Karadag, Süleyman Aydin*, Emrullah Hayta and Yavuz Silig

Volume 30, Issue 12, 2023

Published on: 24 November, 2023

Page: [1001 - 1008] Pages: 8

DOI: 10.2174/0109298665256584231103113328

Price: $65

conference banner
Abstract

Background: Fibromyalgia is a soft tissue rheumatism characterized by chronic and widespread musculoskeletal pain at specific points in the body.

Objectives: In this study, we aimed to investigate the relationship between Early Growth Response (EGR1, EGR2, and EGR3) protein levels in patients with Fibromyalgia Syndrome (FMS) and healthy controls.

Methods: In our studies, 76 FMS patient group and 78 healthy control group who were newly diagnosed with primary FMS according to the 2010 American College of Rheumatology criteria for fibromyalgia in Sivas Cumhuriyet University Hospital, Physical Therapy, and Rehabilitation were used. Venous blood samples were taken from both groups for the measurement of EGR1, EGR2, and EGR3 protein plasma levels, and protein levels were determined using ELISA methods. Statistical parametric test assumptions were compared using the Independent Student's t-test. In addition, specificity, sensitivity, and AUC values were calculated with the ROC curve.

Results: The relationship between plasma EGR1 protein levels of FMS patients and control groups was statistically significant (p=0.001).

Conclusion: EGR1 protein levels were found to be lower in the patient group diagnosed with FMS compared to the control group. It has been suggested that EGR1 protein levels can be important in the diagnosis of FMS disease.

Keywords: Early growth response proteins, fibromyalgia, protein levels, ELISA, soft tissue rheumatism, musculoskeletal pain.

Next »
Graphical Abstract
[1]
Hawkins, R.A. Fibromyalgia: A clinical update. J. Am. Osteopath. Assoc., 2013, 113(9), 680-689.
[PMID: 24005088]
[2]
Wolfe, F.; Clauw, D.J.; Fitzcharles, M.A.; Goldenberg, D.L.; Katz, R.S.; Mease, P.; Russell, A.S.; Russell, I.J.; Winfield, J.B.; Yunus, M.B. The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care Res., 2010, 62(5), 600-610.
[http://dx.doi.org/10.1002/acr.20140] [PMID: 20461783]
[3]
Bennett, R.M. Clinical manifestations and diagnosis of fibromyalgia. Rheum. Dis. Clin. North Am., 2009, 35(2), 215-232.
[http://dx.doi.org/10.1016/j.rdc.2009.05.009] [PMID: 19647138]
[4]
Bigatti, S.M.; Hernandez, A.M.; Cronan, T.A.; Rand, K.L. Sleep disturbances in fibromyalgia syndrome: Relationship to pain and depression. Arthritis Rheum., 2008, 59(7), 961-967.
[http://dx.doi.org/10.1002/art.23828] [PMID: 18576297]
[5]
Lattanzio, S.M. Fibromyalgia syndrome: A metabolic approach grounded in biochemistry for the remission of symptoms. Front. Med., 2017, 4, 198.
[http://dx.doi.org/10.3389/fmed.2017.00198] [PMID: 29250522]
[6]
Sim, J.; Madden, S. Illness experience in fibromyalgia syndrome: A metasynthesis of qualitative studies. Soc. Sci. Med., 2008, 67(1), 57-67.
[http://dx.doi.org/10.1016/j.socscimed.2008.03.003] [PMID: 18423826]
[7]
Wang, C.; Schmid, C.H.; Fielding, R.A.; Harvey, W.F.; Reid, K.F.; Price, L.L.; Driban, J.B.; Kalish, R.; Rones, R.; McAlindon, T. Effect of tai chi versus aerobic exercise for fibromyalgia: Comparative effectiveness randomized controlled trial. BMJ, 2018, 360, k851.
[http://dx.doi.org/10.1136/bmj.k851] [PMID: 29563100]
[8]
Arnold, L.M.; Bennett, R.M.; Crofford, L.J.; Dean, L.E.; Clauw, D.J.; Goldenberg, D.L.; Fitzcharles, M.A.; Paiva, E.S.; Staud, R.; Sarzi-Puttini, P.; Buskila, D.; Macfarlane, G.J. AAPT diagnostic criteria for fibromyalgia. J. Pain, 2019, 20(6), 611-628.
[http://dx.doi.org/10.1016/j.jpain.2018.10.008] [PMID: 30453109]
[9]
Grayston, R.; Czanner, G.; Elhadd, K.; Goebel, A.; Frank, B.; Üçeyler, N. A systematic review and meta-analysis of the prevalence of small fiber pathology in fibromyalgia: Implications for a new paradigm in fibromyalgia etiopathogenesis. Semin. Arthritis. Rheum., 2019, 48(5), 933-940.
[10]
Bhattacharyya, S.; Wu, M.; Fang, F.; Tourtellotte, W.; Feghali-Bostwick, C.; Varga, J. Early growth response transcription factors: Key mediators of fibrosis and novel targets for anti-fibrotic therapy. Matrix Biol., 2011, 30(4), 235-242.
[http://dx.doi.org/10.1016/j.matbio.2011.03.005] [PMID: 21511034]
[11]
O’Donovan, K.J.; Tourtellotte, W.G.; Millbrandt, J.; Baraban, J.M. The EGR family of transcription-regulatory factors: Progress at the interface of molecular and systems neuroscience. Trends Neurosci., 1999, 22(4), 167-173.
[http://dx.doi.org/10.1016/S0166-2236(98)01343-5] [PMID: 10203854]
[12]
Müller, H.J.; Skerka, C.; Bialonski, A.; Zipfel, P.F. Clone pAT 133 identifies a gene that encodes another human member of a class of growth factor-induced genes with almost identical zinc-finger domains. Proc. Natl. Acad. Sci., 1991, 88(22), 10079-10083.
[http://dx.doi.org/10.1073/pnas.88.22.10079]
[13]
Thiel, G.; Cibelli, G. Regulation of life and death by the zinc finger transcription factor Egr-1. J. Cell. Physiol., 2002, 193(3), 287-292.
[http://dx.doi.org/10.1002/jcp.10178] [PMID: 12384981]
[14]
Otahara, N.; Ikeda, T.; Sakoda, S.; Shiba, R.; Nishimori, T. Involvement of NMDA receptors in Zif/268 expression in the trigeminal nucleus caudalis following formalin injection into the rat whisker pad. Brain Res. Bull., 2003, 62(1), 63-70.
[http://dx.doi.org/10.1016/j.brainresbull.2003.08.008] [PMID: 14596893]
[15]
Sukhatme, V.P. The Egr transcription factor family: From signal transduction to kidney differentiation. Kidney Int., 1992, 41(3), 550-553.
[http://dx.doi.org/10.1038/ki.1992.79] [PMID: 1573826]
[16]
Rupprecht, HD; Hofer, G; De Heer, E; Sterzel, R. B; Faller, G; Schoechklmann, HO. Expression of the transcriptional regulator Egr-1 in experimental glomerulonephritis: requirement for mesangial cell proliferation. Kid. Internat., 1997, 51, 694-702.
[http://dx.doi.org/10.1038/ki.1997.100]
[17]
Yan, S.F.; Fujita, T.; Lu, J.; Okada, K.; Shan Zou, Y.; Mackman, N.; Pinsky, D.J.; Stern, D.M. Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat. Med., 2000, 6(12), 1355-1361.
[http://dx.doi.org/10.1038/82168] [PMID: 11100120]
[18]
Fang, F.; Ooka, K.; Bhattachyya, S.; Wei, J.; Wu, M.; Du, P.; Lin, S.; Del Galdo, F.; Feghali-Bostwick, C.A.; Varga, J. The early growth response gene Egr2 (Alias Krox20) is a novel transcriptional target of transforming growth factor-β that is up-regulated in systemic sclerosis and mediates profibrotic responses. Am. J. Pathol., 2011, 178(5), 2077-2090.
[http://dx.doi.org/10.1016/j.ajpath.2011.01.035] [PMID: 21514423]
[19]
Suehiro, J.; Hamakubo, T.; Kodama, T.; Aird, W.C.; Minami, T. Vascular endothelial growth factor activation of endothelial cells is mediated by early growth response-3. Blood, 2010, 115(12), 2520-2532.
[http://dx.doi.org/10.1182/blood-2009-07-233478] [PMID: 19965691]
[20]
Albert, Y.; Whitehead, J.; Eldredge, L.; Carter, J.; Gao, X.; Tourtellotte, W.G. Transcriptional regulation of myotube fate specification and intrafusal muscle fiber morphogenesis. J. Cell Biol., 2005, 169(2), 257-268.
[http://dx.doi.org/10.1083/jcb.200501156] [PMID: 15837802]
[21]
Bhattacharyya, S.; Fang, F.; Tourtellotte, W.; Varga, J. Egr‐1: New conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis). J. Pathol., 2013, 229(2), 286-297.
[http://dx.doi.org/10.1002/path.4131] [PMID: 23132749]
[22]
Christy, B.; Nathans, D. DNA binding site of the growth factor-inducible protein Zif268. Proc. Natl. Acad. Sci., 1989, 86(22), 8737-8741.
[http://dx.doi.org/10.1073/pnas.86.22.8737] [PMID: 2510170]
[23]
McCaffrey, T.A.; Fu, C.; Du, B.; Eksinar, S.; Kent, K.C.; Bush, H., Jr; Kreiger, K.; Rosengart, T.; Cybulsky, M.I.; Silverman, E.S.; Collins, T. High-level expression of Egr-1 and Egr-1–inducible genes in mouse and human atherosclerosis. J. Clin. Invest., 2000, 105(5), 653-662.
[http://dx.doi.org/10.1172/JCI8592] [PMID: 10712437]
[24]
Herdegen, T.; Kovary, K.; Buhl, A.; Bravo, R.; Zimmermann, M.; Gass, P. Basal expression of the inducible transcription factors c-Jun, JunB, JunD, c-Fos, FosB, and Krox-24 in the adult rat brain. J. Comp. Neurol., 1995, 354(1), 39-56.
[http://dx.doi.org/10.1002/cne.903540105] [PMID: 7615874]
[25]
van Loo, K.M.J.; Rummel, C.K.; Pitsch, J.; Müller, J.A.; Bikbaev, A.F.; Martinez-Chavez, E.; Blaess, S.; Dietrich, D.; Heine, M.; Becker, A.J.; Schoch, S. Calcium channel subunit? 2?4 is regulated by early growth response 1 and facilitates epileptogenesis. J. Neurosci., 2019, 39(17), 3175-3187.
[http://dx.doi.org/10.1523/JNEUROSCI.1731-18.2019] [PMID: 30792272]
[26]
Bozon, B.; Davis, S.; Laroche, S. A requirement for the immediate early gene zif268 in reconsolidation of recognition memory after retrieval. Neuron, 2003, 40(4), 695-701.
[http://dx.doi.org/10.1016/S0896-6273(03)00674-3] [PMID: 14622575]
[27]
Davis, S.; Bozon, B.; Laroche, S. How necessary is the activation of the immediate early gene zif268 in synaptic plasticity and learning? Behav. Brain Res., 2003, 142(1-2), 17-30.
[http://dx.doi.org/10.1016/S0166-4328(02)00421-7] [PMID: 12798262]
[28]
Wisden, W.; Errington, M.L.; Williams, S.; Dunnett, S.B.; Waters, C.; Hitchcock, D.; Evan, G.; Bliss, T.V.P.; Hunt, S.P. Differential expression of immediate early genes in the hippocampus and spinal cord. Neuron, 1990, 4(4), 603-614.
[http://dx.doi.org/10.1016/0896-6273(90)90118-Y] [PMID: 2108708]
[29]
Lantéri-Minet, M.; de Pommery, J.; Herdegen, T.; Weil-Fugazza, J.; Bravo, R.; Menétrey, D. Differential time course and spatial expression of Fos, Jun, and Krox-24 proteins in spinal cord of rats undergoing subacute or chronic somatic inflammation. J. Comp. Neurol., 1993, 333(2), 223-235.
[http://dx.doi.org/10.1002/cne.903330208] [PMID: 8345103]
[30]
Rahman, O.I.F.; Terayama, R.; Ikeda, T.; Koganemaru, M.; Nakamura, T.; Shiba, R.; Nishimori, T. Differential effects of NMDA and AMPA/KA receptor antagonists on c-Fos or Zif/268 expression in the rat spinal dorsal horn induced by noxious thermal or mechanical stimulation, or formalin injection. Neurosci. Res., 2002, 43(4), 389-399.
[http://dx.doi.org/10.1016/S0168-0102(02)00067-6] [PMID: 12135782]
[31]
Liu, X.; Serova, L.; Kvetnanský, R.; Sabban, E.L. Identifying the stress transcriptome in the adrenal medulla following acute and repeated immobilization. Ann. N. Y. Acad. Sci., 2008, 1148, 1-28.
[http://dx.doi.org/10.1196/annals.1410.082] [PMID: 19120088]
[32]
Duclot, F.; Kabbaj, M. The role of early growth response 1 (EGR1) in brain plasticity and neuropsychiatric disorders. Front. Behav. Neurosci., 2017, 11, 35.
[http://dx.doi.org/10.3389/fnbeh.2017.00035] [PMID: 28321184]
[33]
Nebbaki, S.S.; El Mansouri, F.; Afif, H.; Kapoor, M.; Benderdour, M.; Duval, N.; Pelletier, J.P.; Martel-Pelletier, J.; Fahmi, H. Egr-1 contributes to IL-1-mediated down-regulation of peroxisome proliferator-activated receptor γ expression in human osteoarthritic chondrocytes. Arthritis Res. Ther., 2012, 14(2), R69.
[http://dx.doi.org/10.1186/ar3788] [PMID: 22455954]
[34]
Zhang, X; Yuan, Z; Cui, S Identifying candidate genes involved in osteoarthritis through bioinformatics analysis. Clin and experiment Rheumat, 2016, 34, 282.
[35]
Feng, Z.; Lian, K.J. Identification of genes and pathways associated with osteoarthritis by bioinformatics analyses. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(5), 736-744.
[PMID: 25807424]
[36]
Grimbacher, B.; Aicher, W.K.; Peter, H.H.; Eibel, H. Measurement of transcription factor c-fos and EGR-1 mRNA transcription levels in synovial tissue by quantitative RT-PCR. Rheumatol. Int., 1997, 17(3), 109-112.
[http://dx.doi.org/10.1007/s002960050018] [PMID: 9352605]
[37]
Trabandt, A; Aicher, WK; Gay, RE; Sukhatme, VP; Fassbender, HG; Gay, S Spontaneous expression of immediately-early response genes c-fos and egr-1 in collagenase-producing rheumatoid synovial fibroblasts. Rheumat. internat., 1992, 12, 53-59.
[http://dx.doi.org/10.1007/BF00300977]
[38]
Aicher, W.K.; Heer, A.H.; Trabandt, A.; Bridges, S.L., Jr; Schroeder, H.W., Jr; Stransky, G.; Gay, R.E.; Eibel, H.; Peter, H.H.; Siebenlist, U. Overexpression of zinc-finger transcription factor Z-225/Egr-1 in synoviocytes from rheumatoid arthritis patients. J. Immunol., 1994, 152(12), 5940-5948.
[http://dx.doi.org/10.4049/jimmunol.152.12.5940] [PMID: 8207219]
[39]
Alexander, D; Judex, M; Meyringer, R; Weis-Klemm, M; Gay, S; Müller-Ladner, U Transcription factor Egr-1 activates collagen expression in immortalized fibroblasts or fibrosarcoma cells. Biol chemist, 2002, 383, 1845-1853.
[http://dx.doi.org/10.1515/BC.2002.208]
[40]
Kloppenburg, M.; Berenbaum, F. Osteoarthritis year in review 2019: Epidemiology and therapy. Osteoarthr. Cartil., 2020, 28(3), 242-248.
[http://dx.doi.org/10.1016/j.joca.2020.01.002] [PMID: 31945457]
[41]
Cao, X.M.; Guy, G.R.; Sukhatme, V.P.; Tan, Y.H. Regulation of the Egr-1 gene by tumor necrosis factor and interferons in primary human fibroblasts. J. Biol. Chem., 1992, 267(2), 1345-1349.
[http://dx.doi.org/10.1016/S0021-9258(18)48437-2] [PMID: 1730654]
[42]
Rockel, JS; Bernier, SM; Leask, A Egr-1 inhibits the expression of extracellular matrix genes in chondrocytes by TNFα-induced MEK/ERK signalling. Arth res & thera, 2009, 11, R8.
[43]
Granet, C.; Miossec, P. Combination of the pro-inflammatory cytokines IL-1, TNF-$α; and IL-17 leads to enhanced expression and additional recruitment of AP-1 family members, Egr-1 and NF-$kappa;B in osteoblast-like cells*1. Cytokine, 2004, 26(4), 169-177.
[http://dx.doi.org/10.1016/j.cyto.2004.03.002] [PMID: 15149634]
[44]
Geng, L.; Liao, B.; Jin, L.; Huang, Z.; Triggle, C.R.; Ding, H.; Zhang, J.; Huang, Y.; Lin, Z.; Xu, A. Exercise alleviates obesity-induced metabolic dysfunction via enhancing FGF21 sensitivity in adipose tissues. Cell Rep., 2019, 26(10), 2738-2752.e4.
[http://dx.doi.org/10.1016/j.celrep.2019.02.014] [PMID: 30840894]
[45]
Yang, Y.; Choi, H.; Seon, M.; Cho, D.; Bang, S.I. LL-37 stimulates the functions of adipose-derived stromal/stem cells via early growth response 1 and the MAPK pathway. Stem Cell Res. Ther., 2016, 7(1), 58.
[http://dx.doi.org/10.1186/s13287-016-0313-4] [PMID: 27095351]
[46]
Pernambuco, A.P.; Schetino, L.P.; Alvim, C.C.; Murad, C.M.; Viana, R.S.; Carvalho, L.S.; Reis, D.Á. Increased levels of IL-17A in patients with fibromyalgia. Clin. Exp. Rheumatol., 2013, 31(6), S60-S63.
[PMID: 24021410]
[47]
Siracusa, R.; Paola, R.D.; Cuzzocrea, S.; Impellizzeri, D. Fibromyalgia: Pathogenesis, mechanisms, diagnosis and treatment options update. Int. J. Mol. Sci., 2021, 22(8), 3891.
[http://dx.doi.org/10.3390/ijms22083891] [PMID: 33918736]
[48]
Milbrandt, J. A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science, 1987, 238(4828), 797-799.
[http://dx.doi.org/10.1126/science.3672127] [PMID: 3672127]
[49]
Sukhatme, V.P.; Kartha, S.; Toback, F.G.; Taub, R.; Hoover, R.G.; Tsai-Morris, C.H. A novel early growth response gene rapidly induced by fibroblast, epithelial cell and lymphocyte mitogens. Oncogene Res., 1987, 1(4), 343-355.
[PMID: 3130602]
[50]
Topilko, P.; Schneider-Maunoury, S.; Levi, G.; Baron-Van Evercooren, A.; Chennoufi, A.B.Y.; Seitanidou, T.; Babinet, C.; Charnay, P. Krox-20 controls myelination in the peripheral nervous system. Nature, 1994, 371(6500), 796-799.
[http://dx.doi.org/10.1038/371796a0] [PMID: 7935840]
[51]
Zhu, B; Symonds, AL; Martin, JE; Kioussis, D; Wraith, DC; Li, S Early growth response gene 2 (Egr-2) controls the self-tolerance of T cells and prevents the development of lupuslike autoimmune disease. J. Experiment. Medici., 2008, 205, 2295-2307.
[52]
Nishimura, Y.; Takizawa, R.; Koike, S.; Kinoshita, A.; Satomura, Y.; Kawasaki, S.; Yamasue, H.; Tochigi, M.; Kakiuchi, C.; Sasaki, T.; Iwayama, Y.; Yamada, K.; Yoshikawa, T.; Kasai, K. Association of decreased prefrontal hemodynamic response during a verbal fluency task with EGR3 gene polymorphism in patients with schizophrenia and in healthy individuals. Neuroimage, 2014, 85(Pt 1), 527-534.
[http://dx.doi.org/10.1016/j.neuroimage.2013.08.021] [PMID: 23962955]
[53]
Safford, M.; Collins, S.; Lutz, M.A.; Allen, A.; Huang, C.T.; Kowalski, J.; Blackford, A.; Horton, M.R.; Drake, C.; Schwartz, R.H.; Powell, J.D. Egr-2 and Egr-3 are negative regulators of T cell activation. Nat. Immunol., 2005, 6(5), 472-480.
[http://dx.doi.org/10.1038/ni1193] [PMID: 15834410]
[54]
Li, S.; Miao, T.; Sebastian, M.; Bhullar, P.; Ghaffari, E.; Liu, M.; Symonds, A.L.J.; Wang, P. The transcription factors Egr2 and Egr3 are essential for the control of inflammation and antigen-induced proliferation of B and T cells. Immunity, 2012, 37(4), 685-696.
[http://dx.doi.org/10.1016/j.immuni.2012.08.001] [PMID: 23021953]
[55]
Liu, D.; Evans, I.; Britton, G.; Zachary, I. The zinc-finger transcription factor, early growth response 3, mediates VEGF-induced angiogenesis. Oncogene, 2008, 27(21), 2989-2998.
[http://dx.doi.org/10.1038/sj.onc.1210959] [PMID: 18059339]
[56]
Baron, VT; Pio, R; Jia, Z; Mercola, D Early growth response 3 regulates genes of inflammation and directly activates IL6 and IL8 expression in prostate cancer. Brit. J. Cancer., 2015, 112, 755-764.
[http://dx.doi.org/10.1038/bjc.2014.622]
[57]
Tourtellotte, W.G.; Keller-Peck, C.; Milbrandt, J.; Kucera, J. The transcription factor Egr3 modulates sensory axon-myotube interactions during muscle spindle morphogenesis. Dev. Biol., 2001, 232(2), 388-399.
[http://dx.doi.org/10.1006/dbio.2001.0202] [PMID: 11401400]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy