Review Article

Vector-Mediated Delivery of Transgenes and RNA Interference-Based Gene Silencing Sequences to Astrocytes for Disease Management: Advances and Prospectives

Author(s): Deepika Yadav and Rishabha Malviya*

Volume 24, Issue 2, 2024

Published on: 25 October, 2023

Page: [110 - 121] Pages: 12

DOI: 10.2174/0115665232264527231013072728

Price: $65

conference banner
Abstract

Astrocytes are a type of important glial cell in the brain that serve crucial functions in regulating neuronal activity, facilitating communication between neurons, and keeping everything in balance. In this abstract, we explore current methods and future approaches for using vectors to precisely target astrocytes in the fight against various illnesses. In order to deliver therapeutic cargo selectively to astrocytes, researchers have made tremendous progress by using viral vectors such as adeno-associated viruses (AAVs) and lentiviruses. It has been established that engineered viral vectors are capable of either crossing the blood-brain barrier (BBB) or being delivered intranasally, which facilitates their entrance into the brain parenchyma. These vectors are able to contain transgenes that code for neuroprotective factors, synaptic modulators, or anti-inflammatory medicines, which pave the way for multiple approaches to disease intervention. Strategies based on RNA interference (RNAi) make vector-mediated astrocyte targeting much more likely to work. Small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs) are two types of RNA that can be made to silence disease-related genes in astrocytes. Vector-mediated delivery in conjunction with RNAi techniques provides a powerful toolkit for investigating the complex biological pathways that contribute to disease development. However, there are still a number of obstacles to overcome in order to perfect the specificity, safety, and duration of vector-mediated astrocyte targeting. In order to successfully translate research findings into clinical practise, it is essential to minimise off-target effects and the risk of immunogenicity. To demonstrate the therapeutic effectiveness of these strategies, rigorous preclinical investigation and validation are required.

Keywords: Gene silencing, astrocyte, miRNA, lentiviral vector, targeted therapy, genomics, gene therapy.

Next »
Graphical Abstract
[1]
Deverman BE, Ravina BM, Bankiewicz KS, Paul SM, Sah DWY. Gene therapy for neurological disorders: Progress and prospects. Nat Rev Drug Discov 2018; 17(9): 641-59.
[http://dx.doi.org/10.1038/nrd.2018.110] [PMID: 30093643]
[2]
Koizumi S, Hirayama Y. Ischemic tolerance induced by glial cells. Neurochem Res 2022; 47(9): 2522-8.
[http://dx.doi.org/10.1007/s11064-022-03704-y] [PMID: 35920970]
[3]
Bartel DP. MicroRNAs. Cell 2004; 116(2): 281-97.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[4]
Bartel DP, Chen CZ. Micromanagers of gene expression: The potentially widespread influence of metazoan microRNAs. Nat Rev Genet 2004; 5(5): 396-400.
[http://dx.doi.org/10.1038/nrg1328] [PMID: 15143321]
[5]
Bartlett JS, Samulski RJ, McCown TJ. Selective and rapid uptake of adeno-associated virus type 2 in brain. Hum Gene Ther 1998; 9(8): 1181-6.
[http://dx.doi.org/10.1089/hum.1998.9.8-1181] [PMID: 9625257]
[6]
Berry GE, Asokan A. Cellular transduction mechanisms of adeno-associated viral vectors. Curr Opin Virol 2016; 21: 54-60.
[http://dx.doi.org/10.1016/j.coviro.2016.08.001] [PMID: 27544821]
[7]
Boison D. Engineered adenosine-releasing cells for epilepsy therapy: Human mesenchymal stem cells and human embryonic stem cells. Neurotherapeutics 2009; 6(2): 278-83.
[http://dx.doi.org/10.1016/j.nurt.2008.12.001] [PMID: 19332320]
[8]
Boison D, Scheurer L, Tseng JL, Aebischer P, Mohler H. Seizure suppression in kindled rats by intraventricular grafting of an adenosine releasing synthetic polymer. Exp Neurol 1999; 160(1): 164-74.
[http://dx.doi.org/10.1006/exnr.1999.7209] [PMID: 10630201]
[9]
Cahoy JD, Emery B, Kaushal A, et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function. J Neurosci 2008; 28(1): 264-78.
[http://dx.doi.org/10.1523/JNEUROSCI.4178-07.2008] [PMID: 18171944]
[10]
Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 2004; 10(12): 1957-66.
[http://dx.doi.org/10.1261/rna.7135204] [PMID: 15525708]
[11]
O’Carroll SJ, Cook WH, Young D. AAV targeting of glial cell types in the central and peripheral nervous system and relevance to human gene therapy. Front Mol Neurosci 2021; 13: 618020-, 13, 618020.
[http://dx.doi.org/10.3389/fnmol.2020.618020] [PMID: 33505247]
[12]
Hammond SL, Leek AN, Richman EH, Tjalkens RB. Cellular selectivity of AAV serotypes for gene delivery in neurons and astrocytes by neonatal intracerebroventricular injection. PLoS One 2017; 12(12): e0188830.
[http://dx.doi.org/10.1371/journal.pone.0188830] [PMID: 29244806]
[13]
Choudhury S R, Hudry E, Maguire C A, Sena-Esteves M, Breakefield X O, Grandi P. Viral vectors for therapy of neurologic diseases. Neuropharmacology 2016; 02: 013.
[14]
Christine CW, Starr PA, Larson PS, et al. Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 2009; 73(20): 1662-9.
[http://dx.doi.org/10.1212/WNL.0b013e3181c29356] [PMID: 19828868]
[15]
Colin A, Faideau M, Dufour N, et al. Engineered lentiviral vector targeting astrocytes in vivo. Glia 2009; 57(6): 667-79.
[http://dx.doi.org/10.1002/glia.20795] [PMID: 18942755]
[16]
Davidson BL, Stein CS, Heth JA, et al. Recombinant adeno-associated virus type 2, 4, and 5 vectors: Transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci 2000; 97(7): 3428-32.
[http://dx.doi.org/10.1073/pnas.97.7.3428] [PMID: 10688913]
[17]
Dragunow M. Adenosine: The brain’s natural anticonvulsant. Trends in Pharmacological Sciences. Ann Neurol 1991; 7: 128-30.
[18]
Drinkut A, Tereshchenko Y, Schulz JB, Bähr M, Kügler S. Efficient gene therapy for Parkinson’s disease using astrocytes as hosts for localized neurotrophic factor delivery. Mol Ther 2012; 20(3): 534-43.
[http://dx.doi.org/10.1038/mt.2011.249] [PMID: 22086235]
[19]
Drouet V, Perrin V, Hassig R, et al. Sustained effects of nonallele-specific huntingtin silencing. Ann Neurol 2009; 65(3): 276-85.
[http://dx.doi.org/10.1002/ana.21569] [PMID: 19334076]
[20]
Eberling JL, Jagust WJ, Christine CW, et al. Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 2008; 70(21): 1980-3.
[http://dx.doi.org/10.1212/01.wnl.0000312381.29287.ff] [PMID: 18401019]
[21]
Gray SJ, Matagne V, Bachaboina L, Yadav S, Ojeda SR, Samulski RJ. Preclinical differences of intravascular AAV9 delivery to neurons and glia: A comparative study of adult mice and nonhuman primates. Mol Ther 2011; 19(6): 1058-69.
[http://dx.doi.org/10.1038/mt.2011.72] [PMID: 21487395]
[22]
Grimm D, Streetz KL, Jopling CL, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006; 441(7092): 537-41.
[http://dx.doi.org/10.1038/nature04791] [PMID: 16724069]
[23]
Grondin R, Kaytor MD, Ai Y, et al. Six-month partial suppression of Huntingtin is well tolerated in the adult rhesus striatum. Brain 2012; 135(4): 1197-209.
[http://dx.doi.org/10.1093/brain/awr333] [PMID: 22252996]
[24]
Hamby ME, Sofroniew MV. Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 2010; 7(4): 494-506.
[http://dx.doi.org/10.1016/j.nurt.2010.07.003] [PMID: 20880511]
[25]
Harper SQ, Staber PD, He X, et al. RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci 2005; 102(16): 5820-5.
[http://dx.doi.org/10.1073/pnas.0501507102] [PMID: 15811941]
[26]
He M, Liu Y, Wang X, Zhang M Q, Hannon G J, Huang Z J. Cell- type-based analysis of microRNA profiles in the mouse brain. Neuron 2012; 73(1): 35-48.
[27]
Huang B, Schiefer J, Sass C, Landwehrmeyer GB, Kosinski CM, Kochanek S. High-capacity adenoviral vector-mediated reduction of huntingtin aggregate load in vitro and in vivo. Hum Gene Ther 2007; 18(4): 303-11.
[http://dx.doi.org/10.1089/hum.2006.160] [PMID: 17472569]
[28]
Huber A, Padrun V, Déglon N, Aebischer P, Möhler H, Boison D. Grafts of adenosine-releasing cells suppress seizures in kindling epilepsy. Proc Natl Acad Sci 2001; 98(13): 7611-6.
[http://dx.doi.org/10.1073/pnas.131102898] [PMID: 11404469]
[29]
Jakobsson J, Georgievska B, Ericson C, Lundberg C. Lesion-dependent regulation of transgene expression in the rat brain using a human glial fibrillary acidic protein-lentiviral vector. Eur J Neurosci 2004; 19(3): 761-5.
[http://dx.doi.org/10.1111/j.0953-816X.2003.03147.x] [PMID: 14984426]
[30]
Judge AD, Bola G, Lee ACH, MacLachlan I. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther 2006; 13(3): 494-505.
[http://dx.doi.org/10.1016/j.ymthe.2005.11.002] [PMID: 16343994]
[31]
Kaplitt MG, Leone P, Samulski RJ, et al. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet 1994; 8(2): 148-54.
[http://dx.doi.org/10.1038/ng1094-148] [PMID: 7842013]
[32]
Kay C, Skotte NH, Southwell AL, Hayden MR. Personalized gene silencing therapeutics for Huntington disease. Clin Genet 2014; 86(1): 29-36.
[http://dx.doi.org/10.1111/cge.12385] [PMID: 24646433]
[33]
Kay C, Collins JA, Skotte NH, et al. Huntingtin haplotypes provide prioritized target panels for allele-specific silencing in Huntington disease patients of European ancestry. Mol Ther 2015; 23(11): 1759-71.
[http://dx.doi.org/10.1038/mt.2015.128] [PMID: 26201449]
[34]
Klein RL, Dayton RD, Tatom JB, Henderson KM, Henning PP. AAV8, 9, Rh10, Rh43 vector gene transfer in the rat brain: Effects of serotype, promoter and purification method. Mol Ther 2008; 16(1): 89-96.
[http://dx.doi.org/10.1038/sj.mt.6300331] [PMID: 17955025]
[35]
Lawlor PA, Bland RJ, Mouravlev A, Young D, During MJ. Efficient gene delivery and selective transduction of glial cells in the mammalian brain by AAV serotypes isolated from nonhuman primates. Mol Ther 2009; 17(10): 1692-702.
[http://dx.doi.org/10.1038/mt.2009.170] [PMID: 19638961]
[36]
LeWitt PA, Rezai AR, Leehey MA, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: A double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 2011; 10(4): 309-19.
[http://dx.doi.org/10.1016/S1474-4422(11)70039-4] [PMID: 21419704]
[37]
Lee Y, Messing A, Su M, Brenner M. GFAP promoter elements required for region-specific and astrocyte-specific expression. Glia 2008; 56(5): 481-93.
[http://dx.doi.org/10.1002/glia.20622] [PMID: 18240313]
[38]
Leone P, Shera D, McPhee SWJ, et al. Long-term follow-up after gene therapy for canavan disease. Sci Transl Med 2012; 4(165): 165ra163.
[http://dx.doi.org/10.1126/scitranslmed.3003454] [PMID: 23253610]
[39]
Li C, Diprimio N, Bowles DE, et al. Single amino acid modification of adeno-associated virus capsid changes transduction and humoral immune profiles. J Virol 2012; 86(15): 7752-9.
[http://dx.doi.org/10.1128/JVI.00675-12] [PMID: 22593151]
[40]
Luthi-Carter R, Hanson SA, Strand AD, et al. Dysregulation of gene expression in the R6/2 model of polyglutamine disease: Parallel changes in muscle and brain. Hum Mol Genet 2002; 11(17): 1911-26.
[http://dx.doi.org/10.1093/hmg/11.17.1911] [PMID: 12165554]
[41]
Machida Y, Okada T, Kurosawa M, Oyama F, Ozawa K, Nukina N. rAAV-mediated shRNA ameliorated neuropathology in Huntington disease model mouse. Biochem Biophys Res Commun 2006; 343(1): 190-7.
[http://dx.doi.org/10.1016/j.bbrc.2006.02.141] [PMID: 16530728]
[42]
McBride JL, Boudreau RL, Harper SQ, et al. Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: Implications for the therapeutic development of RNAi. Proc Natl Acad Sci 2008; 105(15): 5868-73.
[http://dx.doi.org/10.1073/pnas.0801775105] [PMID: 18398004]
[43]
McBride JL, Pitzer MR, Boudreau RL, et al. Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington’s disease. Mol Ther 2011; 19(12): 2152-62.
[http://dx.doi.org/10.1038/mt.2011.219] [PMID: 22031240]
[44]
Monteys AM, Wilson MJ, Boudreau RL, Spengler RM, Davidson BL. Artificial miRNAs targeting mutant huntingtin show preferential silencing in vitro and in vivo. Mol Ther Nucleic Acids 2015; 4: e234.
[http://dx.doi.org/10.1038/mtna.2015.7] [PMID: 25849618]
[45]
Mudannayake JM, Mouravlev A, Fong DM, Young D. Transcriptional activity of novel ALDH1L1 promoters in the rat brain following AAV vector-mediated gene transfer. Mol Ther Methods Clin Dev 2016; 3: 16075.
[http://dx.doi.org/10.1038/mtm.2016.75] [PMID: 27990448]
[46]
Naldini L, Blömer U, Gage FH, Trono D, Verma IM. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci 1996; 93(21): 11382-8.
[http://dx.doi.org/10.1073/pnas.93.21.11382] [PMID: 8876144]
[47]
Ortinski PI, Dong J, Mungenast A, et al. Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nat Neurosci 2010; 13(5): 584-91.
[http://dx.doi.org/10.1038/nn.2535] [PMID: 20418874]
[48]
Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 2002; 16(8): 948-58.
[http://dx.doi.org/10.1101/gad.981002] [PMID: 11959843]
[49]
(a) Paxinos G, Watson C. The rat brain in stereotaxic coordinates. San Diego: Academic Press 1982.;
(b) Pekny M, Messing A. Astrocytes: A central element in neurological diseases. Acta Neuropathol 2016; 131(3): 323345.
[50]
(a) Pillay S, Meyer NL, Puschnik AS, et al. An essential receptor for adeno-associated virus infection. Nature 2016; 530(7588): 108-12.
[http://dx.doi.org/10.1038/nature16465] [PMID: 26814968];
(b) Pulicherla N, Shen S, Yadav S, et al. Engineering liver-detargeted AAV9 vectors for cardiac and musculoskeletal gene transfer. Mol Ther 2011; 19(6): 1070-8.
[http://dx.doi.org/10.1038/mt.2011.22] [PMID: 21364538]
[51]
Ren G, Li T, Lan JQ, Wilz A, Simon RP, Boison D. Lentiviral RNAi-induced downregulation of adenosine kinase in human mesenchymal stem cell grafts: A novel perspective for seizure control. Exp Neurol 2007; 208(1): 26-37.
[http://dx.doi.org/10.1016/j.expneurol.2007.07.016] [PMID: 17716659]
[52]
Rodriguez-Lebron E, Denovan-Wright EM, Nash K, Lewin AS, Mandel RJ. Intrastriatal rAAV-mediated delivery of anti-huntingtin shRNAs induces partial reversal of disease progression in R6/1 Huntington’s disease transgenic mice. Mol Ther 2005; 12(4): 618-33.
[http://dx.doi.org/10.1016/j.ymthe.2005.05.006] [PMID: 16019264]
[53]
Ross CA, Tabrizi SJ. Huntington’s disease: From molecular pathogenesis to clinical treatment. Lancet Neurol 2011; 10(1): 83-98.
[http://dx.doi.org/10.1016/S1474-4422(10)70245-3] [PMID: 21163446]
[54]
Seifert G, Schilling K, Steinhäuser C. Astrocyte dysfunction in neurological disorders: A molecular perspective. Nat Rev Neurosci 2006; 7(3): 194-206.
[http://dx.doi.org/10.1038/nrn1870] [PMID: 16495941]
[55]
Shevtsova Z, Malik JMI, Michel U, Bähr M, Kügler S. Promoters and serotypes: Targeting of adeno-associated virus vectors for gene transfer in the rat central nervous system in vitro and in vivo. Exp Physiol 2005; 90(1): 53-9.
[http://dx.doi.org/10.1113/expphysiol.2004.028159] [PMID: 15542619]
[56]
Srivastava A. In vivo tissue-tropism of adeno-associated viral vectors. Curr Opin Virol 2016; 21: 75-80.
[http://dx.doi.org/10.1016/j.coviro.2016.08.003] [PMID: 27596608]
[57]
Su M, Hu H, Lee Y, D’Azzo A, Messing A, Brenner M. Expression specificity of GFAP transgenes. Neurochem Res 2004; 29(11): 2075-93.
[http://dx.doi.org/10.1007/s11064-004-6881-1] [PMID: 15662842]
[58]
Theofilas P, Brar S, Stewart KA, et al. Adenosine kinase as a target for therapeutic antisense strategies in epilepsy. Epilepsia 2011; 52(3): 589-601.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02947.x] [PMID: 21275977]
[59]
Wang C, Wang C-M, Clark KR, Sferra TJ. Recombinant AAV serotype 1 transduction efficiency and tropism in the murine brain. Gene Ther 2003; 10(17): 1528-34.
[http://dx.doi.org/10.1038/sj.gt.3302011] [PMID: 12900769]
[60]
Weinberg MS, Blake BL, Samulski RJ, McCown TJ. The influence of epileptic neuropathology and prior peripheral immunity on CNS transduction by rAAV2 and rAAV5. Gene Ther 2011; 18(10): 961-8.
[http://dx.doi.org/10.1038/gt.2011.49] [PMID: 21490684]
[61]
Wiznerowicz M, Szulc J, Trono D. Tuning silence: Conditional systems for RNA interference. Nat Methods 2006; 3(9): 682-8.
[http://dx.doi.org/10.1038/nmeth914] [PMID: 16929312]
[62]
Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: Vector toolkit for human gene therapy. Mol Ther 2006; 14(3): 316-27.
[http://dx.doi.org/10.1016/j.ymthe.2006.05.009] [PMID: 16824801]
[63]
Yang Y, Vidensky S, Jin L, et al. Molecular comparison of GLT1+ and ALDH1L1+ astrocytes in vivo in astroglial reporter mice. Glia 2011; 59(2): 200-7.
[http://dx.doi.org/10.1002/glia.21089] [PMID: 21046559]
[64]
Young D, Fong DM, Lawlor PA, et al. Adenosine kinase, glutamine synthetase and EAAT2 as gene therapy targets for temporal lobe epilepsy. Gene Ther 2014; 21(12): 1029-40.
[http://dx.doi.org/10.1038/gt.2014.82] [PMID: 25231174]
[65]
Gray SJ, Woodard KT, Samulski RJ. Viral vectors and delivery strategies for CNS gene therapy. Ther Deliv 2010; 1(4): 517-34.
[http://dx.doi.org/10.4155/tde.10.50] [PMID: 22833965]
[66]
Kim TH, Lee S, Chen X. Nanotheranostics for personalized medicine. Expert Rev Mol Diagn 2013; 13(3): 257-69.
[http://dx.doi.org/10.1586/erm.13.15] [PMID: 23570404]
[67]
Han HA, Pang JKS, Soh BS. Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing. J Mol Med 2020; 98(5): 615-32.
[http://dx.doi.org/10.1007/s00109-020-01893-z] [PMID: 32198625]
[68]
Tarabichi O, Correa T, Kul E, et al. Development and evaluation of helper dependent adenoviral vectors for inner ear gene delivery. Hearing Res 2023; 435(1): 108819.
[http://dx.doi.org/10.1016/j.heares.2023.108819]
[69]
Ghasemi M, Roshandel E, Mohammadian M, Farhadihosseinabadi B, Akbarzadehlaleh P, Shamsasenjan K. Mesenchymal stromal cell-derived secretome-based therapy for neurodegenerative diseases: Overview of clinical trials. Stem Cell Res Ther 2023; 14(1): 122.
[http://dx.doi.org/10.1186/s13287-023-03264-0] [PMID: 37143147]
[70]
Parambi DGT, Alharbi KS, Kumar R, et al. Gene therapy approach with an emphasis on growth factors: Theoretical and clinical outcomes in neurodegenerative diseases. Mol Neurobiol 2022; 59(1): 191-233.
[http://dx.doi.org/10.1007/s12035-021-02555-y] [PMID: 34655056]
[71]
Dong J, Li S, Mo JL, Cai HB, Le WD. Nurr1-based therapies for parkinson’s disease. CNS Neurosci Ther 2016; 22(5): 351-9.
[http://dx.doi.org/10.1111/cns.12536] [PMID: 27012974]
[72]
Chamberlain KA, Nanescu SE, Psachoulia K, Huang JK. Oligodendrocyte regeneration: Its significance in myelin replacement and neuroprotection in multiple sclerosis. Neuropharmacology 2016; 110(Pt B): 633-43.
[http://dx.doi.org/10.1016/j.neuropharm.2015.10.010] [PMID: 26474658]
[73]
Yrigollen C, Davidson B. CRISPR to the rescue: Advances in gene editing for the FMR1 gene. Brain Sci 2019; 9(1): 17.
[http://dx.doi.org/10.3390/brainsci9010017] [PMID: 30669625]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy