Review Article

Crucial Role of microRNAs as New Targets for Amelogenesis Disorders Detection

卷 24, 期 14, 2023

发表于: 05 November, 2023

页: [1139 - 1149] 页: 11

弟呕挨: 10.2174/0113894501257011231030161427

价格: $65

conference banner
摘要

介绍:釉质发育不全(AI)是指由多种因素导致的釉质低矿化的异质组。预防措施对于预测这种病理是必要的。预防医学的前景与寻找诊断人类疾病的新的信息方法密切相关。MicroRNAs是非侵入性诊断平台的重要组成部分。 研究目的:回顾的目的是回顾参与成淀粉性发育的异质因素,并选择与AI类型相关的microRNA面板。 方法:我们使用DIANA Tools(算法、数据库和软件)在一个系统框架中解释和归档数据,从深度测序数据的表达调控分析到miRNA调控元件和靶点的注释(https://dianalab)。e-ce.uth.gr /)。在我们的研究中,基于与AI类型相关的基因面板,鉴定出24个miRNA用于发育不良型(补充),35个用于低钙化型,49个用于低饱和度AI。选择策略包括使用AI类型的基因面板对多个靶标进行microRNA搜索。 结果:分析了关键蛋白、钙依赖因子和遗传因子,揭示了它们在成胚发生中的作用。具有多种调控功能的细胞外非编码RNA序列似乎是最具吸引力的。我们选择了与AI基因相关的microrna列表。我们发现了四种microrna (hsa-miR-27a-3p, hsa-miR-375, hsa-miR-16-5p和hsamiR- 146a-5p)的基因面板,与发育不良型AI相关;5个microrna (hsa- miR-29c-3p、hsa- mir -124-3p、hsa- mir -1343-3p、hsa- mir -335-5p和hsa- mir -16-5p)用于低钙化型AI, 7个microrna (hsa- mir -124-3p、hsa- mir -147a、hsa- mir -16-5p、hsamiR- 429、hsa- lett -7b-5p、hsa- mir -146a-5p、hsa- mir -335-5p)用于低饱和度AI。结果显示,hsa-miR-16-5p包含在发育不良、低钙化和低饱和度类型的三个特异性面板中。Hsa-miR-146a-5p与AI发育不良和低饱和度相关,这与炎症反应免疫反应的特殊性有关。反过来,hsa-miR-335-5p与低钙化和低饱和型AI相关。 结论:液体活检方法是一种有希望的方法,以减少治疗这些患者在现代医疗保健的经济成本。关于microRNA在调节成淀粉性发育中的作用存在独特的数据。与人工智能基因相关并按人工智能类型分类的microrna列表已经被发现。靶基因分析显示了所选择的microrna的多种功能,这解释了成胚发生的多种异质机制。对矿化问题的倾向是一个程序化的事件。许多因素决定了这个问题的表现。此外,有必要记住变化的可变性质,这降低了预测的准确性。因此,基于液体活检和microrna的模型可以考虑这些因素及其对矿化的影响。发现的数据需要进一步调查。

关键词: 无体发育不全,遗传因素,生长因素,钙代谢,microRNA,液体活检。

« Previous
图形摘要
[1]
Ali S, Farooq I. A review of the role of amelogenin protein in enamel formation and novel experimental techniques to study its function. Protein Pept Lett 2019; 26(12): 880-6.
[http://dx.doi.org/10.2174/0929866526666190731120018] [PMID: 31364509]
[2]
Bonnet AL, Sceosole K, Vanderzwalm A, Silve C, Collignon AM, Gaucher C. “Isolated” amelogenesis imperfecta associated with DLX3 mutation: A clinical case. Case Rep Genet 2020; 2020: 1-6.
[http://dx.doi.org/10.1155/2020/8217919] [PMID: 32832172]
[3]
Crawford PJM, Aldred M, Bloch-Zupan A. Amelogenesis imperfecta. Orphanet J Rare Dis 2007; 2(1): 17.
[http://dx.doi.org/10.1186/1750-1172-2-17] [PMID: 17408482]
[4]
Moradian-Oldak J. Amelogenins: Assembly, processing and control of crystal morphology. Matrix Biol 2001; 20(5-6): 293-305.
[http://dx.doi.org/10.1016/S0945-053X(01)00154-8] [PMID: 11566263]
[5]
Sawan NM. Clear aligners in patients with amelogenesis and dentinogenesis imperfecta. Int J Dent / ed Nuvvula S 2021; 2021: 1-8.
[6]
Wright JT. Enamel phenotypes: Genetic and environmental determinants. Genes 2023; 14(3): 545.
[http://dx.doi.org/10.3390/genes14030545] [PMID: 36980818]
[7]
Fukumoto S, Kiba T, Hall B, et al. Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts. J Cell Biol 2004; 167(5): 973-83.
[http://dx.doi.org/10.1083/jcb.200409077] [PMID: 15583034]
[8]
Furukawa Y, Haruyama N, Nikaido M, et al. Stim1 regulates enamel mineralization and ameloblast modulation. J Dent Res 2017; 96(12): 1422-9.
[http://dx.doi.org/10.1177/0022034517719872] [PMID: 28732182]
[9]
Huang Z, Kim J, Lacruz RS, et al. Epithelial-specific knockout of the Rac1 gene leads to enamel defects. Eur J Oral Sci 2011; 119(S1): 168-76.
[http://dx.doi.org/10.1111/j.1600-0722.2011.00904.x] [PMID: 22243243]
[10]
Bartlett JD. Dental enamel development: Proteinases and their enamel matrix substrates. ISRN Dent 2013; 2013: 1-24.
[http://dx.doi.org/10.1155/2013/684607] [PMID: 24159389]
[11]
Hu JCC, Yamakoshi Y, Yamakoshi F, Krebsbach PH, Simmer JP. Proteomics and genetics of dental enamel. Cells Tissues Organs 2005; 181(3-4): 219-31.
[http://dx.doi.org/10.1159/000091383] [PMID: 16612087]
[12]
Lagerström M, Dahl N, Nakahori Y, et al. A deletion in the amelogenin gene (AMG) causes X-linked amelogenesis imperfecta (AIH1). Genomics 1991; 10(4): 971-5.
[http://dx.doi.org/10.1016/0888-7543(91)90187-J] [PMID: 1916828]
[13]
Visakan G, Su J, Moradian-Oldak J. Data from ameloblast cell lines cultured in 3D using various gel substrates in the presence of ameloblastin. Data Brief 2022; 42: 108233.
[http://dx.doi.org/10.1016/j.dib.2022.108233] [PMID: 35586397]
[14]
Kang HY, Seymen F, Lee SK, et al. Candidate gene strategy reveals ENAM mutations. J Dent Res 2009; 88(3): 266-9.
[http://dx.doi.org/10.1177/0022034509333180] [PMID: 19329462]
[15]
Hart TC, Hart PS, Gorry MC, et al. Novel ENAM mutation responsible for autosomal recessive amelogenesis imperfecta and localised enamel defects. J Med Genet 2003; 40(12): 900-6.
[http://dx.doi.org/10.1136/jmg.40.12.900] [PMID: 14684688]
[16]
Diekwisch TGH, Ware J, Fincham AG, Zeichner-David M. Immunohistochemical similarities and differences between amelogenin and tuftelin gene products during tooth development. J Histochem Cytochem 1997; 45(6): 859-66.
[http://dx.doi.org/10.1177/002215549704500610] [PMID: 9199671]
[17]
Shilo D, Blumenfeld A, Haze A, et al. Tuftelin’s involvement in embryonic development. J Exp Zoolog B Mol Dev Evol 2019; 332(5): 125-35.
[http://dx.doi.org/10.1002/jez.b.22855] [PMID: 31045321]
[18]
Caterina JJ, Skobe Z, Shi J, et al. Enamelysin (matrix metalloproteinase 20)-deficient mice display an amelogenesis imperfecta phenotype. J Biol Chem 2002; 277(51): 49598-604.
[http://dx.doi.org/10.1074/jbc.M209100200] [PMID: 12393861]
[19]
Gao Y, Li D, Han T, Sun Y, Zhang J. TGF-beta1 and TGFBR1 are expressed in ameloblasts and promote MMP20 expression. Anat Rec Hoboken NJ 2009; 292(6): 885-90.
[20]
Kumakami-Sakano M, Otsu K, Fujiwara N, Harada H. Regulatory mechanisms of Hertwig׳s epithelial root sheath formation and anomaly correlated with root length. Exp Cell Res 2014; 325(2): 78-82.
[http://dx.doi.org/10.1016/j.yexcr.2014.02.005] [PMID: 24560742]
[21]
Randall LE, Hall RC. Temperospatial expression of matrix metalloproteinases 1, 2, 3, and 9 during early tooth development. Connect Tissue Res 2002; 43(2-3): 205-11.
[http://dx.doi.org/10.1080/03008200290000538] [PMID: 12489160]
[22]
Yang J, Kim WJ, Jun HO, et al. Hypoxia-induced fibroblast growth factor 11 stimulates capillary-like endothelial tube formation. Oncol Rep 2015; 34(5): 2745-51.
[http://dx.doi.org/10.3892/or.2015.4223] [PMID: 26323829]
[23]
Tanikawa Y, Bawden JW. The immunohistochemical localization of phospholipase Cγ and the epidermal growth-factor, platelet-derived growth-factor and fibroblast growth-factor receptors in the cells of the rat molar enamel organ during early amelogenesis. Arch Oral Biol 1999; 44(9): 771-80.
[http://dx.doi.org/10.1016/S0003-9969(99)00070-9] [PMID: 10471161]
[24]
Chen Y, Wang Z, Lin C, Chen Y, Hu X, Zhang Y. Activated epithelial FGF8 signaling induces fused supernumerary incisors. J Dent Res 2022; 101(4): 458-64.
[http://dx.doi.org/10.1177/00220345211046590] [PMID: 34706590]
[25]
Xie X, Liu C, Zhang H, et al. Abrogation of epithelial BMP2 and BMP4 causes amelogenesis imperfecta by reducing MMP20 and KLK4 expression. Sci Rep 2016; 6(1): 25364.
[http://dx.doi.org/10.1038/srep25364] [PMID: 27146352]
[26]
Gil-Bona A, Bidlack FB. Tooth enamel and its dynamic protein matrix. Int J Mol Sci 2020; 21(12): 4458.
[http://dx.doi.org/10.3390/ijms21124458] [PMID: 32585904]
[27]
Nurbaeva MK, Eckstein M, Feske S, Lacruz RS. Ca 2+ transport and signalling in enamel cells. J Physiol 2017; 595(10): 3015-39.
[http://dx.doi.org/10.1113/JP272775] [PMID: 27510811]
[28]
Kim HE, Hong JH. The overview of channels, transporters, and calcium signaling molecules during amelogenesis. Arch Oral Biol 2018; 93: 47-55.
[http://dx.doi.org/10.1016/j.archoralbio.2018.05.014] [PMID: 29803993]
[29]
Feske S. CRAC channelopathies. Pflugers Arch 2010; 460(2): 417-35.
[http://dx.doi.org/10.1007/s00424-009-0777-5] [PMID: 20111871]
[30]
Lian J, Cuk M, Kahlfuss S, et al. ORAI1 mutations abolishing store-operated Ca2+ entry cause anhidrotic ectodermal dysplasia with immunodeficiency. J Allergy Clin Immunol 2018; 142(4): 1297-1310.e11.
[http://dx.doi.org/10.1016/j.jaci.2017.10.031] [PMID: 29155098]
[31]
Smith CEL, Poulter JA, Levin AV, et al. Spectrum of PEX1 and PEX6 variants in Heimler syndrome. Eur J Hum Genet 2016; 24(11): 1565-71.
[http://dx.doi.org/10.1038/ejhg.2016.62] [PMID: 27302843]
[32]
Eckstein M, Vaeth M, Aulestia FJ, et al. Differential regulation of Ca 2+ influx by ORAI channels mediates enamel mineralization. Sci Signal 2019; 12(578): eaav4663.
[http://dx.doi.org/10.1126/scisignal.aav4663] [PMID: 31015290]
[33]
Eckstein M, Lacruz RS. CRAC channels in dental enamel cells. Cell Calcium 2018; 75: 14-20.
[http://dx.doi.org/10.1016/j.ceca.2018.07.012] [PMID: 30114531]
[34]
Eckstein M, Vaeth M, Fornai C, et al. Store-operated Ca2+ entry controls ameloblast cell function and enamel development. JCI Insight 2017; 2(6): e91166.
[http://dx.doi.org/10.1172/jci.insight.91166] [PMID: 28352661]
[35]
Smith CE, Wazen R, Hu Y, et al. Consequences for enamel development and mineralization resulting from loss of function of ameloblastin or enamelin. Eur J Oral Sci 2009; 117(5): 485-97.
[http://dx.doi.org/10.1111/j.1600-0722.2009.00666.x] [PMID: 19758243]
[36]
Simancas-Escorcia V, Natera A, Acosta-de-Camargo MG, Simancas-Escorcia V, Natera A, Acosta-de-Camargo MG. Genes involves in amelogenesis imperfecta. Part I Rev Fac Odontol Univ Antioquia Facultad de Odontología Universidad de Antioquia 2018; 30(1): 105-20.
[37]
Smith CEL, Poulter JA, Antanaviciute A, et al. Amelogenesis imperfecta; Genes, proteins, and pathways. Front Physiol 2017; 8: 435.
[http://dx.doi.org/10.3389/fphys.2017.00435] [PMID: 28694781]
[38]
Yu S, Zhang C, Zhu C, et al. A novel ENAM mutation causes hypoplastic amelogenesis imperfecta. Oral Dis 2022; 28(6): 1610-9.
[http://dx.doi.org/10.1111/odi.13877] [PMID: 33864320]
[39]
Zeichner-David M, Vo H, Tan H, et al. Timing of the expression of enamel gene products during mouse tooth development. Int J Dev Biol 1997; 41(1): 27-38.
[PMID: 9074935]
[40]
Pandya M, Diekwisch TGH. Amelogenesis: Transformation of a protein-mineral matrix into tooth enamel. J Struct Biol 2021; 213(4): 107809.
[http://dx.doi.org/10.1016/j.jsb.2021.107809] [PMID: 34748943]
[41]
Wang SK, Zhang H, Hu CY, et al. FAM83H and autosomal dominant hypocalcified amelogenesis imperfecta. J Dent Res 2021; 100(3): 293-301.
[http://dx.doi.org/10.1177/0022034520962731] [PMID: 33034243]
[42]
Resende KKM, Riou MC, Yamaguti PM, et al. Oro-dental phenotyping and report of three families with RELT-associated amelogenesis imperfecta. Eur J Hum Genet 2023; 2023
[43]
Mao SY, Duan XH. [Analysis of amelogenesis imperfecta with abnormal tooth eruption caused by FAM83H mutation]. Chung Hua Kou Chiang Hsueh Tsa Chih 2023; 58(9): 933-7.
[PMID: 37659852]
[44]
Tan L, Guo Y, Zhong MM, et al. Tooth ultrastructure changes induced by a nonsense mutation in the FAM83H gene: insights into the diversity of amelogenesis imperfecta. Clin Oral Investig 2023; 27(10): 6111-23.
[http://dx.doi.org/10.1007/s00784-023-05228-3] [PMID: 37615776]
[45]
Wang S, Choi M, Richardson AS, et al. STIM1 and SLC24A4 are critical for enamel maturation. J Dent Res 2014; 93(S7): 94S-100S.
[http://dx.doi.org/10.1177/0022034514527971] [PMID: 24621671]
[46]
McDowall F, Kenny K, Mighell AJ, Balmer RC. Genetic testing for amelogenesis imperfecta: Knowledge and attitudes of paediatric dentists. Br Dent J 2018; 225(4): 335-9.
[http://dx.doi.org/10.1038/sj.bdj.2018.641] [PMID: 30141472]
[47]
Roomaney IA, Kabbashi S, Beshtawi K, Moosa S, Chothia MY, Chetty M. Case report: Enamel renal syndrome: A case series from sub-Saharan Africa. Frontiers in Oral Health 2023; 4: 1228760.
[http://dx.doi.org/10.3389/froh.2023.1228760] [PMID: 37675434]
[48]
Ammar A, Hanson-Drury S, Anjali PP. Single-cell census of human tooth development enables generation of human enamel. Dev Cell 2023; 2023
[49]
Nouara F, Amalou G, Bouzidi A, et al. First characterization of LTBP3 variants in two Moroccan families with hypoplastic amelogenesis imperfecta. Arch Oral Biol 2022; 142: 105518.
[http://dx.doi.org/10.1016/j.archoralbio.2022.105518] [PMID: 35998423]
[50]
Flex E, Imperatore V, Carpentieri G, et al. A rare case of brachyolmia with amelogenesis imperfecta caused by a new pathogenic splicing variant in LTBP3. Genes 2021; 12(9): 1406.
[http://dx.doi.org/10.3390/genes12091406] [PMID: 34573388]
[51]
Koruyucu M, Seymen F, Gencay G, et al. Nephrocalcinosis in amelogenesis imperfecta caused by the <b><i>FAM20A</i></b> Mutation. Nephron J 2018; 139(2): 189-96.
[http://dx.doi.org/10.1159/000486607] [PMID: 29439260]
[52]
Shemirani R, Le MH, Nakano Y. Mutations causing x-linked amelogenesis imperfecta alter miRNA formation from amelogenin Exon4. J Dent Res 2023; 102(11): 1210-9.
[http://dx.doi.org/10.1177/00220345231180572] [PMID: 37563801]
[53]
Broutin A, K Bidi-Lebihan A, Canceill T, et al. Association between malocclusions and amelogenesis imperfecta genotype and phenotype: A systematic review. Int Orthod 2023; 21(4): 100789.
[http://dx.doi.org/10.1016/j.ortho.2023.100789] [PMID: 37494776]
[54]
Liu J, Saiyin W, Xie X, Mao L, Li L. Ablation of Fam20c causes amelogenesis imperfecta via inhibiting Smad dependent BMP signaling pathway. Biol Direct 2020; 15(1): 16.
[55]
Kiel M, Wuebker S, Remy MT, et al. MEMO1 is required for ameloblast maturation and functional enamel formation. J Dent Res 2023; 102(11): 1261-71.
[http://dx.doi.org/10.1177/00220345231185758] [PMID: 37475472]
[56]
McKinney R, Olmo H. Developmental disturbances of the teeth, anomalies of structure. StatPearls. Treasure Island, FL: StatPearls Publishing 2023.
[57]
Iwaya C, Suzuki A, Shim J, Ambrose CG, Iwata J. Autophagy plays a crucial role in ameloblast differentiation. J Dent Res 2023; 102(9): 1047-57.
[http://dx.doi.org/10.1177/00220345231169220] [PMID: 37249312]
[58]
Herijgers D, Denayer E, Balikova I, Witters P, Jacob J, Casteels I. Two siblings with Heimler syndrome caused by PEX1 variants: Follow-up of ophthalmologic findings. Ophthalmic Genet 2021; 42(4): 480-5.
[http://dx.doi.org/10.1080/13816810.2021.1923033] [PMID: 33955814]
[59]
Steinberg SJ, Raymond GV, Braverman NE, Moser AB. Zellweger Spectrum Disorder. Seattle (WA): University of Washington, Seattle 1993.
[60]
Suzuki A, Yoshioka H, Liu T, et al. Crucial roles of microRNA-16-5p and microRNA-27b-3p in ameloblast differentiation through regulation of genes associated with amelogenesis imperfecta. Front Genet 2022; 13: 788259.
[http://dx.doi.org/10.3389/fgene.2022.788259] [PMID: 35401675]
[61]
Yoshioka H, Wang YY, Suzuki A, et al. Overexpression of miR-1306-5p, miR-3195, and miR-3914 Inhibits Ameloblast Differentiation through Suppression of Genes Associated with Human Amelogenesis Imperfecta. Int J Mol Sci 2021; 22(4): 2202.
[http://dx.doi.org/10.3390/ijms22042202] [PMID: 33672174]
[62]
Bloch-Zupan A, Rey T, Jimenez-Armijo A, et al. Amelogenesis imperfecta: Next-generation sequencing sheds light on Witkop’s classification. Front Physiol 2023; 14: 1130175.
[http://dx.doi.org/10.3389/fphys.2023.1130175] [PMID: 37228816]
[63]
Huang X, Fan H, Zhou W, Yang G, Wei F. The rough-toothed dolphin genome provides new insights into the genetic mechanism of its rough teeth. Integr Zool 2023; 18(4): 601-15.
[http://dx.doi.org/10.1111/1749-4877.12723] [PMID: 37212019]
[64]
Wang SK, Zhang H, Wang YL, et al. FAM20A mutations and transcriptome analyses of dental pulp tissues of enamel renal syndrome. Int Endod J 2023; 56(8): 943-54.
[http://dx.doi.org/10.1111/iej.13928] [PMID: 37159186]
[65]
Yin K, Lin W, Guo J, et al. MiR-153 regulates amelogenesis by targeting endocytotic and endosomal/lysosomal pathways–novel insight into the origins of enamel pathologies. Sci Rep 2017; 7(1): 44118.
[http://dx.doi.org/10.1038/srep44118] [PMID: 28287144]
[66]
Morr T. Amelogenesis imperfecta: More than just an enamel problem. J Esthet Restor Dent 2023; 35(5): 745-57.
[http://dx.doi.org/10.1111/jerd.13063] [PMID: 37158443]
[67]
Dong J, Ruan W, Duan X. Molecular-based phenotype variations in amelogenesis imperfecta. Oral Dis 2023; 29(6): 2334-65.
[http://dx.doi.org/10.1111/odi.14599] [PMID: 37154292]
[68]
Sriwattanapong K, Theerapanon T, Boonprakong L, Srijunbarl A, Porntaveetus T, Shotelersuk V. Novel ITGB6 variants cause hypoplastic-hypomineralized amelogenesis imperfecta and taurodontism: characterization of tooth phenotype and review of literature. BDJ Open 2023; 9(1): 15.
[http://dx.doi.org/10.1038/s41405-023-00142-y] [PMID: 37041139]
[69]
He Z, Wang X, Zheng X, Yang C, He H, Song Y. Fam83h mutation causes mandible underdevelopment via CK1α-mediated Wnt/β-catenin signaling in male C57/BL6J mice. Bone 2023; 172: 116756.
[http://dx.doi.org/10.1016/j.bone.2023.116756] [PMID: 37028581]
[70]
Kim YJ, Zhang H, Lee Y, et al. Novel WDR72 mutations causing hypomaturation amelogenesis imperfecta. J Pers Med 2023; 13(2): 326.
[http://dx.doi.org/10.3390/jpm13020326] [PMID: 36836560]
[71]
Sriwattanapong K, Theerapanon T, Khamwachirapitak C, et al. Deep dental phenotyping and a novel FAM20A variant in patients with amelogenesis imperfecta type IG. Oral Dis 2023; odi.14765.
[http://dx.doi.org/10.1111/odi.14765]
[72]
Xie Y, Meng M, Cao L, et al. Amelogenesis imperfecta in a Chinese family resulting from a FAM83H variation and the effect of FAM83H on the secretion of enamel matrix proteins. Clin Oral Investig 2022; 27(3): 1289-99.
[http://dx.doi.org/10.1007/s00784-022-04763-9] [PMID: 36318336]
[73]
Rattanapornsompong K, Gavila P, Tungsanga S, et al. Novel CNNM4 variant and clinical features of J alili syndrome. Clin Genet 2023; 103(2): 256-7.
[http://dx.doi.org/10.1111/cge.14258] [PMID: 36354001]
[74]
Zheng X, Huang W, He Z, Li Y, Li S, Song Y. Effects of Fam83h truncation mutation on enamel developmental defects in male C57/BL6J mice. Bone 2023; 166: 116595.
[http://dx.doi.org/10.1016/j.bone.2022.116595] [PMID: 36272714]
[75]
Maqbool M, Syed NH, Rossi-Fedele G, Shatriah I, Noorani TY. MicroRNA and their implications in dental pulp inflammation: Current trends and future perspectives. Odontology 2023; 111(3): 531-40.
[http://dx.doi.org/10.1007/s10266-022-00762-0] [PMID: 36309897]
[76]
Ye YY, Yue L, Zou XY, Wang XY. [Characteristics and microRNA expression profile of exosomes derived from odontogenic dental pulp stem cells]. Beijing Da Xue Xue Bao 2023; 55(4): 689-96.
[PMID: 37534653]
[77]
Sinha A, Bhattacharjee R, Bhattacharya B, et al. The paradigm of miRNA and siRNA influence in Oral-biome. Biomed Pharmacother 2023; 159: 114269.
[http://dx.doi.org/10.1016/j.biopha.2023.114269] [PMID: 36682246]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy