Review Article

Crucial Role of microRNAs as New Targets for Amelogenesis Disorders Detection

Author(s): Nadezhda Masunova, Maria Tereschenko, Georgy Alexandrov, Liudmila Spirina* and Natalia Tarasenko

Volume 24, Issue 14, 2023

Published on: 05 November, 2023

Page: [1139 - 1149] Pages: 11

DOI: 10.2174/0113894501257011231030161427

Price: $65

conference banner
Abstract

Introduction: Amelogenesis imperfecta (AI) refers to a heterogeneous group of conditions with multiple factors which contribute to the hypomineralisation of enamel. Preventive measures are necessary to predict this pathology. Prospects for preventive medicine are closely related to the search for new informative methods for diagnosing a human disease. MicroRNAs are prominent for the non-invasive diagnostic platform.

The Aim of the Study: The aim of the review is to review the heterogeneous factors involved in amelogenesis and to select the microRNA panel associated with the AI type.

Methods: We used DIANA Tools (algorithms, databases and software) for interpreting and archiving data in a systematic framework ranging from the analysis of expression regulation from deep sequencing data to the annotation of miRNA regulatory elements and targets (https://dianalab. e-ce.uth.gr/). In our study, based on a gene panel associated with the AI types, twenty-four miRNAs were identified for the hypoplastic type (supplement), thirty-five for hypocalcified and forty-- nine for hypomaturation AI. The selection strategy included the microRNA search with multiple targets using the AI type's gene panel.

Results: Key proteins, calcium-dependent and genetic factors were analysed to reveal their role in amelogenesis. The role of extracellular non-coding RNA sequences with multiple regulatory functions seems to be the most attractive. We chose the list of microRNAs associated with the AI genes. We found four microRNAs (hsa-miR-27a-3p, hsa-miR-375, hsa-miR-16-5p and hsamiR- 146a-5p) for the gene panel, associated with the hypoplastic type of AI; five microRNAs (hsa- miR-29c-3p, hsa-miR-124-3p, hsa-miR-1343-3p, hsa-miR-335-5p, and hsa-miR-16-5p - for hypocalcified type of AI, and seven ones (hsa-miR-124-3p, hsa-miR-147a, hsa-miR-16-5p, hsamiR- 429, hsa-let-7b-5p, hsa-miR-146a-5p, hsa-miR-335-5p) - for hypomaturation. It was revealed that hsa-miR-16-5p is included in three panels specific for both hypoplastic, hypocalcified, and hypomaturation types. Hsa-miR-146a-5p is associated with hypoplastic and hypomaturation type of AI, which is associated with the peculiarities of the inflammatory response immune response. In turn, hsa-miR-335-5p associated with hypocalcified and hypomaturation type of AI.

Conclusion: Liquid biopsy approaches are a promising way to reduce the economic cost of treatment for these patients in modern healthcare. Unique data exist about the role of microRNA in regulating amelogenesis. The list of microRNAs that are associated with AI genes and classified by AI types has been uncovered. The target gene analysis showed the variety of functions of selected microRNAs, which explains the multiple heterogeneous mechanisms in amelogenesis.

Predisposition to mineralisation problems is a programmed event. Many factors determine the manifestation of this problem. Additionally, it is necessary to remember the variable nature of the changes, which reduces the prediction accuracy. Therefore, models based on liquid biopsy and microRNAs make it possible to take into account these factors and their influence on the mineralisation. The found data needs further investigation.

Keywords: Amelogenesis imperfecta, genetic factors, growth factors, calcium metabolism, microRNA, liquid biopsy.

« Previous
Graphical Abstract
[1]
Ali S, Farooq I. A review of the role of amelogenin protein in enamel formation and novel experimental techniques to study its function. Protein Pept Lett 2019; 26(12): 880-6.
[http://dx.doi.org/10.2174/0929866526666190731120018] [PMID: 31364509]
[2]
Bonnet AL, Sceosole K, Vanderzwalm A, Silve C, Collignon AM, Gaucher C. “Isolated” amelogenesis imperfecta associated with DLX3 mutation: A clinical case. Case Rep Genet 2020; 2020: 1-6.
[http://dx.doi.org/10.1155/2020/8217919] [PMID: 32832172]
[3]
Crawford PJM, Aldred M, Bloch-Zupan A. Amelogenesis imperfecta. Orphanet J Rare Dis 2007; 2(1): 17.
[http://dx.doi.org/10.1186/1750-1172-2-17] [PMID: 17408482]
[4]
Moradian-Oldak J. Amelogenins: Assembly, processing and control of crystal morphology. Matrix Biol 2001; 20(5-6): 293-305.
[http://dx.doi.org/10.1016/S0945-053X(01)00154-8] [PMID: 11566263]
[5]
Sawan NM. Clear aligners in patients with amelogenesis and dentinogenesis imperfecta. Int J Dent / ed Nuvvula S 2021; 2021: 1-8.
[6]
Wright JT. Enamel phenotypes: Genetic and environmental determinants. Genes 2023; 14(3): 545.
[http://dx.doi.org/10.3390/genes14030545] [PMID: 36980818]
[7]
Fukumoto S, Kiba T, Hall B, et al. Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts. J Cell Biol 2004; 167(5): 973-83.
[http://dx.doi.org/10.1083/jcb.200409077] [PMID: 15583034]
[8]
Furukawa Y, Haruyama N, Nikaido M, et al. Stim1 regulates enamel mineralization and ameloblast modulation. J Dent Res 2017; 96(12): 1422-9.
[http://dx.doi.org/10.1177/0022034517719872] [PMID: 28732182]
[9]
Huang Z, Kim J, Lacruz RS, et al. Epithelial-specific knockout of the Rac1 gene leads to enamel defects. Eur J Oral Sci 2011; 119(S1): 168-76.
[http://dx.doi.org/10.1111/j.1600-0722.2011.00904.x] [PMID: 22243243]
[10]
Bartlett JD. Dental enamel development: Proteinases and their enamel matrix substrates. ISRN Dent 2013; 2013: 1-24.
[http://dx.doi.org/10.1155/2013/684607] [PMID: 24159389]
[11]
Hu JCC, Yamakoshi Y, Yamakoshi F, Krebsbach PH, Simmer JP. Proteomics and genetics of dental enamel. Cells Tissues Organs 2005; 181(3-4): 219-31.
[http://dx.doi.org/10.1159/000091383] [PMID: 16612087]
[12]
Lagerström M, Dahl N, Nakahori Y, et al. A deletion in the amelogenin gene (AMG) causes X-linked amelogenesis imperfecta (AIH1). Genomics 1991; 10(4): 971-5.
[http://dx.doi.org/10.1016/0888-7543(91)90187-J] [PMID: 1916828]
[13]
Visakan G, Su J, Moradian-Oldak J. Data from ameloblast cell lines cultured in 3D using various gel substrates in the presence of ameloblastin. Data Brief 2022; 42: 108233.
[http://dx.doi.org/10.1016/j.dib.2022.108233] [PMID: 35586397]
[14]
Kang HY, Seymen F, Lee SK, et al. Candidate gene strategy reveals ENAM mutations. J Dent Res 2009; 88(3): 266-9.
[http://dx.doi.org/10.1177/0022034509333180] [PMID: 19329462]
[15]
Hart TC, Hart PS, Gorry MC, et al. Novel ENAM mutation responsible for autosomal recessive amelogenesis imperfecta and localised enamel defects. J Med Genet 2003; 40(12): 900-6.
[http://dx.doi.org/10.1136/jmg.40.12.900] [PMID: 14684688]
[16]
Diekwisch TGH, Ware J, Fincham AG, Zeichner-David M. Immunohistochemical similarities and differences between amelogenin and tuftelin gene products during tooth development. J Histochem Cytochem 1997; 45(6): 859-66.
[http://dx.doi.org/10.1177/002215549704500610] [PMID: 9199671]
[17]
Shilo D, Blumenfeld A, Haze A, et al. Tuftelin’s involvement in embryonic development. J Exp Zoolog B Mol Dev Evol 2019; 332(5): 125-35.
[http://dx.doi.org/10.1002/jez.b.22855] [PMID: 31045321]
[18]
Caterina JJ, Skobe Z, Shi J, et al. Enamelysin (matrix metalloproteinase 20)-deficient mice display an amelogenesis imperfecta phenotype. J Biol Chem 2002; 277(51): 49598-604.
[http://dx.doi.org/10.1074/jbc.M209100200] [PMID: 12393861]
[19]
Gao Y, Li D, Han T, Sun Y, Zhang J. TGF-beta1 and TGFBR1 are expressed in ameloblasts and promote MMP20 expression. Anat Rec Hoboken NJ 2009; 292(6): 885-90.
[20]
Kumakami-Sakano M, Otsu K, Fujiwara N, Harada H. Regulatory mechanisms of Hertwig׳s epithelial root sheath formation and anomaly correlated with root length. Exp Cell Res 2014; 325(2): 78-82.
[http://dx.doi.org/10.1016/j.yexcr.2014.02.005] [PMID: 24560742]
[21]
Randall LE, Hall RC. Temperospatial expression of matrix metalloproteinases 1, 2, 3, and 9 during early tooth development. Connect Tissue Res 2002; 43(2-3): 205-11.
[http://dx.doi.org/10.1080/03008200290000538] [PMID: 12489160]
[22]
Yang J, Kim WJ, Jun HO, et al. Hypoxia-induced fibroblast growth factor 11 stimulates capillary-like endothelial tube formation. Oncol Rep 2015; 34(5): 2745-51.
[http://dx.doi.org/10.3892/or.2015.4223] [PMID: 26323829]
[23]
Tanikawa Y, Bawden JW. The immunohistochemical localization of phospholipase Cγ and the epidermal growth-factor, platelet-derived growth-factor and fibroblast growth-factor receptors in the cells of the rat molar enamel organ during early amelogenesis. Arch Oral Biol 1999; 44(9): 771-80.
[http://dx.doi.org/10.1016/S0003-9969(99)00070-9] [PMID: 10471161]
[24]
Chen Y, Wang Z, Lin C, Chen Y, Hu X, Zhang Y. Activated epithelial FGF8 signaling induces fused supernumerary incisors. J Dent Res 2022; 101(4): 458-64.
[http://dx.doi.org/10.1177/00220345211046590] [PMID: 34706590]
[25]
Xie X, Liu C, Zhang H, et al. Abrogation of epithelial BMP2 and BMP4 causes amelogenesis imperfecta by reducing MMP20 and KLK4 expression. Sci Rep 2016; 6(1): 25364.
[http://dx.doi.org/10.1038/srep25364] [PMID: 27146352]
[26]
Gil-Bona A, Bidlack FB. Tooth enamel and its dynamic protein matrix. Int J Mol Sci 2020; 21(12): 4458.
[http://dx.doi.org/10.3390/ijms21124458] [PMID: 32585904]
[27]
Nurbaeva MK, Eckstein M, Feske S, Lacruz RS. Ca 2+ transport and signalling in enamel cells. J Physiol 2017; 595(10): 3015-39.
[http://dx.doi.org/10.1113/JP272775] [PMID: 27510811]
[28]
Kim HE, Hong JH. The overview of channels, transporters, and calcium signaling molecules during amelogenesis. Arch Oral Biol 2018; 93: 47-55.
[http://dx.doi.org/10.1016/j.archoralbio.2018.05.014] [PMID: 29803993]
[29]
Feske S. CRAC channelopathies. Pflugers Arch 2010; 460(2): 417-35.
[http://dx.doi.org/10.1007/s00424-009-0777-5] [PMID: 20111871]
[30]
Lian J, Cuk M, Kahlfuss S, et al. ORAI1 mutations abolishing store-operated Ca2+ entry cause anhidrotic ectodermal dysplasia with immunodeficiency. J Allergy Clin Immunol 2018; 142(4): 1297-1310.e11.
[http://dx.doi.org/10.1016/j.jaci.2017.10.031] [PMID: 29155098]
[31]
Smith CEL, Poulter JA, Levin AV, et al. Spectrum of PEX1 and PEX6 variants in Heimler syndrome. Eur J Hum Genet 2016; 24(11): 1565-71.
[http://dx.doi.org/10.1038/ejhg.2016.62] [PMID: 27302843]
[32]
Eckstein M, Vaeth M, Aulestia FJ, et al. Differential regulation of Ca 2+ influx by ORAI channels mediates enamel mineralization. Sci Signal 2019; 12(578): eaav4663.
[http://dx.doi.org/10.1126/scisignal.aav4663] [PMID: 31015290]
[33]
Eckstein M, Lacruz RS. CRAC channels in dental enamel cells. Cell Calcium 2018; 75: 14-20.
[http://dx.doi.org/10.1016/j.ceca.2018.07.012] [PMID: 30114531]
[34]
Eckstein M, Vaeth M, Fornai C, et al. Store-operated Ca2+ entry controls ameloblast cell function and enamel development. JCI Insight 2017; 2(6): e91166.
[http://dx.doi.org/10.1172/jci.insight.91166] [PMID: 28352661]
[35]
Smith CE, Wazen R, Hu Y, et al. Consequences for enamel development and mineralization resulting from loss of function of ameloblastin or enamelin. Eur J Oral Sci 2009; 117(5): 485-97.
[http://dx.doi.org/10.1111/j.1600-0722.2009.00666.x] [PMID: 19758243]
[36]
Simancas-Escorcia V, Natera A, Acosta-de-Camargo MG, Simancas-Escorcia V, Natera A, Acosta-de-Camargo MG. Genes involves in amelogenesis imperfecta. Part I Rev Fac Odontol Univ Antioquia Facultad de Odontología Universidad de Antioquia 2018; 30(1): 105-20.
[37]
Smith CEL, Poulter JA, Antanaviciute A, et al. Amelogenesis imperfecta; Genes, proteins, and pathways. Front Physiol 2017; 8: 435.
[http://dx.doi.org/10.3389/fphys.2017.00435] [PMID: 28694781]
[38]
Yu S, Zhang C, Zhu C, et al. A novel ENAM mutation causes hypoplastic amelogenesis imperfecta. Oral Dis 2022; 28(6): 1610-9.
[http://dx.doi.org/10.1111/odi.13877] [PMID: 33864320]
[39]
Zeichner-David M, Vo H, Tan H, et al. Timing of the expression of enamel gene products during mouse tooth development. Int J Dev Biol 1997; 41(1): 27-38.
[PMID: 9074935]
[40]
Pandya M, Diekwisch TGH. Amelogenesis: Transformation of a protein-mineral matrix into tooth enamel. J Struct Biol 2021; 213(4): 107809.
[http://dx.doi.org/10.1016/j.jsb.2021.107809] [PMID: 34748943]
[41]
Wang SK, Zhang H, Hu CY, et al. FAM83H and autosomal dominant hypocalcified amelogenesis imperfecta. J Dent Res 2021; 100(3): 293-301.
[http://dx.doi.org/10.1177/0022034520962731] [PMID: 33034243]
[42]
Resende KKM, Riou MC, Yamaguti PM, et al. Oro-dental phenotyping and report of three families with RELT-associated amelogenesis imperfecta. Eur J Hum Genet 2023; 2023
[43]
Mao SY, Duan XH. [Analysis of amelogenesis imperfecta with abnormal tooth eruption caused by FAM83H mutation]. Chung Hua Kou Chiang Hsueh Tsa Chih 2023; 58(9): 933-7.
[PMID: 37659852]
[44]
Tan L, Guo Y, Zhong MM, et al. Tooth ultrastructure changes induced by a nonsense mutation in the FAM83H gene: insights into the diversity of amelogenesis imperfecta. Clin Oral Investig 2023; 27(10): 6111-23.
[http://dx.doi.org/10.1007/s00784-023-05228-3] [PMID: 37615776]
[45]
Wang S, Choi M, Richardson AS, et al. STIM1 and SLC24A4 are critical for enamel maturation. J Dent Res 2014; 93(S7): 94S-100S.
[http://dx.doi.org/10.1177/0022034514527971] [PMID: 24621671]
[46]
McDowall F, Kenny K, Mighell AJ, Balmer RC. Genetic testing for amelogenesis imperfecta: Knowledge and attitudes of paediatric dentists. Br Dent J 2018; 225(4): 335-9.
[http://dx.doi.org/10.1038/sj.bdj.2018.641] [PMID: 30141472]
[47]
Roomaney IA, Kabbashi S, Beshtawi K, Moosa S, Chothia MY, Chetty M. Case report: Enamel renal syndrome: A case series from sub-Saharan Africa. Frontiers in Oral Health 2023; 4: 1228760.
[http://dx.doi.org/10.3389/froh.2023.1228760] [PMID: 37675434]
[48]
Ammar A, Hanson-Drury S, Anjali PP. Single-cell census of human tooth development enables generation of human enamel. Dev Cell 2023; 2023
[49]
Nouara F, Amalou G, Bouzidi A, et al. First characterization of LTBP3 variants in two Moroccan families with hypoplastic amelogenesis imperfecta. Arch Oral Biol 2022; 142: 105518.
[http://dx.doi.org/10.1016/j.archoralbio.2022.105518] [PMID: 35998423]
[50]
Flex E, Imperatore V, Carpentieri G, et al. A rare case of brachyolmia with amelogenesis imperfecta caused by a new pathogenic splicing variant in LTBP3. Genes 2021; 12(9): 1406.
[http://dx.doi.org/10.3390/genes12091406] [PMID: 34573388]
[51]
Koruyucu M, Seymen F, Gencay G, et al. Nephrocalcinosis in amelogenesis imperfecta caused by the <b><i>FAM20A</i></b> Mutation. Nephron J 2018; 139(2): 189-96.
[http://dx.doi.org/10.1159/000486607] [PMID: 29439260]
[52]
Shemirani R, Le MH, Nakano Y. Mutations causing x-linked amelogenesis imperfecta alter miRNA formation from amelogenin Exon4. J Dent Res 2023; 102(11): 1210-9.
[http://dx.doi.org/10.1177/00220345231180572] [PMID: 37563801]
[53]
Broutin A, K Bidi-Lebihan A, Canceill T, et al. Association between malocclusions and amelogenesis imperfecta genotype and phenotype: A systematic review. Int Orthod 2023; 21(4): 100789.
[http://dx.doi.org/10.1016/j.ortho.2023.100789] [PMID: 37494776]
[54]
Liu J, Saiyin W, Xie X, Mao L, Li L. Ablation of Fam20c causes amelogenesis imperfecta via inhibiting Smad dependent BMP signaling pathway. Biol Direct 2020; 15(1): 16.
[55]
Kiel M, Wuebker S, Remy MT, et al. MEMO1 is required for ameloblast maturation and functional enamel formation. J Dent Res 2023; 102(11): 1261-71.
[http://dx.doi.org/10.1177/00220345231185758] [PMID: 37475472]
[56]
McKinney R, Olmo H. Developmental disturbances of the teeth, anomalies of structure. StatPearls. Treasure Island, FL: StatPearls Publishing 2023.
[57]
Iwaya C, Suzuki A, Shim J, Ambrose CG, Iwata J. Autophagy plays a crucial role in ameloblast differentiation. J Dent Res 2023; 102(9): 1047-57.
[http://dx.doi.org/10.1177/00220345231169220] [PMID: 37249312]
[58]
Herijgers D, Denayer E, Balikova I, Witters P, Jacob J, Casteels I. Two siblings with Heimler syndrome caused by PEX1 variants: Follow-up of ophthalmologic findings. Ophthalmic Genet 2021; 42(4): 480-5.
[http://dx.doi.org/10.1080/13816810.2021.1923033] [PMID: 33955814]
[59]
Steinberg SJ, Raymond GV, Braverman NE, Moser AB. Zellweger Spectrum Disorder. Seattle (WA): University of Washington, Seattle 1993.
[60]
Suzuki A, Yoshioka H, Liu T, et al. Crucial roles of microRNA-16-5p and microRNA-27b-3p in ameloblast differentiation through regulation of genes associated with amelogenesis imperfecta. Front Genet 2022; 13: 788259.
[http://dx.doi.org/10.3389/fgene.2022.788259] [PMID: 35401675]
[61]
Yoshioka H, Wang YY, Suzuki A, et al. Overexpression of miR-1306-5p, miR-3195, and miR-3914 Inhibits Ameloblast Differentiation through Suppression of Genes Associated with Human Amelogenesis Imperfecta. Int J Mol Sci 2021; 22(4): 2202.
[http://dx.doi.org/10.3390/ijms22042202] [PMID: 33672174]
[62]
Bloch-Zupan A, Rey T, Jimenez-Armijo A, et al. Amelogenesis imperfecta: Next-generation sequencing sheds light on Witkop’s classification. Front Physiol 2023; 14: 1130175.
[http://dx.doi.org/10.3389/fphys.2023.1130175] [PMID: 37228816]
[63]
Huang X, Fan H, Zhou W, Yang G, Wei F. The rough-toothed dolphin genome provides new insights into the genetic mechanism of its rough teeth. Integr Zool 2023; 18(4): 601-15.
[http://dx.doi.org/10.1111/1749-4877.12723] [PMID: 37212019]
[64]
Wang SK, Zhang H, Wang YL, et al. FAM20A mutations and transcriptome analyses of dental pulp tissues of enamel renal syndrome. Int Endod J 2023; 56(8): 943-54.
[http://dx.doi.org/10.1111/iej.13928] [PMID: 37159186]
[65]
Yin K, Lin W, Guo J, et al. MiR-153 regulates amelogenesis by targeting endocytotic and endosomal/lysosomal pathways–novel insight into the origins of enamel pathologies. Sci Rep 2017; 7(1): 44118.
[http://dx.doi.org/10.1038/srep44118] [PMID: 28287144]
[66]
Morr T. Amelogenesis imperfecta: More than just an enamel problem. J Esthet Restor Dent 2023; 35(5): 745-57.
[http://dx.doi.org/10.1111/jerd.13063] [PMID: 37158443]
[67]
Dong J, Ruan W, Duan X. Molecular-based phenotype variations in amelogenesis imperfecta. Oral Dis 2023; 29(6): 2334-65.
[http://dx.doi.org/10.1111/odi.14599] [PMID: 37154292]
[68]
Sriwattanapong K, Theerapanon T, Boonprakong L, Srijunbarl A, Porntaveetus T, Shotelersuk V. Novel ITGB6 variants cause hypoplastic-hypomineralized amelogenesis imperfecta and taurodontism: characterization of tooth phenotype and review of literature. BDJ Open 2023; 9(1): 15.
[http://dx.doi.org/10.1038/s41405-023-00142-y] [PMID: 37041139]
[69]
He Z, Wang X, Zheng X, Yang C, He H, Song Y. Fam83h mutation causes mandible underdevelopment via CK1α-mediated Wnt/β-catenin signaling in male C57/BL6J mice. Bone 2023; 172: 116756.
[http://dx.doi.org/10.1016/j.bone.2023.116756] [PMID: 37028581]
[70]
Kim YJ, Zhang H, Lee Y, et al. Novel WDR72 mutations causing hypomaturation amelogenesis imperfecta. J Pers Med 2023; 13(2): 326.
[http://dx.doi.org/10.3390/jpm13020326] [PMID: 36836560]
[71]
Sriwattanapong K, Theerapanon T, Khamwachirapitak C, et al. Deep dental phenotyping and a novel FAM20A variant in patients with amelogenesis imperfecta type IG. Oral Dis 2023; odi.14765.
[http://dx.doi.org/10.1111/odi.14765]
[72]
Xie Y, Meng M, Cao L, et al. Amelogenesis imperfecta in a Chinese family resulting from a FAM83H variation and the effect of FAM83H on the secretion of enamel matrix proteins. Clin Oral Investig 2022; 27(3): 1289-99.
[http://dx.doi.org/10.1007/s00784-022-04763-9] [PMID: 36318336]
[73]
Rattanapornsompong K, Gavila P, Tungsanga S, et al. Novel CNNM4 variant and clinical features of J alili syndrome. Clin Genet 2023; 103(2): 256-7.
[http://dx.doi.org/10.1111/cge.14258] [PMID: 36354001]
[74]
Zheng X, Huang W, He Z, Li Y, Li S, Song Y. Effects of Fam83h truncation mutation on enamel developmental defects in male C57/BL6J mice. Bone 2023; 166: 116595.
[http://dx.doi.org/10.1016/j.bone.2022.116595] [PMID: 36272714]
[75]
Maqbool M, Syed NH, Rossi-Fedele G, Shatriah I, Noorani TY. MicroRNA and their implications in dental pulp inflammation: Current trends and future perspectives. Odontology 2023; 111(3): 531-40.
[http://dx.doi.org/10.1007/s10266-022-00762-0] [PMID: 36309897]
[76]
Ye YY, Yue L, Zou XY, Wang XY. [Characteristics and microRNA expression profile of exosomes derived from odontogenic dental pulp stem cells]. Beijing Da Xue Xue Bao 2023; 55(4): 689-96.
[PMID: 37534653]
[77]
Sinha A, Bhattacharjee R, Bhattacharya B, et al. The paradigm of miRNA and siRNA influence in Oral-biome. Biomed Pharmacother 2023; 159: 114269.
[http://dx.doi.org/10.1016/j.biopha.2023.114269] [PMID: 36682246]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy