Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Structure, Function, and Physicochemical Properties of Pore-forming Antimicrobial Peptides

Author(s): Narjes Hosseini Goki, Zeinab Amiri Tehranizadeh, Mohammad Reza Saberi, Bahman Khameneh* and Bibi Sedigheh Fazly Bazzaz*

Volume 25, Issue 8, 2024

Published on: 25 October, 2023

Page: [1041 - 1057] Pages: 17

DOI: 10.2174/0113892010194428231017051836

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Antimicrobial peptides (AMPs), a class of antimicrobial agents, possess considerable potential to treat various microbial ailments. The broad range of activity and rare complete bacterial resistance to AMPs make them ideal candidates for commercial development. These peptides with widely varying compositions and sources share recurrent structural and functional features in mechanisms of action. Studying the mechanisms of AMP activity against bacteria may lead to the development of new antimicrobial agents that are more potent. Generally, AMPs are effective against bacteria by forming pores or disrupting membrane barriers. The important structural aspects of cytoplasmic membranes of pathogens and host cells will also be outlined to understand the selective antimicrobial actions. The antimicrobial activities of AMPs are related to multiple physicochemical properties, such as length, sequence, helicity, charge, hydrophobicity, amphipathicity, polar angle, and also self-association. These parameters are interrelated and need to be considered in combination. So, gathering the most relevant available information will help to design and choose the most effective AMPs.

Keywords: Antimicrobial peptide, cationic peptide, structural characteristics, membrane disruption, pore formation, physicochemical properties.

Graphical Abstract
[1]
Haney, E.F.; Mansour, S.C.; Hancock, R.E. Antimicrobial peptides: An introduction. Methods Mol. Biol., 2017, 3-22.
[http://dx.doi.org/10.1007/978-1-4939-6737-7_1]
[2]
Dash, R.; Bhattacharjya, S. Thanatin: An emerging host defense antimicrobial peptide with multiple modes of action. Int. J. Mol. Sci., 2021, 22(4), 1522.
[http://dx.doi.org/10.3390/ijms22041522] [PMID: 33546369]
[3]
Nuti, R.; Goud, N.S.; Saraswati, A.P.; Alvala, R.; Alvala, M. Antimicrobial peptides: A promising therapeutic strategy in tackling antimicrobial resistance. Curr. Med. Chem., 2017, 24(38), 4303-4314.
[PMID: 28814242]
[4]
Andersson, D.I.; Hughes, D.; Kubicek-Sutherland, J.Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updat., 2016, 26, 43-57.
[http://dx.doi.org/10.1016/j.drup.2016.04.002] [PMID: 27180309]
[5]
Sadelaji, S.; Ghaznavi-Rad, E.; Sadoogh Abbasian, S.; Fahimirad, S.; Abtahi, H. Ib-AMP4 antimicrobial peptide as a treatment for skin and systematic infection of methicillin-resistant Staphylococcus aureus (MRSA). Iran. J. Basic Med. Sci., 2022, 25(2), 232-238.
[PMID: 35655604]
[6]
Deslouches, B.; Montelaro, R.C.; Urish, K.L.; Di, Y.P. Engineered cationic antimicrobial peptides (eCAPs) to combat multidrug-resistant bacteria. Pharmaceutics, 2020, 12(6), 501.
[http://dx.doi.org/10.3390/pharmaceutics12060501] [PMID: 32486228]
[7]
Fathizadeh, H.; Saffari, M.; Esmaeili, D.; Moniri, R.; Salimian, M. Evaluation of antibacterial activity of enterocin A-colicin E1 fusion peptide. Iran. J. Basic Med. Sci., 2020, 23(11), 1471-1479.
[PMID: 33235705]
[8]
Torres, M.D.T.; Sothiselvam, S.; Lu, T.K.; de la Fuente-Nunez, C. Peptide design principles for antimicrobial applications. J. Mol. Biol., 2019, 431(18), 3547-3567.
[http://dx.doi.org/10.1016/j.jmb.2018.12.015] [PMID: 30611750]
[9]
Magrone, T.; Russo, M.A.; Jirillo, E. Antimicrobial peptides: Phylogenic sources and biological activities. First of two parts. Curr. Pharm. Des., 2018, 24(10), 1043-1053.
[http://dx.doi.org/10.2174/1381612824666180403123736] [PMID: 29611476]
[10]
Li, Y.; Xiang, Q.; Zhang, Q.; Huang, Y.; Su, Z. Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application. Peptides, 2012, 37(2), 207-215.
[http://dx.doi.org/10.1016/j.peptides.2012.07.001] [PMID: 22800692]
[11]
Kaur-Boparai, J.; Sharma, P.K. Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Pept. Lett., 2020, 27(1), 4-16.
[http://dx.doi.org/10.2174/18755305MTAwENDE80] [PMID: 31438824]
[12]
Wang, G.; Li, X.; Zasloff, M. A database view of naturally occurring antimicrobial peptides: Nomenclature, classification and amino acid sequence analysis. Antimicrobial peptides: Discovery, design and novel therapeutic strategies; Cabi digital library, 2010, pp. 1-21.
[13]
Wang, G. Antimicrobial peptides: discovery, design and novel therapeutic strategies. Antimicrobial peptides: Discovery, design and novel therapeutic strategies; Cabi digital library, 2017, p. 1.
[14]
Moretta, A.; Scieuzo, C.; Petrone, A.M.; Salvia, R.; Manniello, M.D.; Franco, A.; Lucchetti, D.; Vassallo, A.; Vogel, H.; Sgambato, A.; Falabella, P. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Front. Cell. Infect. Microbiol., 2021, 11, 668632.
[http://dx.doi.org/10.3389/fcimb.2021.668632] [PMID: 34195099]
[15]
Ageitos, J.M. Sلnchez-Pérez, A.; Calo-Mata, P.; Villa, T.G. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem. Pharmacol., 2017, 133, 117-138.
[http://dx.doi.org/10.1016/j.bcp.2016.09.018] [PMID: 27663838]
[16]
Zhu, Y.; Hao, W.; Wang, X.; Ouyang, J.; Deng, X.; Yu, H.; Wang, Y. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug‐resistant infections. Med. Res. Rev., 2022, 42(4), 1377-1422.
[http://dx.doi.org/10.1002/med.21879] [PMID: 34984699]
[17]
Drin, G.; Antonny, B. Amphipathic helices and membrane curvature. FEBS Lett., 2010, 584(9), 1840-1847.
[http://dx.doi.org/10.1016/j.febslet.2009.10.022] [PMID: 19837069]
[18]
Chen, Y.; Mant, C.T.; Farmer, S.W.; Hancock, R.E.W.; Vasil, M.L.; Hodges, R.S. Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J. Biol. Chem., 2005, 280(13), 12316-12329.
[http://dx.doi.org/10.1074/jbc.M413406200] [PMID: 15677462]
[19]
Xiang, N.; Lyu, Y.; Zhu, X.; Bhunia, A.K.; Narsimhan, G. Effect of physicochemical properties of peptides from soy protein on their antimicrobial activity. Peptides, 2017, 94, 10-18.
[http://dx.doi.org/10.1016/j.peptides.2017.05.010] [PMID: 28587835]
[20]
Wang, J.; Dou, X.; Song, J.; Lyu, Y.; Zhu, X.; Xu, L.; Li, W.; Shan, A. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Med. Res. Rev., 2019, 39(3), 831-859.
[http://dx.doi.org/10.1002/med.21542] [PMID: 30353555]
[21]
Stone, T.A.; Cole, G.B.; Ravamehr-Lake, D.; Nguyen, H.Q.; Khan, F.; Sharpe, S.; Deber, C.M. Positive charge patterning and hydrophobicity of membrane-active antimicrobial peptides as determinants of activity, toxicity, and pharmacokinetic stability. J. Med. Chem., 2019, 62(13), 6276-6286.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00657] [PMID: 31194548]
[22]
Hollmann, A.; Martinez, M.; Maturana, P.; Semorile, L.C.; Maffia, P.C. Antimicrobial peptides: Interaction with model and biological membranes and synergism with chemical antibiotics. Front Chem., 2018, 6, 204.
[http://dx.doi.org/10.3389/fchem.2018.00204] [PMID: 29922648]
[23]
Pirtskhalava, M.; Amstrong, A.A.; Grigolava, M.; Chubinidze, M.; Alimbarashvili, E.; Vishnepolsky, B.; Gabrielian, A.; Rosenthal, A.; Hurt, D.E.; Tartakovsky, M. DBAASP v3: Database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Res., 2021, 49(D1), D288-D297.
[http://dx.doi.org/10.1093/nar/gkaa991] [PMID: 33151284]
[24]
Brady, D.; Grapputo, A.; Romoli, O.; Sandrelli, F. Insect cecropins, antimicrobial peptides with potential therapeutic applications. Int. J. Mol. Sci., 2019, 20(23), 5862.
[http://dx.doi.org/10.3390/ijms20235862] [PMID: 31766730]
[25]
Sand, S.L.; Nissen-Meyer, J.; Sand, O.; Haug, T.M.; Plantaricin, A. Plantaricin A, a cationic peptide produced by Lactobacillus plantarum, permeabilizes eukaryotic cell membranes by a mechanism dependent on negative surface charge linked to glycosylated membrane proteins. Biochim. Biophys. Acta Biomembr., 2013, 1828(2), 249-259.
[http://dx.doi.org/10.1016/j.bbamem.2012.11.001] [PMID: 23142566]
[26]
Simmaco, M.; Kreil, G.; Barra, D. Bombinins, antimicrobial peptides from Bombina species. Biochim. Biophys. Acta Biomembr., 2009, 1788(8), 1551-1555.
[http://dx.doi.org/10.1016/j.bbamem.2009.01.004]
[27]
Hirano, M.; Saito, C.; Yokoo, H.; Goto, C.; Kawano, R.; Misawa, T.; Demizu, Y. Development of antimicrobial stapled peptides based on magainin 2 sequence. Molecules, 2021, 26(2), 444.
[http://dx.doi.org/10.3390/molecules26020444] [PMID: 33466998]
[28]
Selsted, M.E.; Tang, Y.Q.; Morris, W.L.; McGuire, P.A.; Novotny, M.J.; Smith, W.; Henschen, A.H.; Cullor, J.S. Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J. Biol. Chem., 1993, 268(9), 6641-6648.
[http://dx.doi.org/10.1016/S0021-9258(18)53298-1] [PMID: 8454635]
[29]
Dhople, V.; Krukemeyer, A.; Ramamoorthy, A. The human beta-defensin-3, an antibacterial peptide with multiple biological functions. Biochim. Biophys. Acta Biomembr., 2006, 1758(9), 1499-1512.
[http://dx.doi.org/10.1016/j.bbamem.2006.07.007] [PMID: 16978580]
[30]
Samuelsen, ط.; Haukland, H.H.; Jenssen, H.; Krنmer, M.; Sandvik, K.; Ulvatne, H.; Vorland, L.H. Induced resistance to the antimicrobial peptide lactoferricin B in Staphylococcus aureus. FEBS Lett., 2005, 579(16), 3421-3426.
[http://dx.doi.org/10.1016/j.febslet.2005.05.017] [PMID: 15946666]
[31]
Fujikawa, K.; Suketa, Y.; Hayashi, K.; Suzuki, T. Chemical structure of circulin A. Experientia, 1965, 21(6), 307-308.
[http://dx.doi.org/10.1007/BF02144681] [PMID: 4288271]
[32]
Lambert, J.; Keppi, E.; Dimarcq, J.L.; Wicker, C.; Reichhart, J.M.; Dunbar, B.; Lepage, P.; Van Dorsselaer, A.; Hoffmann, J.; Fothergill, J. Insect immunity: Isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc. Natl. Acad. Sci., 1989, 86(1), 262-266.
[http://dx.doi.org/10.1073/pnas.86.1.262] [PMID: 2911573]
[33]
Lamberty, M.; Caille, A.; Landon, C.; Tassin-Moindrot, S.; Hetru, C.; Bulet, P.; Vovelle, F. Solution structures of the antifungal heliomicin and a selected variant with both antibacterial and antifungal activities. Biochemistry, 2001, 40(40), 11995-12003.
[http://dx.doi.org/10.1021/bi0103563] [PMID: 11580275]
[34]
Tichaczek, P.S.; Vogel, R.F.; Hammes, W.P. Cloning and sequencing of cur A encoding curvacin A, the bacteriocin produced by Lactobacillus curvatus LTH1174. Arch. Microbiol., 1993, 160(4), 279-283.
[http://dx.doi.org/10.1007/BF00292077] [PMID: 7694558]
[35]
Holck, A.L.; Axelsson, L.; Hühne, K. Krِckel, L. Purification and cloning of sakacin 674, a bacteriocin from Lactobacillus sake Lb674. FEMS Microbiol. Lett., 1994, 115(2-3), 143-149.
[http://dx.doi.org/10.1111/j.1574-6968.1994.tb06629.x] [PMID: 8138128]
[36]
Zhu, Q.Z.; Hu, J.; Mulay, S.; Esch, F.; Shimasaki, S.; Solomon, S. Isolation and structure of corticostatin peptides from rabbit fetal and adult lung. Proc. Natl. Acad. Sci., 1988, 85(2), 592-596.
[http://dx.doi.org/10.1073/pnas.85.2.592] [PMID: 2829194]
[37]
Eisenhauer, P.B.; Harwig, S.S.; Lehrer, R.I. Cryptdins: antimicrobial defensins of the murine small intestine. Infect. Immun., 1992, 60(9), 3556-3565.
[http://dx.doi.org/10.1128/iai.60.9.3556-3565.1992] [PMID: 1500163]
[38]
Hara, S.; Yamakawa, M. A novel antibacterial peptide family isolated from the silkworm, Bombyx mori. Biochem. J., 1995, 310(2), 651-656.
[http://dx.doi.org/10.1042/bj3100651] [PMID: 7654207]
[39]
Scheenstra, M.R.; van den Belt, M.; Tjeerdsma-van Bokhoven, J.L.M.; Schneider, V.A.F.; Ordonez, S.R.; van Dijk, A.; Veldhuizen, E.J.A.; Haagsman, H.P. Cathelicidins PMAP-36, LL-37 and CATH-2 are similar peptides with different modes of action. Sci. Rep., 2019, 9(1), 4780.
[http://dx.doi.org/10.1038/s41598-019-41246-6] [PMID: 30886247]
[40]
Harayama, T.; Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol., 2018, 19(5), 281-296.
[http://dx.doi.org/10.1038/nrm.2017.138] [PMID: 29410529]
[41]
Ciumac, D.; Gong, H.; Hu, X.; Lu, J.R. Membrane targeting cationic antimicrobial peptides. J. Colloid Interface Sci., 2019, 537, 163-185.
[http://dx.doi.org/10.1016/j.jcis.2018.10.103] [PMID: 30439615]
[42]
Koppelman, C.M.; Den Blaauwen, T.; Duursma, M.C.; Heeren, R.M.A.; Nanninga, N. Escherichia coli minicell membranes are enriched in cardiolipin. J. Bacteriol., 2001, 183(20), 6144-6147.
[http://dx.doi.org/10.1128/JB.183.20.6144-6147.2001] [PMID: 11567016]
[43]
Sharma, S.; Sahoo, N.; Bhunia, A. Antimicrobial peptides and their pore/ion channel properties in neutralization of pathogenic microbes. Curr. Top. Med. Chem., 2015, 16(1), 46-53.
[http://dx.doi.org/10.2174/1568026615666150703115454] [PMID: 26139119]
[44]
Parchebafi, A.; Tamanaee, F.; Ehteram, H.; Ahmad, E.; Nikzad, H.; Haddad Kashani, H. The dual interaction of antimicrobial peptides on bacteria and cancer cells; mechanism of action and therapeutic strategies of nanostructures. Microb. Cell Fact., 2022, 21(1), 118.
[http://dx.doi.org/10.1186/s12934-022-01848-8] [PMID: 35717207]
[45]
Umnyakova, E.; Orlov, D.; Shamova, O. Peptides and antibiotic resistance, Peptide and Peptidomimetic Therapeutics; Elsevier, 2022, pp. 417-437.
[http://dx.doi.org/10.1016/B978-0-12-820141-1.00025-X]
[46]
Chou, H.T.; Wen, H.W.; Kuo, T.Y.; Lin, C.C.; Chen, W.J. Interaction of cationic antimicrobial peptides with phospholipid vesicles and their antibacterial activity. Peptides, 2010, 31(10), 1811-1820.
[http://dx.doi.org/10.1016/j.peptides.2010.06.021] [PMID: 20600422]
[47]
Zhang, L.; Gallo, R.L. Antimicrobial peptides. Curr. Biol., 2016, 26(1), R14-R19.
[http://dx.doi.org/10.1016/j.cub.2015.11.017] [PMID: 26766224]
[48]
Moravej, H.; Moravej, Z.; Yazdanparast, M.; Heiat, M.; Mirhosseini, A.; Moosazadeh Moghaddam, M.; Mirnejad, R. Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria. Microb. Drug Resist., 2018, 24(6), 747-767.
[http://dx.doi.org/10.1089/mdr.2017.0392] [PMID: 29957118]
[49]
Zasloff, M. Antimicrobial peptides of multicellular organisms: My perspective; Antimicrobial Peptides, 2019, pp. 3-6.
[http://dx.doi.org/10.1007/978-981-13-3588-4_1]
[50]
Fillion, M.; Ouellet, M.; Auger, M. Solid-state NMR studies of the interactions and structure of antimicrobial peptides in model membranes, Modern Magnetic Resonance; Springer International Publishing: Cham, 2016, pp. 1-18.
[51]
Soares, J.W.; Mello, C.M. Antimicrobial peptides: A review of how peptide structure impacts antimicrobial activity. Monit. Food. Saf. Agricul.Plant. Heal., 2004, 5271, 20-27.
[http://dx.doi.org/10.1117/12.516171]
[52]
Ye, Z.; Zhu, X.; Acosta, S.; Kumar, D.; Sang, T.; Aparicio, C. Self-assembly dynamics and antimicrobial activity of all L - and D -amino acid enantiomers of a designer peptide. Nanoscale, 2019, 11(1), 266-275.
[http://dx.doi.org/10.1039/C8NR07334A] [PMID: 30534763]
[53]
Panina, I.; Krylov, N.; Nolde, D.; Efremov, R.; Chugunov, A. Environmental and dynamic effects explain how nisin captures membrane-bound lipid II. Sci. Rep., 2020, 10(1), 8821.
[http://dx.doi.org/10.1038/s41598-020-65522-y] [PMID: 32483218]
[54]
Singh, T.; Choudhary, P.; Singh, S. Antimicrobial Peptides: Mechanism of Action; Insights on Antimicrobial Peptides, 2022, p. 23.
[55]
Cardoso, M.H.; Meneguetti, B.T.; Costa, B.O.; Buccini, D.F.; Oshiro, K.G.N.; Preza, S.L.E.; Carvalho, C.M.E.; Migliolo, L.; Franco, O.L. Non-lytic antibacterial peptides that translocate through bacterial membranes to act on intracellular targets. Int. J. Mol. Sci., 2019, 20(19), 4877.
[http://dx.doi.org/10.3390/ijms20194877] [PMID: 31581426]
[56]
Grein, F.; Schneider, T.; Sahl, H.G. Docking on lipid II—a widespread mechanism for potent bactericidal activities of antibiotic peptides. J. Mol. Biol., 2019, 431(18), 3520-3530.
[http://dx.doi.org/10.1016/j.jmb.2019.05.014] [PMID: 31100388]
[57]
Edwards, I.A.; Elliott, A.G.; Kavanagh, A.M.; Blaskovich, M.A.T.; Cooper, M.A. Structure–activity and− toxicity relationships of the antimicrobial peptide tachyplesin-1. ACS Infect. Dis., 2017, 3(12), 917-926.
[http://dx.doi.org/10.1021/acsinfecdis.7b00123] [PMID: 28960954]
[58]
Ayoub Moubareck, C. Polymyxins and bacterial membranes: A review of antibacterial activity and mechanisms of resistance. Membranes, 2020, 10(8), 181.
[http://dx.doi.org/10.3390/membranes10080181] [PMID: 32784516]
[59]
Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev., 2003, 55(1), 27-55.
[http://dx.doi.org/10.1124/pr.55.1.2] [PMID: 12615953]
[60]
Holdbrook, D.A.; Singh, S.; Choong, Y.K.; Petrlova, J.; Malmsten, M.; Bond, P.J.; Verma, N.K.; Schmidtchen, A.; Saravanan, R. Influence of pH on the activity of thrombin-derived antimicrobial peptides. Biochim. Biophys. Acta Biomembr., 2018, 1860(11), 2374-2384.
[http://dx.doi.org/10.1016/j.bbamem.2018.06.002] [PMID: 29885294]
[61]
Huang, H.W. Molecular mechanism of antimicrobial peptides: The origin of cooperativity. Biochim. Biophys. Acta Biomembr., 2006, 1758(9), 1292-1302.
[http://dx.doi.org/10.1016/j.bbamem.2006.02.001] [PMID: 16542637]
[62]
Hall, K.; Lee, T.H.; Daly, N.L.; Craik, D.J.; Aguilar, M.I. Gly6 of kalata B1 is critical for the selective binding to phosphatidylethanolamine membranes. Biochim. Biophys. Acta Biomembr., 2012, 1818(9), 2354-2361.
[http://dx.doi.org/10.1016/j.bbamem.2012.04.007] [PMID: 22538355]
[63]
Holthuis, J.C.M.; Menon, A.K. Lipid landscapes and pipelines in membrane homeostasis. Nature, 2014, 510(7503), 48-57.
[http://dx.doi.org/10.1038/nature13474] [PMID: 24899304]
[64]
Breukink, E.; de Kruijff, B. The lantibiotic nisin, a special case or not? Biochim. Biophys. Acta Biomembr., 1999, 1462(1-2), 223-234.
[http://dx.doi.org/10.1016/S0005-2736(99)00208-4]
[65]
Wang, W.; Smith, D.K.; Moulding, K.; Chen, H.M. The dependence of membrane permeability by the antibacterial peptide cecropin B and its analogs, CB-1 and CB-3, on liposomes of different composition. J. Biol. Chem., 1998, 273(42), 27438-27448.
[http://dx.doi.org/10.1074/jbc.273.42.27438] [PMID: 9765273]
[66]
Bala, P.; Kumar, J. Antimicrobial peptides: A review. Pharmaceuticals, 2014, 3, 62-71.
[67]
Travkova, O.G.; Moehwald, H.; Brezesinski, G. The interaction of antimicrobial peptides with membranes. Adv. Colloid Interface Sci., 2017, 247, 521-532.
[http://dx.doi.org/10.1016/j.cis.2017.06.001] [PMID: 28606715]
[68]
Lee, T-H.; Hall, K.N.; Aguilar, M-I. Antimicrobial peptide structure and mechanism of action: A focus on the role of membrane structure. Curr. Top. Med. Chem., 2016, 16(1), 25-39.
[http://dx.doi.org/10.2174/1568026615666150703121700] [PMID: 26139112]
[69]
Pirtskhalava, M.; Vishnepolsky, B.; Grigolava, M.; Managadze, G. Physicochemical features and peculiarities of interaction of AMP with the membrane. Pharmaceuticals, 2021, 14(5), 471.
[http://dx.doi.org/10.3390/ph14050471] [PMID: 34067510]
[70]
Juretić, D.; Simunić, J. Design of α-helical antimicrobial peptides with a high selectivity index. Expert Opin. Drug Discov., 2019, 14(10), 1053-1063.
[http://dx.doi.org/10.1080/17460441.2019.1642322] [PMID: 31311351]
[71]
Hu, H.; Di, B.; Tolbert, W.D.; Gohain, N.; Yuan, W.; Gao, P.; Ma, B.; He, Q.; Pazgier, M.; Zhao, L.; Lu, W. Systematic mutational analysis of human neutrophil α-defensin HNP4. Biochim. Biophys. Acta Biomembr., 2019, 1861(4), 835-844.
[http://dx.doi.org/10.1016/j.bbamem.2019.01.007] [PMID: 30658057]
[72]
Gerlach, S.; Chandra, P.; Roy, U.; Gunasekera, S. Gِransson, U.; Wimley, W.; Braun, S.; Mondal, D. The membrane-active phytopeptide cycloviolacin O2 simultaneously targets HIV-1-infected cells and infectious viral particles to potentiate the efficacy of antiretroviral drugs. Medicines, 2019, 6(1), 33.
[http://dx.doi.org/10.3390/medicines6010033] [PMID: 30823453]
[73]
Carnicelli, V.; Lizzi, A.; Ponzi, A.; Amicosante, G.; Bozzi, A.; Di Giulio, A. Interaction between antimicrobial peptides (AMPs) and their primary target, the biomembranes, Microbial pathogens and strategies for combating them: Science. Technology and Education, 2013, 2, 1123-1134.
[74]
Hale, J.D.F.; Hancock, R.E.W. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev. Anti Infect. Ther., 2007, 5(6), 951-959.
[http://dx.doi.org/10.1586/14787210.5.6.951] [PMID: 18039080]
[75]
Luo, Y.; Song, Y. Mechanism of antimicrobial peptides: Antimicrobial, anti-inflammatory and antibiofilm activities. Int. J. Mol. Sci., 2021, 22(21), 11401.
[http://dx.doi.org/10.3390/ijms222111401] [PMID: 34768832]
[76]
Corrêa, J.A.F.; Evangelista, A.G.; Nazareth, T.M.; Luciano, F.B. Fundamentals on the molecular mechanism of action of antimicrobial peptides. Materialia , 2019, 8, 100494.
[http://dx.doi.org/10.1016/j.mtla.2019.100494]
[77]
Matsuzaki, K. Membrane permeabilization mechanisms. Adv. Exp. Med. Biol., 2019, 1117, 9-16.
[78]
Eisenberg, M.; Hall, J.E.; Mead, C.A. The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes. J. Membr. Biol., 1973, 14(1), 143-176.
[http://dx.doi.org/10.1007/BF01868075] [PMID: 4774545]
[79]
Wu, Y.; He, K.; Ludtke, S.J.; Huang, H.W. X-ray diffraction study of lipid bilayer membranes interacting with amphiphilic helical peptides: Diphytanoyl phosphatidylcholine with alamethicin at low concentrations. Biophys. J., 1995, 68(6), 2361-2369.
[http://dx.doi.org/10.1016/S0006-3495(95)80418-2] [PMID: 7647240]
[80]
Lee, H. Heterodimer and pore formation of magainin 2 and PGLa: The anchoring and tilting of peptides in lipid bilayers. Biochim. Biophys. Acta Biomembr., 2020, 1862(7), 183305.
[http://dx.doi.org/10.1016/j.bbamem.2020.183305] [PMID: 32298679]
[81]
Perrin, B.S., Jr; Pastor, R.W. Simulations of membrane-disrupting peptides I: Alamethicin pore stability and spontaneous insertion. Biophys. J., 2016, 111(6), 1248-1257.
[http://dx.doi.org/10.1016/j.bpj.2016.08.014] [PMID: 27653483]
[82]
Perrin, B.S., Jr; Fu, R.; Cotten, M.L.; Pastor, R.W. Simulations of membrane-disrupting peptides II: AMP piscidin 1 favors surface defects over pores. Biophys. J., 2016, 111(6), 1258-1266.
[http://dx.doi.org/10.1016/j.bpj.2016.08.015] [PMID: 27653484]
[83]
Avci, F.G.; Akbulut, B.S.; Ozkirimli, E. Membrane active peptides and their biophysical characterization. Biomolecules, 2018, 8(3), 77.
[http://dx.doi.org/10.3390/biom8030077] [PMID: 30135402]
[84]
Pino-Angeles, A.; Lazaridis, T. Effects of peptide charge, orientation, and concentration on melittin transmembrane pores. Biophys. J., 2018, 114(12), 2865-2874.
[http://dx.doi.org/10.1016/j.bpj.2018.05.006] [PMID: 29925023]
[85]
Zhao, L.; Cao, Z.; Bian, Y.; Hu, G.; Wang, J.; Zhou, Y. Molecular dynamics simulations of human antimicrobial peptide LL-37 in model POPC and POPG lipid bilayers. Int. J. Mol. Sci., 2018, 19(4), 1186.
[http://dx.doi.org/10.3390/ijms19041186] [PMID: 29652823]
[86]
Henzler Wildman, K.A.; Lee, D.K.; Ramamoorthy, A. Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry, 2003, 42(21), 6545-6558.
[http://dx.doi.org/10.1021/bi0273563] [PMID: 12767238]
[87]
Kumar, P.; Kizhakkedathu, J.; Straus, S. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 2018, 8(1), 4.
[http://dx.doi.org/10.3390/biom8010004] [PMID: 29351202]
[88]
Nielsen, J.E.; Lind, T.K.; Lone, A.; Gerelli, Y.; Hansen, P.R.; Jenssen, H. Cلrdenas, M.; Lund, R. A biophysical study of the interactions between the antimicrobial peptide indolicidin and lipid model systems. Biochim. Biophys. Acta Biomembr., 2019, 1861(7), 1355-1364.
[http://dx.doi.org/10.1016/j.bbamem.2019.04.003] [PMID: 30978313]
[89]
Takahashi, T.; Kulkarni, N.N.; Lee, E.Y.; Zhang, L.; Wong, G.C.L.; Gallo, R.L. Cathelicidin promotes inflammation by enabling binding of self-RNA to cell surface scavenger receptors. Sci. Rep., 2018, 8(1), 4032.
[http://dx.doi.org/10.1038/s41598-018-22409-3] [PMID: 29507358]
[90]
Ciumac, D. Investigation of Interaction of Antimicrobial Peptides with Lipid Monolayers; University of Manchester, 2018.
[91]
Sierra, J.M. Viٌas, M. Future prospects for Antimicrobial peptide development: Peptidomimetics and antimicrobial combinations. Expert Opin. Drug Discov., 2021, 16(6), 601-604.
[http://dx.doi.org/10.1080/17460441.2021.1892072] [PMID: 33626997]
[92]
Santos, J.C.P.; Sousa, R.C.S.; Otoni, C.G.; Moraes, A.R.F.; Souza, V.G.L.; Medeiros, E.A.A.; Espitia, P.J.P.; Pires, A.C.S.; Coimbra, J.S.R.; Soares, N.F.F. Nisin and other antimicrobial peptides: Production, mechanisms of action, and application in active food packaging. Innov. Food Sci. Emerg. Technol., 2018, 48, 179-194.
[http://dx.doi.org/10.1016/j.ifset.2018.06.008]
[93]
Cardoso, M.H.; Oshiro, K.G.N.; Rezende, S.B.; Cândido, E.S.; Franco, O.L. The structure/function relationship in antimicrobial peptides: What can we obtain from structural data?Advances in Protein Chemistry and Structural Biology; Donev, R., Ed.; Academic Press Inc., 2018, pp. 359-384.
[94]
Velasco-Bolom, J.L. Garduٌo-Juلrez, R. Computational studies of membrane pore formation induced by Pin2. J. Biomol. Struct. Dyn., 2022, 40(11), 5060-5068.
[http://dx.doi.org/10.1080/07391102.2020.1867640] [PMID: 33397200]
[95]
Leontiadou, H.; Mark, A.E.; Marrink, S.J. Antimicrobial peptides in action. J. Am. Chem. Soc., 2006, 128(37), 12156-12161.
[http://dx.doi.org/10.1021/ja062927q] [PMID: 16967965]
[96]
Cardoso, M.H.; Ribeiro, S.M.; Nolasco, D.O. de la Fuente-Nٌْez, C.; Felيcio, M.R.; Gonçalves, S.; Matos, C.O.; Liao, L.M.; Santos, N.C.; Hancock, R.E.W.; Franco, O.L.; Migliolo, L. A polyalanine peptide derived from polar fish with anti-infectious activities. Sci. Rep., 2016, 6(1), 21385.
[http://dx.doi.org/10.1038/srep21385] [PMID: 26916401]
[97]
Aronica, P.G.A.; Reid, L.M.; Desai, N.; Li, J.; Fox, S.J.; Yadahalli, S.; Essex, J.W.; Verma, C.S. Computational methods and tools in antimicrobial peptide research. J. Chem. Inf. Model., 2021, 61(7), 3172-3196.
[http://dx.doi.org/10.1021/acs.jcim.1c00175] [PMID: 34165973]
[98]
Poger, D.; Caron, B.; Mark, A.E. Validating lipid force fields against experimental data: Progress, challenges and perspectives. Biochim. Biophys. Acta Biomembr., 2016, 1858(7), 1556-1565.
[http://dx.doi.org/10.1016/j.bbamem.2016.01.029] [PMID: 26850737]
[99]
Bennett, W.F.D.; Hong, C.K.; Wang, Y.; Tieleman, D.P. Antimicrobial peptide simulations and the influence of force field on the free energy for pore formation in lipid bilayers. J. Chem. Theory Comput., 2016, 12(9), 4524-4533.
[http://dx.doi.org/10.1021/acs.jctc.6b00265] [PMID: 27529120]
[100]
Zhou, L.; Narsimhan, G.; Wu, X.; Du, F. Pore formation in 1,2-dimyristoyl-sn-glycero-3-phosphocholine/cholesterol mixed bilayers by low concentrations of antimicrobial peptide melittin. Colloids Surf. B Biointerfaces, 2014, 123, 419-428.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.037] [PMID: 25306255]
[101]
Bechinger, B. Structure and functions of channel-forming peptides: Magainins, cecropins, melittin and alamethicin. J. Membr. Biol., 1997, 156(3), 197-211.
[http://dx.doi.org/10.1007/s002329900201] [PMID: 9096062]
[102]
Koller, D.; Lohner, K. The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. Biochim. Biophys. Acta Biomembr., 2014, 1838(9), 2250-2259.
[http://dx.doi.org/10.1016/j.bbamem.2014.05.013] [PMID: 24853655]
[103]
Strِmstedt, A.A.; Ringstad, L.; Schmidtchen, A.; Malmsten, M. Interaction between amphiphilic peptides and phospholipid membranes. Curr. Opin. Colloid Interface Sci., 2010, 15(6), 467-478.
[http://dx.doi.org/10.1016/j.cocis.2010.05.006]
[104]
Cardoso, M.H.; Oshiro, K.G.N.; Rezende, S.B.; Cândido, E.S.; Franco, O.L. Chapter Ten: The structure/function relationship in antimicrobial peptides: What can we obtain from structural data?Advances in Protein Chemistry and Structural Biology; Donev, R., Ed.; Academic Press, 2018, pp. 359-384.
[105]
Shagaghi, N.; Palombo, E.A.; Clayton, A.H.A.; Bhave, M. Antimicrobial peptides: Biochemical determinants of activity and biophysical techniques of elucidating their functionality. World J. Microbiol. Biotechnol., 2018, 34(4), 62.
[http://dx.doi.org/10.1007/s11274-018-2444-5] [PMID: 29651655]
[106]
Abbas, N.; Tan, H.D.; Goh, B.H.; Yap, W.H.; Tang, Y.Q. In Silico study of anticancer and antimicrobial peptides derived from cycloviolacin O2 (CyO2). Biointerface Res. Appl. Chem., 2023, 13.
[107]
Aliste, M.P.; MacCallum, J.L.; Tieleman, D.P. Molecular dynamics simulations of pentapeptides at interfaces: Salt bridge and cation-pi interactions. Biochemistry, 2003, 42(30), 8976-8987.
[http://dx.doi.org/10.1021/bi027001j] [PMID: 12885230]
[108]
Chan, D.I.; Prenner, E.J.; Vogel, H.J. Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochim. Biophys. Acta Biomembr., 2006, 1758(9), 1184-1202.
[http://dx.doi.org/10.1016/j.bbamem.2006.04.006] [PMID: 16756942]
[109]
Sd, S.; Le, C.F.; Mohd Yusof, M.Y.; Sekaran, S.D. Net charge, hydrophobicity and specific amino acids contribute to the activity of antimicrobial peptides. J. Heal. Translat. Med., 2014, 17(1), 1-7.
[http://dx.doi.org/10.22452/jummec.vol17no1.1]
[110]
Borah, A.; Deb, B.; Chakraborty, S. A crosstalk on antimicrobial peptides. Int. J. Pept. Res. Ther., 2021, 27(1), 229-244.
[http://dx.doi.org/10.1007/s10989-020-10075-x]
[111]
Koehbach, J.; Craik, D.J. The vast structural diversity of antimicrobial peptides. Trends Pharmacol. Sci., 2019, 40(7), 517-528.
[http://dx.doi.org/10.1016/j.tips.2019.04.012] [PMID: 31230616]
[112]
Lequin, O.; Ladram, A.; Chabbert, L.; Bruston, F.; Convert, O.; Vanhoye, D.; Chassaing, G.; Nicolas, P.; Amiche, M. Dermaseptin S9, an α-helical antimicrobial peptide with a hydrophobic core and cationic termini. Biochemistry, 2006, 45(2), 468-480.
[http://dx.doi.org/10.1021/bi051711i] [PMID: 16401077]
[113]
Matsuzaki, K. Control of cell selectivity of antimicrobial peptides. Biochim. Biophys. Acta Biomembr., 2009, 1788(8), 1687-1692.
[http://dx.doi.org/10.1016/j.bbamem.2008.09.013]
[114]
Toke, O. Antimicrobial peptides: New candidates in the fight against bacterial infections. Biopolymers, 2005, 80(6), 717-735.
[http://dx.doi.org/10.1002/bip.20286] [PMID: 15880793]
[115]
Seyfi, R.; Kahaki, F.A.; Ebrahimi, T.; Montazersaheb, S.; Eyvazi, S.; Babaeipour, V.; Tarhriz, V. Antimicrobial peptides (AMPs): Roles, functions and mechanism of action. Int. J. Pept. Res. Ther., 2020, 26(3), 1451-1463.
[http://dx.doi.org/10.1007/s10989-019-09946-9]
[116]
Pasupuleti, M.; Schmidtchen, A.; Malmsten, M. Antimicrobial peptides: Key components of the innate immune system. Crit. Rev. Biotechnol., 2012, 32(2), 143-171.
[http://dx.doi.org/10.3109/07388551.2011.594423] [PMID: 22074402]
[117]
Rotem, S.; Mor, A. Antimicrobial peptide mimics for improved therapeutic properties. Biochim. Biophys. Acta Biomembr., 2009, 1788(8), 1582-1592.
[http://dx.doi.org/10.1016/j.bbamem.2008.10.020] [PMID: 19028449]
[118]
Dathe, M.; Wieprecht, T.; Nikolenko, H.; Handel, L.; Maloy, W.L.; MacDonald, D.L.; Beyermann, M.; Bienert, M. Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides. FEBS Lett., 1997, 403(2), 208-212.
[http://dx.doi.org/10.1016/S0014-5793(97)00055-0] [PMID: 9042968]
[119]
Dathe, M.; Schümann, M.; Wieprecht, T.; Winkler, A.; Beyermann, M.; Krause, E.; Matsuzaki, K.; Murase, O.; Bienert, M. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry, 1996, 35(38), 12612-12622.
[http://dx.doi.org/10.1021/bi960835f] [PMID: 8823199]
[120]
Giangaspero, A.; Sandri, L.; Tossi, A. Amphipathic α helical antimicrobial peptides. Eur. J. Biochem., 2001, 268(21), 5589-5600.
[http://dx.doi.org/10.1046/j.1432-1033.2001.02494.x] [PMID: 11683882]
[121]
Luo, X.; Ouyang, J.; Wang, Y.; Zhang, M.; Fu, L.; Xiao, N.; Gao, L.; Zhang, P.; Zhou, J.; Wang, Y. A novel anionic cathelicidin lacking direct antimicrobial activity but with potent anti-inflammatory and wound healing activities from the salamander Tylototriton kweichowensis. Biochimie, 2021, 191, 37-50.
[http://dx.doi.org/10.1016/j.biochi.2021.08.007] [PMID: 34438004]
[122]
Zhang, Q.Y.; Yan, Z.B.; Meng, Y.M.; Hong, X.Y.; Shao, G.; Ma, J.J.; Cheng, X.R.; Liu, J.; Kang, J.; Fu, C.Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil. Med. Res., 2021, 8(1), 48.
[http://dx.doi.org/10.1186/s40779-021-00343-2] [PMID: 34496967]
[123]
Fry, D.E. Antimicrobial peptides. Surg. Infect., 2018, 19(8), 804-811.
[http://dx.doi.org/10.1089/sur.2018.194] [PMID: 30265592]
[124]
Li, J.; Koh, J.J.; Liu, S.; Lakshminarayanan, R.; Verma, C.S.; Beuerman, R.W. Membrane active antimicrobial peptides: Translating mechanistic insights to design. Front. Neurosci., 2017, 11, 73.
[http://dx.doi.org/10.3389/fnins.2017.00073] [PMID: 28261050]
[125]
Matsuzaki, K.; Nakamura, A.; Murase, O.; Sugishita, K.; Fujii, N.; Miyajima, K. Modulation of magainin 2-lipid bilayer interactions by peptide charge. Biochemistry, 1997, 36(8), 2104-2111.
[http://dx.doi.org/10.1021/bi961870p] [PMID: 9047309]
[126]
Bechinger, B. Structure and function of membrane-lytic peptides. Crit. Rev. Plant Sci., 2004, 23(3), 271-292.
[http://dx.doi.org/10.1080/07352680490452825]
[127]
Mishra, B.; Reiling, S.; Zarena, D.; Wang, G. Host defense antimicrobial peptides as antibiotics: Design and application strategies. Curr. Opin. Chem. Biol., 2017, 38, 87-96.
[http://dx.doi.org/10.1016/j.cbpa.2017.03.014] [PMID: 28399505]
[128]
Maturana, P.; Martinez, M.; Noguera, M.E.; Santos, N.C.; Disalvo, E.A.; Semorile, L.; Maffia, P.C.; Hollmann, A. Lipid selectivity in novel antimicrobial peptides: Implication on antimicrobial and hemolytic activity. Colloids Surf. B Biointerfaces, 2017, 153, 152-159.
[http://dx.doi.org/10.1016/j.colsurfb.2017.02.003] [PMID: 28236791]
[129]
White, S.H.; Wimley, W.C. Hydrophobic interactions of peptides with membrane interfaces. Biochim. Biophys. Acta Rev. Biomembr., 1998, 1376(3), 339-352.
[http://dx.doi.org/10.1016/S0304-4157(98)00021-5] [PMID: 9804985]
[130]
Chen, Y.; Guarnieri, M.T.; Vasil, A.I.; Vasil, M.L.; Mant, C.T.; Hodges, R.S. Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob. Agents Chemother., 2007, 51(4), 1398-1406.
[http://dx.doi.org/10.1128/AAC.00925-06] [PMID: 17158938]
[131]
Leal, E. Mْnera, M.; Suescْn-Bolيvar, L.P. In silico characterization of Cnidarian’s antimicrobial peptides. Front. Mar. Sci., 2022, 9, 1065717.
[http://dx.doi.org/10.3389/fmars.2022.1065717]
[132]
Bobone, S.; Stella, L. Selectivity of antimicrobial peptides: A complex interplay of multiple equilibria Antimicrob. peptid., 2019, 175-214.
[133]
Andreev, K.; Martynowycz, M.W.; Huang, M.L.; Kuzmenko, I.; Bu, W.; Kirshenbaum, K.; Gidalevitz, D. Hydrophobic interactions modulate antimicrobial peptoid selectivity towards anionic lipid membranes. Biochim. Biophys. Acta Biomembr., 2018, 1860(6), 1414-1423.
[http://dx.doi.org/10.1016/j.bbamem.2018.03.021] [PMID: 29621496]
[134]
Domingues, T.M.; Perez, K.R.; Riske, K.A. Revealing the mode of action of halictine antimicrobial peptides: A comprehensive study with model membranes. Langmuir, 2020, 36(19), 5145-5155.
[http://dx.doi.org/10.1021/acs.langmuir.0c00282] [PMID: 32336099]
[135]
Uematsu, N.; Matsuzaki, K. Polar angle as a determinant of amphipathic α-helix-lipid interactions: A model peptide study. Biophys. J., 2000, 79(4), 2075-2083.
[http://dx.doi.org/10.1016/S0006-3495(00)76455-1] [PMID: 11023911]
[136]
Yount, N.; Yeaman, M. Immunocontinuum: Perspectives in antimicrobial peptide mechanisms of action and resistance. Protein Pept. Lett., 2005, 12(1), 49-67.
[http://dx.doi.org/10.2174/0929866053405959] [PMID: 15638803]
[137]
Gomes, I.P.; Santos, T.L.; de Souza, A.N.; Nunes, L.O.; Cardoso, G.A.; Matos, C.O.; Costa, L.M.F. Liمo, L.M.; Resende, J.M.; Verly, R.M. Membrane interactions of the anuran antimicrobial peptide HSP1-NH2: Different aspects of the association to anionic and zwitterionic biomimetic systems. Biochim. Biophys. Acta Biomembr., 2021, 1863(1), 183449.
[http://dx.doi.org/10.1016/j.bbamem.2020.183449] [PMID: 32828849]
[138]
Pedron, C.N.; Torres, M.D.T.; Lima, J.A.S.; Silva, P.I.; Silva, F.D.; Oliveira, V.X. Novel designed VmCT1 analogs with increased antimicrobial activity. Eur. J. Med. Chem., 2017, 126, 456-463.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.040] [PMID: 27912176]
[139]
Abraham, P.; Sundaram, A. A.R, R. V; George, S.; Kumar, K.S. Structure-activity relationship and mode of action of a frog secreted antibacterial peptide B1CTcu5 using synthetically and modularly modified or deleted (SMMD) peptides. PLoS One, 2015, 10, e0124210.
[http://dx.doi.org/10.1371/journal.pone.0124210] [PMID: 25997127]
[140]
Cashman-Kadri, S.; Lagüe, P.; Fliss, I.; Beaulieu, L. Determination of the relationships between the chemical structure and antimicrobial activity of a GAPDH-related fish antimicrobial peptide and analogs thereof. Antibiotics , 2022, 11(3), 297.
[http://dx.doi.org/10.3390/antibiotics11030297] [PMID: 35326761]
[141]
Lorin, C.; Saidi, H.; Belaid, A.; Zairi, A.; Baleux, F.; Hocini, H.; Bélec, L.; Hani, K.; Tangy, F. The antimicrobial peptide dermaseptin S4 inhibits HIV-1 infectivity in vitro. Virology, 2005, 334(2), 264-275.
[http://dx.doi.org/10.1016/j.virol.2005.02.002] [PMID: 15780876]
[142]
Liu, Y.; Du, Q.; Ma, C.; Xi, X.; Wang, L.; Zhou, M.; Burrows, J.F.; Chen, T.; Wang, H. Structure–activity relationship of an antimicrobial peptide, Phylloseptin-PHa: Balance of hydrophobicity and charge determines the selectivity of bioactivities. Drug Des. Devel. Ther., 2019, 13, 447-458.
[http://dx.doi.org/10.2147/DDDT.S191072] [PMID: 30774309]
[143]
Hollmann, A. Martيnez, M.; Noguera, M.E.; Augusto, M.T.; Disalvo, A.; Santos, N.C.; Semorile, L.; Maffيa, P.C. Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide–membrane interactions of three related antimicrobial peptides. Colloids Surf. B Biointerfaces, 2016, 141, 528-536.
[http://dx.doi.org/10.1016/j.colsurfb.2016.02.003] [PMID: 26896660]
[144]
Mihajlovic, M.; Lazaridis, T. Charge distribution and imperfect amphipathicity affect pore formation by antimicrobial peptides. Biochim. Biophys. Acta Biomembr., 2012, 1818(5), 1274-1283.
[http://dx.doi.org/10.1016/j.bbamem.2012.01.016] [PMID: 22290189]
[145]
Schweigardt, F.; Strandberg, E.; Wadhwani, P.; Reichert, J.; Bürck, J.; Cravo, H.L.P.; Burger, L.; Ulrich, A.S. Membranolytic mechanism of amphiphilic antimicrobial β-stranded [KL]n Peptides. Biomedicines, 2022, 10(9), 2071.
[http://dx.doi.org/10.3390/biomedicines10092071] [PMID: 36140173]
[146]
Wang, G. Bioinformatic analysis of 1000 amphibian antimicrobial peptides uncovers multiple length-dependent correlations for peptide design and prediction. Antibiotics, 2020, 9(8), 491.
[http://dx.doi.org/10.3390/antibiotics9080491] [PMID: 32784626]
[147]
Chou, H.T.; Kuo, T.Y.; Chiang, J.C.; Pei, M.J.; Yang, W.T.; Yu, H.C.; Lin, S.B.; Chen, W.J. Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp. Int. J. Antimicrob. Agents, 2008, 32(2), 130-138.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.04.003] [PMID: 18586467]
[148]
Strandberg, E.; Bentz, D.; Wadhwani, P.; Bürck, J.; Ulrich, A.S. Terminal charges modulate the pore forming activity of cationic amphipathic helices. Biochim. Biophys. Acta Biomembr., 2020, 1862(4), 183243.
[http://dx.doi.org/10.1016/j.bbamem.2020.183243] [PMID: 32126225]
[149]
Gagnon, M.C.; Strandberg, E.; Grau-Campistany, A.; Wadhwani, P.; Reichert, J.; Bürck, J.; Rabanal, F.; Auger, M.; Paquin, J.F.; Ulrich, A.S. Influence of the length and charge on the activity of α-helical amphipathic antimicrobial peptides. Biochemistry, 2017, 56(11), 1680-1695.
[http://dx.doi.org/10.1021/acs.biochem.6b01071] [PMID: 28282123]
[150]
Yan, H.; Li, S.; Sun, X.; Mi, H.; He, B. Individual substitution analogs of Mel(12-26), melittin’s C-terminal 15-residue peptide: Their antimicrobial and hemolytic actions. FEBS Lett., 2003, 554(1-2), 100-104.
[http://dx.doi.org/10.1016/S0014-5793(03)01113-X] [PMID: 14596922]
[151]
Mangmee, S.; Reamtong, O.; Kalambaheti, T.; Roytrakul, S.; Sonthayanon, P. Antimicrobial peptide modifications against clinically isolated antibiotic-resistant salmonella. Molecules, 2021, 26(15), 4654.
[http://dx.doi.org/10.3390/molecules26154654] [PMID: 34361810]
[152]
Ma, L.; Ye, X.; Sun, P.; Xu, P.; Wang, L.; Liu, Z.; Huang, X.; Bai, Z.; Zhou, C. Antimicrobial and antibiofilm activity of the EeCentrocin 1 derived peptide EC1-17KV via membrane disruption. EBioMedicine, 2020, 55, 102775.
[http://dx.doi.org/10.1016/j.ebiom.2020.102775] [PMID: 32403086]
[153]
Krause, E.; Bienert, M.; Schmieder, P.; Wenschuh, H. The helix-destabilizing propensity scale of D -amino acids: The influence of side chain steric effects. J. Am. Chem. Soc., 2000, 122(20), 4865-4870.
[http://dx.doi.org/10.1021/ja9940524]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy