Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Nutritional Values of Foxtail Millet (Setaria italica) and other Millets Used for Common Diseases and Management

Author(s): Theivanayagam Maharajan, Veeramuthu Duraipandiyan*, Thumadath Palayullaparambil Ajeesh Krishna and Mariapackiam Soosaimanickam

Volume 20, Issue 9, 2024

Published on: 02 November, 2023

Page: [1056 - 1068] Pages: 13

DOI: 10.2174/0115734013266504231025050553

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

The ever-increasing population and malnutrition in tropical and sub-tropical countries upsurge the demand and security for poor people’s food and nutrition. In erratic climatic conditions, millets can survive as they require less water, short cultivation period and are somewhat tolerant to biotic (bacteria and fungi) and biotic stresses (drought, salinity, nutrient deficiency, etc). Millets possess several nutrient rich components and several health benefits. Despite having superior nutritional, health and agricultural advantages, millets have not received their due attention. Among the millets, foxtail millet is one of the major millets in terms of its second in global production and millets’ yield, quality, and quantity are affected by various diseases. This review provides an overview of the origin and distribution of eight millets, their morphological characteristics with chemical composition, potential health benefits and the fungal, bacterial and viral diseases affecting the growth and yield of millets and their effective management in the framework of ensuring food and nutritional securities in the tropical and sub-tropical countries.

Keywords: Millets, nutritional values, health benefits, millet diseases, disease management, foxtail millet.

Graphical Abstract
[1]
Saleh ASM, Zhang Q, Chen J, Shen Q. Millet grains: Nutritional quality, processing, and potential health benefits. Compr Rev Food Sci Food Saf 2013; 12(3): 281-95.
[http://dx.doi.org/10.1111/1541-4337.12012]
[2]
Nithiyanantham S, Kalaiselvi P, Mahomoodally MF, Zengin G, Abirami A, Srinivasan G. Nutritional and functional roles of millets-A review. J Food Biochem 2019; 43(7): e12859.
[http://dx.doi.org/10.1111/jfbc.12859] [PMID: 31353706]
[3]
Kaur P, Purewal SS, Sandhu KS, Kaur M, Salar RK. Millets: A cereal grain with potent antioxidants and health benefits. J Food Meas Charact 2019; 13(1): 793-806.
[http://dx.doi.org/10.1007/s11694-018-9992-0]
[4]
Krishna TPA, Maharajan T, Antony David RH, et al. Microsatellite markers of finger millet (Eleusine coracana (L.) Gaertn) and foxtail millet (Setaria italica (L.) Beauv) provide resources for cross-genome transferability and genetic diversity analyses in other millets. Biocatal Agric Biotechnol 2018; 16: 493-501.
[http://dx.doi.org/10.1016/j.bcab.2018.09.009]
[5]
Michaelraj PS, Shanmugam A. A study on millets based cultivation and consumption in India. Int J Mar Finan Ser Manag Res 2013; 2(4): 49-58.
[6]
Wheeler T, von Braun J. Climate change impacts on global food security. Science 2013; 341(6145): 508-13.
[http://dx.doi.org/10.1126/science.1239402] [PMID: 23908229]
[7]
Amadou I, Gbadamosi OS, Le GW. Millet-based traditional processed foods and beverages-A review. Cereal Foods World 2011; 56(3): 115.
[http://dx.doi.org/10.1094/CFW-56-3-0115]
[8]
Bora P, Ragaee S, Marcone M. Characterisation of several types of millets as functional food ingredients. Int J Food Sci Nutr 2019; 70(6): 714-24.
[http://dx.doi.org/10.1080/09637486.2019.1570086] [PMID: 30969135]
[9]
Adekunle A, Lyew D, Orsat V, Raghavan V. Helping agribusinesses—Small millets value chain-To grow in India. Agri 2018; 8(3): 44.
[10]
Yang X, Wan Z, Perry L, et al. Early millet use in northern China. Proc Natl Acad Sci 2012; 109(10): 3726-30.
[http://dx.doi.org/10.1073/pnas.1115430109] [PMID: 22355109]
[11]
Izadi Z, Nasirpour A, Izadi M, Izadi T. Reducing blood cholesterol by a healthy diet. Int Food Res J 2012; 19(1): 29-37.
[12]
Srikanth S, Chen Z. Plant protease inhibitors in therapeutics-focus on cancer therapy. Front Pharmacol 2016; 7: 470.
[http://dx.doi.org/10.3389/fphar.2016.00470] [PMID: 28008315]
[13]
Annor GA, Tyl C, Marcone M, Ragaee S, Marti A. Why do millets have slower starch and protein digestibility than other cereals? Trend Food SciTech 2017; 66: 73-83.
[14]
Jideani IA. Digitaria exilis (acha/fonio), Digitaria iburua (iburu/fonio) and Eluesine coracana (tamba/finger millet)-non-conventional cereal grains with potentials. Sci Res Essays 2012; 7(45): 3834-43.
[15]
Devi PB, Vijayabharathi R, Sathyabama S, Malleshi NG, Priyadarisini VB. Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: A review. J Food Sci Technol 2014; 51(6): 1021-40.
[http://dx.doi.org/10.1007/s13197-011-0584-9] [PMID: 24876635]
[16]
Gull A, Prasad K, Kumar P. Optimization and functionality of millet supplemented pasta. Food Sci Technol 2015; 35(4): 626-32.
[http://dx.doi.org/10.1590/1678-457X.6745]
[17]
Gabrovská D, Fiedlerová V, Holasová M, et al. The nutritional evaluation of underutilized cereals and buckwheat. Food Nutr Bull 2002; 23(3_suppl1): 246-9.
[http://dx.doi.org/10.1177/15648265020233S148] [PMID: 12362805]
[18]
Jayaraj AP, Tovey FI, Clark CG. Possible dietary protective factors in relation to the distribution of duodenal ulcer in India and Bangladesh. Gut 1980; 21(12): 1068-76.
[http://dx.doi.org/10.1136/gut.21.12.1068] [PMID: 7461465]
[19]
Watanabe M. Antioxidative phenolic compounds from Japanese barnyard millet (Echinochloa utilis) grains. J Agric Food Chem 1999; 47(11): 4500-5.
[http://dx.doi.org/10.1021/jf990498s] [PMID: 10552841]
[20]
Nambiar VS, Dhaduk JJ, Sareen N, Shahu T, Desai R. Potential functional implications of pearl millet (Pennisetum glaucum) in health and disease. J Appl Pharm Sci 2011; 30: 62-7.
[21]
Dykes L, Rooney LW. Phenolic compounds in cereal grains and their health benefits. Cereal Foods World 2007; 52(3): 105-11.
[http://dx.doi.org/10.1094/CFW-52-3-0105]
[22]
Chaudhary Kanchan YN, Kanchan C, Alka S, Alka G. Evaluation of hypoglycemic properties of kodo millet based food products in healthy subjects. IOSR J Pharm 2013; 3(2): 14-20.
[http://dx.doi.org/10.9790/3013-32201420]
[23]
Radhika G, Sathya RM, Ganesan A, et al. Dietary profile of urban adult population in South India in the context of chronic disease epidemiology (CURES - 68). Public Health Nutr 2011; 14(4): 591-8.
[http://dx.doi.org/10.1017/S136898001000203X] [PMID: 20701818]
[24]
Pragya Singh , Rita SR. Finger millet for food and nutritional security. Afr J Food Sci 2012; 6(4): 77-84.
[http://dx.doi.org/10.5897/AJFSX10.010]
[25]
Gong L, Cao W, Chi H, et al. Whole cereal grains and potential health effects: Involvement of the gut microbiota. Food Res Int 2018; 103: 84-102.
[http://dx.doi.org/10.1016/j.foodres.2017.10.025] [PMID: 29389647]
[26]
Durairaj M, Gurumurthy G, Nachimuthu V, Muniappan K, Balasubramanian S. Dehulled small millets: The promising nutricereals for improving the nutrition of children. Matern Child Nutr 2019; 15(S3): e12791.
[http://dx.doi.org/10.1111/mcn.12791] [PMID: 31148399]
[27]
Borlaug NE. Feeding a world of 10 billion people: The miracle ahead. In vitro Cell Dev Biol Plant 2002; 38(2): 221-8.
[http://dx.doi.org/10.1079/IVP2001279]
[28]
Ceasar SA, Ignacimuthu S. Genetic engineering of millets: Current status and future prospects. Biotechnol Lett 2009; 31(6): 779-88.
[http://dx.doi.org/10.1007/s10529-009-9933-4] [PMID: 19205896]
[29]
Krishna TPA, Maharajan T, Roch GV, Ramakrishnan M, Ceasar SA, Ignacimuthu S. Hybridization and hybrid detection through molecular markers in finger millet Eleusine coracana (L.) Gaertn. J Crop Improv 2020; 34(3): 335-55.
[http://dx.doi.org/10.1080/15427528.2019.1709596]
[30]
Ceasar SA, Ramakrishnan M, Vinod KK, et al. Phenotypic responses of foxtail millet (Setaria italica) genotypes to phosphate supply under greenhouse and natural field conditions. PLoS One 2020; 15(6): e0233896.
[http://dx.doi.org/10.1371/journal.pone.0233896] [PMID: 32492057]
[31]
Das IK. Millet diseases: Current status and their management. Millets and sorghum: Biology and genetic improvement. Wiley 2017; 28: pp. 291-322.
[http://dx.doi.org/10.1002/9781119130765.ch11]
[32]
Weber SA, Fuller DQ. Millets and their role in early agriculture. Pragdhara 2008; 18(69): e90.
[33]
Ajeesh Krishna TP, Maharajan T, Ceasar SA. Improvement of millets in the post-genomic era. Physiol Mol Biol Plants 2022; 28(3): 669-85.
[http://dx.doi.org/10.1007/s12298-022-01158-8] [PMID: 35465206]
[34]
Krishna TPA, Theivanayagam M, Roch GV, Duraipandiyan V, Ignacimuthu S. Microsatellite marker: Importance and implications of cross-genome analysis for finger millet (Eleusine coracana (L.) Gaertn). Curr Biotechnol 2020; 9(3): 160-70.
[http://dx.doi.org/10.2174/2211550109999200908090745]
[35]
Sage RF, Zhu XG. Exploiting the engine of C4 photosynthesis. J Exp Bot 2011; 62(9): 2989-3000.
[http://dx.doi.org/10.1093/jxb/err179] [PMID: 21652533]
[36]
Saxena R, Vanga S, Wang J, Orsat V, Raghavan V. Millets for food security in the context of climate change: A review. Sustainability 2018; 10(7): 2228.
[http://dx.doi.org/10.3390/su10072228]
[37]
Pei J, Umapathy VR, Vengadassalapathy S, et al. A review of the potential consequences of pearl millet (Pennisetum glaucum) for diabetes mellitus and other biomedical applications. Nutrients 2022; 14(14): 2932.
[http://dx.doi.org/10.3390/nu14142932] [PMID: 35889889]
[38]
Poncet V, Lamy F, Devos KM, Gale MD, Sarr A, Robert T. Genetic control of domestication traits in pearl millet (Pennisetum glaucum L., Poaceae). Theor Appl Genet 2000; 100(1): 147-59.
[http://dx.doi.org/10.1007/s001220050020]
[39]
Moumouni KH, Kountche BA, Jean M, et al. Construction of a genetic map for pearl millet, Pennisetum glaucum (L.) R. Br., using a genotyping-by-sequencing (GBS) approach. Mol Breed 2015; 35(1): 5.
[http://dx.doi.org/10.1007/s11032-015-0212-x]
[40]
Brunken J, de Wet JMJ, Harlan JR. The morphology and domestication of pearl millet. Econ Bot 1977; 31(2): 163-74.
[http://dx.doi.org/10.1007/BF02866587]
[41]
Bhattacharjee R, Khairwal IS, Bramel PJ, Reddy KN. Establishment of a pearl millet Pennisetum glaucum (L.) R. Br. core collection based on geographical distribution and quantitative traits. Euphytica 2007; 155(1-2): 35-45.
[http://dx.doi.org/10.1007/s10681-006-9298-x]
[42]
Satyavathi CT, Ambawat S, Khandelwal V, Srivastava RK. Pearl millet: A climate-resilient nutricereal for mitigating hidden hunger and provide nutritional security. Front Plant Sci 2021; 12: 659938.
[http://dx.doi.org/10.3389/fpls.2021.659938] [PMID: 34589092]
[43]
Passot S, Gnacko F, Moukouanga D, et al. Characterization of pearl millet root architecture and anatomy reveals three types of lateral roots. Front Plant Sci 2016; 7: 829.
[http://dx.doi.org/10.3389/fpls.2016.00829] [PMID: 27379124]
[44]
Teshirogi K, Kanno M, Shinjo H, Uchida S, Tanaka U. Distribution and dynamics of the Cynodon dactylon invasion to the cultivated fields of pearl millet in north-central Namibia. J Arid Environ 2022; 205: 104820.
[http://dx.doi.org/10.1016/j.jaridenv.2022.104820]
[45]
Antony C. S, Maharajan T, Ajeesh K. TP, et al. Finger millet Eleusine coracana (L.) Gaertn. improvement: Crrent status and future interventions of whole genome sequence. Front Plant Sci 2018; 9: 1054.
[http://dx.doi.org/10.3389/fpls.2018.01054] [PMID: 30083176]
[46]
Rathore T, Singh R, Kamble DB, Upadhyay A, Thangalakshmi S. Review on finger millet: Processing and value addition. Pharma Innov J 2019; 8(4): 283-91.
[47]
Ajeesh K. TP, Maharajan T, Ignacimuthu S, Antony C. S. Genomic-assisted breeding in finger millet (Eleusine Coracanaitalic> (L.) Gaertn.) for abiotic stress tolerance. Genomic Designing for Abiotic Stress Resistant Cereal Crops. Cham: Springer 2021; pp. 291-37.
[48]
De Wet JM, Oestry-Stidd LL, Cubero JI. Origins and evolution of foxtail millets (Setaria italica). J Agric Trop Bot Appl 1979; 26(1): 53-64.
[49]
Nasu H, Momohara A, Yasuda Y, He J. The occurrence and identification of Setaria italica (L.) P. Beauv. (foxtail millet) grains from the Chengtoushan site (ca. 5800 cal B.P.) in central China, with reference to the domestication centre in Asia. Veg Hist Archaeobot 2007; 16(6): 481-94.
[http://dx.doi.org/10.1007/s00334-006-0068-4]
[50]
Sharma N, Niranjan K. Foxtail millet: Properties, processing, health benefits, and uses. Food Rev Int 2018; 34(4): 329-63.
[http://dx.doi.org/10.1080/87559129.2017.1290103]
[51]
Ceasar SA, Hodge A, Baker A, Baldwin SA. Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica). PLoS One 2014; 9(9): e108459.
[http://dx.doi.org/10.1371/journal.pone.0108459] [PMID: 25251671]
[52]
Patangare Suwarna S, Pawar VS, Syed HM, Shinde ST. Studies on physical properties and nutritional profile of foxtail millet. Pharma Innov J 2019; 8(3): 286-8.
[53]
Rakkammal K, Priya A, Pandian S, et al. Conventional and omics approaches for understanding the abiotic stress response in cereal crops-An updated overview. Plants 2022; 11(21): 2852.
[http://dx.doi.org/10.3390/plants11212852] [PMID: 36365305]
[54]
Vetriventhan M, Upadhyaya HD, Anandakumar CR, et al. Assessing genetic diversity, allelic richness and genetic relationship among races in ICRISAT foxtail millet core collection. Plant Genet Resour 2012; 10(3): 214-23.
[http://dx.doi.org/10.1017/S1479262112000287]
[55]
Krishnamurthy L, Upadhyaya HD, Gowda CLL, et al. Large variation for salinity tolerance in the core collection of foxtail millet (Setaria italica (L.) P. Beauv.) germplasm. Crop Pasture Sci 2014; 65(4): 353-61.
[http://dx.doi.org/10.1071/CP13282]
[56]
Zou C, Li L, Miki D, et al. The genome of broomcorn millet. Nat Commun 2019; 10(1): 436.
[http://dx.doi.org/10.1038/s41467-019-08409-5] [PMID: 30683860]
[57]
Habiyaremye C, Matanguihan JB, D’Alpoim Guedes J, et al. Proso millet (Panicum miliaceum L.) and its potential for cultivation in the Pacific Northwest, US: A review. Front Plant Sci 2017; 7: 1961.
[http://dx.doi.org/10.3389/fpls.2016.01961] [PMID: 28119699]
[58]
Hunt HV, Badakshi F, Romanova O, Howe CJ, Jones MK, Heslop-Harrison JSP. Reticulate evolution in Panicum (Poaceae): The origin of tetraploid broomcorn millet, P. miliaceumitalic>. J Exp Bot 2014; 65(12): 3165-75.
[http://dx.doi.org/10.1093/jxb/eru161] [PMID: 24723408]
[59]
Zarnkow M, Mauch A, Burberg F, et al. Proso millet (Panicum miliaceum L.) a sustainable raw material for the malting and brewing process: A review. Brew Sci 2009; 62(7/8): 119-40.
[60]
Aoki D, Yamaguchi H. Genetic relationship between Echinochloa crus-galli and Echinochloa oryzicola accessions inferred from internal transcribed spacer and chloroplast DNA sequences. Weed Biol Manage 2008; 8(4): 233-42.
[http://dx.doi.org/10.1111/j.1445-6664.2008.00303.x]
[61]
de Wet JMJ, Prasada R. KE, Mengesha MH, Brink DE. Domestication of mawa millet (Echinochloa colona). Econ Bot 1983; 37(3): 283-91.
[http://dx.doi.org/10.1007/BF02858883]
[62]
Sood S, Khulbe RK, R AK, Agrawal PK, Upadhyaya HD. Barnyard millet global core collection evaluation in the submontane Himalayan region of India using multivariate analysis. Crop J 2015; 3(6): 517-25.
[http://dx.doi.org/10.1016/j.cj.2015.07.005]
[63]
Padulosi S, Mal B, Ravi SB, et al. Food security and climate change: Role of plant genetic resources of minor millets. Ind J Plant Gen Res 2009; 22(01): 1-6.
[64]
Jarret RL, Ozias-Akins P, Phatak S, Nadimpalli R, Duncan R, Hiliard S. DNA contents in Paspalum spp. determined by flow cytometry. Genet Resour Crop Evol 1995; 42(3): 237-42.
[http://dx.doi.org/10.1007/BF02431258]
[65]
Tripathi T, Vyas S. From ancient grains to modern solutions: A history of millets and their significance in agriculture and food security. Int J Home Sci 2023; 9(2): 72-8.
[66]
Yadav Y, Lavanya GR, Pandey S, Verma M, Ram C, Arya L. Neutral and functional marker based genetic diversity in kodo millet (Paspalum scrobiculatum L.). Acta Physiol Plant 2016; 38(3): 75.
[http://dx.doi.org/10.1007/s11738-016-2090-1]
[67]
Ravi SB. Neglected millets that save the poor from starvation. Leisa Ind 2004; 6(1): 1-8.
[68]
Hiremath SC, Patil GNV, Salimath SS. Genome homology and origin of Panicum sumatrense (Gramineae). Cytologia 1990; 55(2): 315-9.
[http://dx.doi.org/10.1508/cytologia.55.315]
[69]
De Wet JM, Prasada R. KE, Brink DE. Systematics and domestication of Panicum sumatrense (Graminae). J Agric Trop Bot Appl 1983; 30(2): 159-68.
[70]
Kumar A, Jain AK, Kumar A, Sharma RL. Agro-morphological characters of little millet (Panicum sumatrense) associated with grain smut incidence. J Entomol Zool Stud 2017; 5(5): 356-9.
[71]
Fuller DQ. Finding plant domestication in the Indian subcontinent. Curr Anthropol 2011; 52(S4): S347-62.
[http://dx.doi.org/10.1086/658900]
[72]
Sharma K, Chauhan ES. Nutritional composition, physical characteristics and health benefits of teff grain for human consumption: A review. Pharma Innov J 2018; 7(10): 3-7.
[73]
Chandrasekara A, Naczk M, Shahidi F. Effect of processing on the antioxidant activity of millet grains. Food Chem 2012; 133(1): 1-9.
[http://dx.doi.org/10.1016/j.foodchem.2011.09.043]
[74]
Maharajan T, Antony Ceasar S, Ajeesh Krishna TP, Ignacimuthu S. Finger millet Eleusine coracana (L.) Gaertn: An orphan crop with a potential to alleviate the calcium deficiency in the semi-arid tropics of Asia and Africa. Front Sustain Food Syst 2021; 5: 684447.
[http://dx.doi.org/10.3389/fsufs.2021.684447]
[75]
Usha A. , Sripriya G, Chandra TS. Effect of fermentation on the primary nutrients in finger millet (Eleusine coracana). J Agric Food Chem 1996; 44(9): 2616-8.
[http://dx.doi.org/10.1021/jf950787q]
[76]
Ragaee S, Abdelaal E, Noaman M. Antioxidant activity and nutrient composition of selected cereals for food use. Food Chem 2006; 98(1): 32-8.
[http://dx.doi.org/10.1016/j.foodchem.2005.04.039]
[77]
Chethan S, Malleshi N. Finger millet polyphenols: Optimization of extraction and the effect of pH on their stability. Food Chem 2007; 105(2): 862-70.
[http://dx.doi.org/10.1016/j.foodchem.2007.02.012]
[78]
Ravindran G. Studies on millets: Proximate composition, mineral composition, and phytate and oxalate contents. Food Chem 1991; 39(1): 99-107.
[http://dx.doi.org/10.1016/0308-8146(91)90088-6]
[79]
Sripriya G, Antony U, Chandra TS. Changes in carbohydrate, free amino acids, organic acids, phytate and HCl extractability of minerals during germination and fermentation of finger millet (Eleusine coracana). Food Chem 1997; 58(4): 345-50.
[http://dx.doi.org/10.1016/S0308-8146(96)00206-3]
[80]
Maharajan T, Ceasar SA, Ajeesh K. TP. Finger millet (Eleusine coracana (L.) Gaertn): Nutritional importance and nutrient transporters. Crit Rev Plant Sci 2022; 41(1): 1-31.
[http://dx.doi.org/10.1080/07352689.2022.2037834]
[81]
Mohamed TK, Zhu K, Issoufou A, Fatmata T, Zhou H. Functionality, in vitro digestibility and physicochemical properties of two varieties of defatted foxtail millet protein concentrates. Int J Mol Sci 2009; 10(12): 5224-38.
[http://dx.doi.org/10.3390/ijms10125224]
[82]
Kalinova J, Moudry J. Content and quality of protein in proso millet (Panicum miliaceum L.) varieties. Plant Foods Hum Nutr 2006; 61(1): 43-7.
[http://dx.doi.org/10.1007/s11130-006-0013-9] [PMID: 16688479]
[83]
Krishna TPA, Maharajan T, Ignacimuthu S, Ceasar SA. Improving the nutrient-use efficiency in millets by genomics approaches. In: Pudake RN, Solanke AU, Sevanthi AM, Rajendrakumar P, Eds. Omics of Climate Resilient Small Millets. Singapore: Springer 2022; pp. 205-20.
[http://dx.doi.org/10.1007/978-981-19-3907-5_10]
[84]
Baye K. Nutrient composition and health benefits. The economics of tef, exploring Ethiopia’s biggest cash crop. Wasington, DC: IFPRI 2018; pp. 371-96.
[85]
Liu RH. Whole grain phytochemicals and health. J Cereal Sci 2007; 46(3): 207-19.
[http://dx.doi.org/10.1016/j.jcs.2007.06.010]
[86]
Mohamed TK, Issoufou A, Zhou H. Antioxidant activity of fractionated foxtail millet protein hydrolysate. Int Food Res J 2012; 19(1): 207-13.
[87]
Amadou I, Amza T, Shi YH, Le GW. Chemical analysis and antioxidant properties of foxtail millet bran extracts. Songklanakarin J Sci Technol 2011; 33(5): 509-15.
[88]
Awika JM, Rooney LW. Sorghum phytochemicals and their potential impact on human health. Phytochemistry 2004; 65(9): 1199-221.
[http://dx.doi.org/10.1016/j.phytochem.2004.04.001] [PMID: 15184005]
[89]
Salar RK, Purewal SS, Sandhu KS. Relationships between DNA damage protection activity, total phenolic content, condensed tannin content and antioxidant potential among Indian barley cultivars. Biocatal Agric Biotechnol 2017; 11: 201-6.
[http://dx.doi.org/10.1016/j.bcab.2017.07.006]
[90]
Sharma S, Saxena DC, Riar CS. Nutritional, sensory and in-vitro antioxidant characteristics of gluten free cookies prepared from flour blends of minor millets. J Cereal Sci 2016; 72: 153-61.
[http://dx.doi.org/10.1016/j.jcs.2016.10.012]
[91]
Maharajan T, Ceasar SA, Krishna TPA, Ignacimuthu S. Mining genes and markers across minor millets using comparative genomics approaches. In: Pudake RN, Solanke AU, Sevanthi AM, Rajendrakumar P, Eds. Omics of Climate Resilient Small Millets. Singapore: Springer 2022; pp. 185-203.
[http://dx.doi.org/10.1007/978-981-19-3907-5_9]
[92]
Wang J, Vanga S, Saxena R, Orsat V, Raghavan V. Effect of climate change on the yield of cereal crops: A review. Climate 2018; 6(2): 41.
[http://dx.doi.org/10.3390/cli6020041]
[93]
Maharajan T, Ajeesh Krishna TP, Ignacimuthu S, Ceasar SA. Finger millet genome analysis and nutrient transport. In: Kumar A, Sood S, Babu BK, Gupta SM, Rao BD, Eds. The Finger Millet Genome Compendium of Plant Genomes. Cham: Springer 2022; pp. 181-99.
[http://dx.doi.org/10.1007/978-3-031-00868-9_11]
[94]
Rajasekaran NS, Nithya M, Rose C, Chandra TS. The effect of finger millet feeding on the early responses during the process of wound healing in diabetic rats. Biochim Biophys Acta Mol Basis Dis 2004; 1689(3): 190-201.
[http://dx.doi.org/10.1016/j.bbadis.2004.03.004] [PMID: 15276645]
[95]
Ugare R, Chimmad B, Naik R, Bharati P, Itagi S. Glycemic index and significance of barnyard millet (Echinochloa frumentacae) in type II diabetics. J Food Sci Technol 2014; 51(2): 392-5.
[http://dx.doi.org/10.1007/s13197-011-0516-8] [PMID: 24493902]
[96]
Park KO, Ito Y, Nagasawa T, Choi MR, Nishizawa N. Effects of dietary Korean proso-millet protein on plasma adiponectin, HDL cholesterol, insulin levels, and gene expression in obese type 2 diabetic mice. Biosci Biotechnol Biochem 2008; 72(11): 2918-25.
[http://dx.doi.org/10.1271/bbb.80395] [PMID: 18997420]
[97]
Sireesha Y, Kasetti RB, Nabi SA, Swapna S, Apparao C. Antihyperglycemic and hypolipidemic activities of Setaria italica seeds in STZ diabetic rats. Pathophysiology 2011; 18(2): 159-64.
[http://dx.doi.org/10.1016/j.pathophys.2010.08.003] [PMID: 20869855]
[98]
Lee SH, Chung IM, Cha YS, Park Y. Millet consumption decreased serum concentration of triglyceride and C-reactive protein but not oxidative status in hyperlipidemic rats. Nutr Res 2010; 30(4): 290-6.
[http://dx.doi.org/10.1016/j.nutres.2010.04.007] [PMID: 20534332]
[99]
Thompson LU. Potential health benefits and problems associated with antinutrients in foods. Food Res Int 1993; 26(2): 131-49.
[http://dx.doi.org/10.1016/0963-9969(93)90069-U]
[100]
Chandrasekara A, Shahidi F. Antiproliferative potential and DNA scission inhibitory activity of phenolics from whole millet grains. J Funct Foods 2011; 3(3): 159-70.
[http://dx.doi.org/10.1016/j.jff.2011.03.008]
[101]
Antony C. S, Maharajan T. The role of millets in attaining United Nation’s sustainable developmental goals. Plants People Planet 2022; 4(4): 345-9.
[http://dx.doi.org/10.1002/ppp3.10254]
[102]
Khairuddin MAN, Lasekan O. Gluten-free cereal products and beverages: A review of their health benefits in the last five years. Foods 2021; 10(11): 2523.
[http://dx.doi.org/10.3390/foods10112523] [PMID: 34828804]
[103]
Taylor JRN, Schober TJ, Bean SR. Novel food and non-food uses for sorghum and millets. J Cereal Sci 2006; 44(3): 252-71.
[http://dx.doi.org/10.1016/j.jcs.2006.06.009]
[104]
Bravo L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 1998; 56(11): 317-33.
[http://dx.doi.org/10.1111/j.1753-4887.1998.tb01670.x] [PMID: 9838798]
[105]
Hegde PS, Chandrakasan G, Chandra TS. Inhibition of collagen glycation and crosslinking in vitro by methanolic extracts of Finger millet (Eleusine coracana) and Kodo millet (Paspalum scrobiculatum). J Nutr Biochem 2002; 13(9): 517-21.
[http://dx.doi.org/10.1016/S0955-2863(02)00171-7] [PMID: 12231421]
[106]
Radhajeyalakshmi R, Yamunarani K, Seetharaman K, Velazhahan R. Existence of thaumatin-like proteins (TLPs) in seeds of cereals. Acta Phytopathol Entomol Hung 2003; 38(3-4): 251-7.
[http://dx.doi.org/10.1556/APhyt.38.2003.3-4.5]
[107]
Xu W, Wei L, Qu W, et al. A novel antifungal peptide from foxtail millet seeds. J Sci Food Agric 2011; 91(9): 1630-7.
[http://dx.doi.org/10.1002/jsfa.4359] [PMID: 21445868]
[108]
King SB. World review of pearl millet diseases: Knowledge and future research needs. Sorghum and millets diseases: A second world review. Patancheru, India: International Crops Research Institute for the Semi-Arid Tropics 1992; 502: pp. 95-108.
[109]
Yadav R. Influence of nitrogen fertilizer dose on blast disease of finger millet caused by Pyricularia grisea. Indian Phytopathol 2012; 65(1): 52-5.
[110]
Nagaraja A, Kumar B, Raguchander T, et al. Impact of disease management practices on finger millet blast and grain yield. Ind Phyto 2012; 65(4): 356-9.
[111]
Antony C S, Ignacimuthu S. Agrobacterium-mediated transformation of finger millet (Eleusine coracana (L.) Gaertn.) using shoot apex explants. Plant Cell Rep 2011; 30(9): 1759-70.
[http://dx.doi.org/10.1007/s00299-011-1084-0] [PMID: 21584677]
[112]
Kumar B, Kumar J, Srinivas P. A first record of head smut in barnyard millet from mid hills of Uttarakhand. J Mycol Pl Pathol 2008; 38(1): 142-3.
[113]
Miedaner T, Geiger H. Biology, genetics, and management of ergot (Claviceps spp.) in rye, sorghum, and pearl millet. Toxins 2015; 7(3): 659-78.
[http://dx.doi.org/10.3390/toxins7030659] [PMID: 25723323]
[114]
de Carvalho AO, Soares DJ, do Carmo MGF, da Costa ACT, Pimentel C. Description of the life-cycle of the pearl millet rust fungus-puccinia substriata var. penicillariae with a proposal of reducing var. indica to a synonym. Mycopathologia 2006; 161(5): 331-6.
[http://dx.doi.org/10.1007/s11046-006-0022-0] [PMID: 16649083]
[115]
Dang JK, Thakur DP, Grover RK. Control of pearl millet downy mildew caused by Sclerospora graminicola with systemic fungicides in an artificially-contaminated plot. Ann Appl Biol 1983; 102(1): 99-106.
[http://dx.doi.org/10.1111/j.1744-7348.1983.tb02669.x]
[116]
Shankara R. R, Rao KCS, Singh SD, Reddy M S, Rao MVB. Fungicidal control of downy mildew of pearl millet. Ind J Plant Protect 1987; 15(2): 146-51.
[117]
Anaso CE, Anaso AB. Cost-effectiveness of seed dressing with a new formulation of metalaxyl (Apron Star 42 WS) for sustainable pearl millet production in Northern Nigeria. Arch Phytopathol Pflanzenschutz 2010; 43(2): 154-9.
[http://dx.doi.org/10.1080/03235400801972327]
[118]
Manjunatha G, Niranjan-Raj S, Prashanth GN, Deepak S, Amruthesh KN, Shetty HS. Nitric oxide is involved in chitosan-induced systemic resistance in pearl millet against downy mildew disease. Pest Manag Sci 2009; 65(7): 737-43.
[http://dx.doi.org/10.1002/ps.1710] [PMID: 19222022]
[119]
Thakur RP, Rao VP, King SB. Ergot susceptibility in relation to cytoplasmic male sterility in pearl millet. Plant Dis 1989; 73(8): 676-8.
[http://dx.doi.org/10.1094/PD-73-0676]
[120]
Maharajan T, Ceasar SA, Krishna TPA, Ignacimuthu S. Phosphate supply influenced the growth, yield and expression of PHT1 family phosphate transporters in seven millets. Planta 2019; 250(5): 1433-48.
[http://dx.doi.org/10.1007/s00425-019-03237-9] [PMID: 31300887]
[121]
Host A, David R, Ramakrishnan M, Maharajan T, et al. Mining QTL and genes for root traits and biochemical parameters under vegetative drought in South Indian genotypes of finger millet (Eleusine coracana(L.) Gaertn) by association mapping and in silico comparative genomics. Biocatal Agric Biotechnol 2021; 32: 101935.
[http://dx.doi.org/10.1016/j.bcab.2021.101935]
[122]
Roch GV, Maharajan T, Krishna TPA, Ignacimuthu S, Ceasar SA. Expression of PHT1 family transporter genes contributes for low phosphate stress tolerance in foxtail millet (Setaria italica) genotypes. Planta 2020; 252(6): 98.
[http://dx.doi.org/10.1007/s00425-020-03503-1] [PMID: 33159589]
[123]
Rakkammal K, Maharajan T, Shriram RN, Ram PSJ, Ceasar SA, Ramesh M. Physiological, biochemical and molecular responses of finger millet (Eleusine coracana) genotypes exposed to short-term drought stress induced by PEG-6000. S Afr J Bot 2023; 155: 45-59.
[http://dx.doi.org/10.1016/j.sajb.2023.01.053]
[124]
Chandrashekar A, Satyanarayana KV. Disease and pest resistance in grains of sorghum and millets. J Cereal Sci 2006; 44(3): 287-304.
[http://dx.doi.org/10.1016/j.jcs.2006.08.010]
[125]
Munirathnam P, Venkataramanamma K, Anusha A. Evaluation of foxtail millet genotypes for blast and rust diseases under field conditions. Curr Biot 2015; 9: 263-8.
[126]
Qingjie F, Yingying Z, Aili S, Zhanmin X, Liang K. Damage symptoms and damage degree of main diseases and pests in foxtail millet in chengde area. Plant Dis Pests 2018; 9(1): 12-6.
[127]
Mirzaee MR, Zare R, Nasrabad AA. A new leaf and sheath brown spot of foxtail millet caused by Bipolaris australiensis. Australas Plant Dis Notes 2010; 5(1): 19-20.
[http://dx.doi.org/10.1071/DN10008]
[128]
Fang KF, Huang JB, Hsiang T. First report of brown leaf spot caused by Bipolaris australiensis on Cynodon spp. in China. Plant Pathol 2007; 56(2): 349.
[http://dx.doi.org/10.1111/j.1365-3059.2007.01538.x]
[129]
Wu ZR, Zhou YY, Tan GJ, Zhang LX, Li ZY. First report of bacterial leaf stripe caused by Acidovorax avenae subsp. avenae on foxtail millet in China. Plant Dis 2018; 102(12): 2632.
[130]
Oh J, Park CY, Min HG, et al. First report of barley virus g in foxtail millet (Setaria italica) in korea. Plant Dis 2017; 101(6): 1061.
[http://dx.doi.org/10.1094/PDIS-01-17-0036-PDN]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy