Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

LncRNA/CircRNA-miRNA-mRNA Axis in Atherosclerotic Inflammation: Research Progress

Author(s): Nuan Lv, Yilin Zhang, Luming Wang, Yanrong Suo, Wenyun Zeng, Qun Yu, Bin Yu and Xijuan Jiang*

Volume 25, Issue 8, 2024

Published on: 12 October, 2023

Page: [1021 - 1040] Pages: 20

DOI: 10.2174/0113892010267577231005102901

Price: $65

conference banner
Abstract

Atherosclerosis is characterized by chronic inflammation of the arterial wall. However, the exact mechanism underlying atherosclerosis-related inflammation has not been fully elucidated. To gain insight into the mechanisms underlying the inflammatory process that leads to atherosclerosis, there is need to identify novel molecular markers. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-protein-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have gained prominence in recent years. LncRNAs/circRNAs act as competing endogenous RNAs (ceRNAs) that bind to miRNAs via microRNA response elements (MREs), thereby inhibiting the silencing of miRNA target mRNAs. Inflammatory mediators and inflammatory signaling pathways are closely regulated by ceRNA regulatory networks in atherosclerosis. In this review, we discuss the role of LncRNA/CircRNA-miRNA-mRNA axis in atherosclerotic inflammation and how it can be targeted for early clinical detection and treatment.

Keywords: Atherosclerosis, inflammation, LncRNA, CircRNA, miRNA, mRNA.

Graphical Abstract
[1]
World health statistics 2021: Monitoring health for the SDGs, sustainable development goals. 2021. Available from: who.int/publications/i/item/9789240027053
[2]
Ben, J.; Jiang, B.; Wang, D.; Liu, Q.; Zhang, Y.; Qi, Y.; Tong, X.; Chen, L.; Liu, X.; Zhang, Y.; Zhu, X.; Li, X.; Zhang, H.; Bai, H.; Yang, Q.; Ma, J.; Wiemer, E.A.C.; Xu, Y.; Chen, Q. Major vault protein suppresses obesity and atherosclerosis through inhibiting IKK–NF-κB signaling mediated inflammation. Nat. Commun., 2019, 10(1), 1801.
[http://dx.doi.org/10.1038/s41467-019-09588-x] [PMID: 30996248]
[3]
Gillrie, M.R.; Krishnegowda, G.; Lee, K.; Buret, A.G.; Robbins, S.M.; Looareesuwan, S.; Gowda, D.C.; Ho, M. Src-family kinase–dependent disruption of endothelial barrier function by Plasmodium falciparum merozoite proteins. Blood, 2007, 110(9), 3426-3435.
[http://dx.doi.org/10.1182/blood-2007-04-084582] [PMID: 17693580]
[4]
Joshi, A.A.; Lerman, J.B.; Dey, A.K.; Sajja, A.P.; Belur, A.D.; Elnabawi, Y.A.; Rodante, J.A.; Aberra, T.M.; Chung, J.; Salahuddin, T.; Natarajan, B.; Dave, J.; Goyal, A.; Groenendyk, J.W.; Rivers, J.P.; Baumer, Y.; Teague, H.L.; Playford, M.P.; Bluemke, D.A.; Ahlman, M.A.; Chen, M.Y.; Gelfand, J.M.; Mehta, N.N. Association between aortic vascular inflammation and coronary artery plaque characteristics in psoriasis. JAMA Cardiol., 2018, 3(10), 949-956.
[http://dx.doi.org/10.1001/jamacardio.2018.2769] [PMID: 30208407]
[5]
Wang, Z.T.; Wang, Z.; Hu, Y.W. Possible roles of platelet-derived microparticles in atherosclerosis. Atherosclerosis, 2016, 248, 10-16.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.03.004] [PMID: 26978582]
[6]
Stauss, R.D.; Grosse, G.M.; Neubert, L.; Falk, C.S.; Jonigk, D.; Kühnel, M.P.; Gabriel, M.M.; Schuppner, R.; Lichtinghagen, R.; Wilhelmi, M.; Weissenborn, K.; Schrimpf, C. Distinct systemic cytokine networks in symptomatic and asymptomatic carotid stenosis. Sci. Rep., 2020, 10(1), 21963.
[http://dx.doi.org/10.1038/s41598-020-78941-8] [PMID: 33319833]
[7]
Li, X.; Guo, D.; Chen, Y.; Hu, Y.; Zhang, F. Effects of altered levels of pro- and anti-inflammatory mediators on locations of in-stent reocclusions in elderly patients. Mediators Inflamm., 2020, 2020, 1-12.
[http://dx.doi.org/10.1155/2020/1719279] [PMID: 33029103]
[8]
Bäck, M.; Yurdagul, A., Jr; Tabas, I.; Öörni, K.; Kovanen, P.T. Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities. Nat. Rev. Cardiol., 2019, 16(7), 389-406.
[http://dx.doi.org/10.1038/s41569-019-0169-2] [PMID: 30846875]
[9]
Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; Kastelein, J.J.P.; Cornel, J.H.; Pais, P.; Pella, D.; Genest, J.; Cifkova, R.; Lorenzatti, A.; Forster, T.; Kobalava, Z.; Vida-Simiti, L.; Flather, M.; Shimokawa, H.; Ogawa, H.; Dellborg, M.; Rossi, P.R.F.; Troquay, R.P.T.; Libby, P.; Glynn, R.J. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med., 2017, 377(12), 1119-1131.
[http://dx.doi.org/10.1056/NEJMoa1707914] [PMID: 28845751]
[10]
Vahdat-Lasemi, F.; Aghaee-Bakhtiari, S.H.; Tasbandi, A.; Jaafari, M.R.; Sahebkar, A. Targeting interleukin‐β by plant‐derived natural products: Implications for the treatment of atherosclerotic cardiovascular disease. Phytother. Res., 2021, 35(10), 5596-5622.
[http://dx.doi.org/10.1002/ptr.7194] [PMID: 34390063]
[11]
Carninci, P.; Kasukawa, T.; Katayama, S.; Gough, J.; Frith, M.C.; Maeda, N.; Oyama, R.; Ravasi, T.; Lenhard, B.; Wells, C.; Kodzius, R.; Shimokawa, K.; Bajic, V.B.; Brenner, S.E.; Batalov, S.; Forrest, A.R.R.; Zavolan, M.; Davis, M.J.; Wilming, L.G.; Aidinis, V.; Allen, J.E.; Ambesi-Impiombato, A.; Apweiler, R.; Aturaliya, R.N.; Bailey, T.L.; Bansal, M.; Baxter, L.; Beisel, K.W.; Bersano, T.; Bono, H.; Chalk, A.M.; Chiu, K.P.; Choudhary, V.; Christoffels, A.; Clutterbuck, D.R.; Crowe, M.L.; Dalla, E.; Dalrymple, B.P.; de Bono, B.; Gatta, G.D.; di Bernardo, D.; Down, T.; Engstrom, P.; Fagiolini, M.; Faulkner, G.; Fletcher, C.F.; Fukushima, T.; Furuno, M.; Futaki, S.; Gariboldi, M.; Georgii-Hemming, P.; Gingeras, T.R.; Gojobori, T.; Green, R.E.; Gustincich, S.; Harbers, M.; Hayashi, Y.; Hensch, T.K.; Hirokawa, N.; Hill, D.; Huminiecki, L.; Iacono, M.; Ikeo, K.; Iwama, A.; Ishikawa, T.; Jakt, M.; Kanapin, A.; Katoh, M.; Kawasawa, Y.; Kelso, J.; Kitamura, H.; Kitano, H.; Kollias, G.; Krishnan, S.P.T.; Kruger, A.; Kummerfeld, S.K.; Kurochkin, I.V.; Lareau, L.F.; Lazarevic, D.; Lipovich, L.; Liu, J.; Liuni, S.; McWilliam, S.; Babu, M.M.; Madera, M.; Marchionni, L.; Matsuda, H.; Matsuzawa, S.; Miki, H.; Mignone, F.; Miyake, S.; Morris, K.; Mottagui-Tabar, S.; Mulder, N.; Nakano, N.; Nakauchi, H.; Ng, P.; Nilsson, R.; Nishiguchi, S.; Nishikawa, S.; Nori, F.; Ohara, O.; Okazaki, Y.; Orlando, V.; Pang, K.C.; Pavan, W.J.; Pavesi, G.; Pesole, G.; Petrovsky, N.; Piazza, S.; Reed, J.; Reid, J.F.; Ring, B.Z.; Ringwald, M.; Rost, B.; Ruan, Y.; Salzberg, S.L.; Sandelin, A.; Schneider, C.; Schönbach, C.; Sekiguchi, K.; Semple, C.A.M.; Seno, S.; Sessa, L.; Sheng, Y.; Shibata, Y.; Shimada, H.; Shimada, K.; Silva, D.; Sinclair, B.; Sperling, S.; Stupka, E.; Sugiura, K.; Sultana, R.; Takenaka, Y.; Taki, K.; Tammoja, K.; Tan, S.L.; Tang, S.; Taylor, M.S.; Tegner, J.; Teichmann, S.A.; Ueda, H.R.; van Nimwegen, E.; Verardo, R.; Wei, C.L.; Yagi, K.; Yamanishi, H.; Zabarovsky, E.; Zhu, S.; Zimmer, A.; Hide, W.; Bult, C.; Grimmond, S.M.; Teasdale, R.D.; Liu, E.T.; Brusic, V.; Quackenbush, J.; Wahlestedt, C.; Mattick, J.S.; Hume, D.A.; Kai, C.; Sasaki, D.; Tomaru, Y.; Fukuda, S.; Kanamori-Katayama, M.; Suzuki, M.; Aoki, J.; Arakawa, T.; Iida, J.; Imamura, K.; Itoh, M.; Kato, T.; Kawaji, H.; Kawagashira, N.; Kawashima, T.; Kojima, M.; Kondo, S.; Konno, H.; Nakano, K.; Ninomiya, N.; Nishio, T.; Okada, M.; Plessy, C.; Shibata, K.; Shiraki, T.; Suzuki, S.; Tagami, M.; Waki, K.; Watahiki, A.; Okamura-Oho, Y.; Suzuki, H.; Kawai, J.; Hayashizaki, Y. The transcriptional landscape of the mammalian genome. Science, 2005, 309(5740), 1559-1563.
[http://dx.doi.org/10.1126/science.1112014] [PMID: 16141072]
[12]
Fabian, M.R.; Sonenberg, N.; Filipowicz, W. Regulation of mRNA Translation and Stability by microRNAs. Annu. Rev. Biochem., 2010, 79(1), 351-379.
[http://dx.doi.org/10.1146/annurev-biochem-060308-103103] [PMID: 20533884]
[13]
Janas, M.M.; Wang, B.; Harris, A.S.; Aguiar, M.; Shaffer, J.M.; Subrahmanyam, Y.V.B.K.; Behlke, M.A.; Wucherpfennig, K.W.; Gygi, S.P.; Gagnon, E.; Novina, C.D. Alternative RISC assembly: Binding and repression of microRNA–mRNA duplexes by human Ago proteins. RNA, 2012, 18(11), 2041-2055.
[http://dx.doi.org/10.1261/rna.035675.112] [PMID: 23019594]
[14]
Bridges, M.C.; Daulagala, A.C.; Kourtidis, A. LNCcation: lncRNA localization and function. J. Cell Biol., 2021, 220(2), e202009045.
[http://dx.doi.org/10.1083/jcb.202009045] [PMID: 33464299]
[15]
Denzler, R.; Agarwal, V.; Stefano, J.; Bartel, D.P.; Stoffel, M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell, 2014, 54(5), 766-776.
[http://dx.doi.org/10.1016/j.molcel.2014.03.045] [PMID: 24793693]
[16]
Statello, L.; Guo, C.J.; Chen, L.L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol., 2021, 22(2), 96-118.
[http://dx.doi.org/10.1038/s41580-020-00315-9] [PMID: 33353982]
[17]
Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet., 2019, 20(11), 675-691.
[http://dx.doi.org/10.1038/s41576-019-0158-7] [PMID: 31395983]
[18]
Chen, L.L. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat. Rev. Mol. Cell Biol., 2020, 21(8), 475-490.
[http://dx.doi.org/10.1038/s41580-020-0243-y] [PMID: 32366901]
[19]
Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell, 2011, 146(3), 353-358.
[http://dx.doi.org/10.1016/j.cell.2011.07.014] [PMID: 21802130]
[20]
Navarro, E.; Mallén, A.; Cruzado, J.M.; Torras, J.; Hueso, M. Unveiling ncRNA regulatory axes in atherosclerosis progression. Clin. Transl. Med., 2020, 9(1), 5.
[http://dx.doi.org/10.1186/s40169-020-0256-3] [PMID: 32009226]
[21]
Martens, C.R.; Bansal, S.S.; Accornero, F. Cardiovascular inflammation: RNA takes the lead. J. Mol. Cell. Cardiol., 2019, 129, 247-256.
[http://dx.doi.org/10.1016/j.yjmcc.2019.03.012] [PMID: 30880251]
[22]
Gimbrone, M.A., Jr; García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res., 2016, 118(4), 620-636.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306301] [PMID: 26892962]
[23]
Jaffe, I.Z.; Jaisser, F. Endothelial cell mineralocorticoid receptors: turning cardiovascular risk factors into cardiovascular dysfunction. Hypertension, 2014, 63(5), 915-917.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.114.01997] [PMID: 24566083]
[24]
Sitia, S.; Tomasoni, L.; Atzeni, F.; Ambrosio, G.; Cordiano, C.; Catapano, A.; Tramontana, S.; Perticone, F.; Naccarato, P.; Camici, P.; Picano, E.; Cortigiani, L.; Bevilacqua, M.; Milazzo, L.; Cusi, D.; Barlassina, C.; Sarzi-Puttini, P.; Turiel, M. From endothelial dysfunction to atherosclerosis. Autoimmun. Rev., 2010, 9(12), 830-834.
[http://dx.doi.org/10.1016/j.autrev.2010.07.016] [PMID: 20678595]
[25]
Soeters, P.B.; Wolfe, R.R.; Shenkin, A. Hypoalbuminemia: Pathogenesis and clinical significance. JPEN J. Parenter. Enteral Nutr., 2019, 43(2), 181-193.
[http://dx.doi.org/10.1002/jpen.1451] [PMID: 30288759]
[26]
Khwaja, B.; Thankam, F.G.; Agrawal, D.K. Mitochondrial DAMPs and altered mitochondrial dynamics in OxLDL burden in atherosclerosis. Mol. Cell. Biochem., 2021, 476(4), 1915-1928.
[http://dx.doi.org/10.1007/s11010-021-04061-0] [PMID: 33492610]
[27]
Giddens, D.P.; Zarins, C.K.; Glagov, S. The role of fluid mechanics in the localization and detection of atherosclerosis. J. Biomech. Eng., 1993, 115(4B), 588-594.
[http://dx.doi.org/10.1115/1.2895545] [PMID: 8302046]
[28]
Zhou, J.; Li, Y.S.; Chien, S. Shear stress-initiated signaling and its regulation of endothelial function. Arterioscler. Thromb. Vasc. Biol., 2014, 34(10), 2191-2198.
[http://dx.doi.org/10.1161/ATVBAHA.114.303422] [PMID: 24876354]
[29]
Sweet, D.R.; Fan, L.; Hsieh, P.N.; Jain, M.K. Krüppel-like factors in vascular inflammation: Mechanistic insights and therapeutic potential. Front. Cardiovasc. Med., 2018, 5, 6.
[http://dx.doi.org/10.3389/fcvm.2018.00006] [PMID: 29459900]
[30]
Niu, N.; Xu, S.; Xu, Y.; Little, P.J.; Jin, Z.G. Targeting mechanosensitive transcription factors in atherosclerosis. Trends Pharmacol. Sci., 2019, 40(4), 253-266.
[http://dx.doi.org/10.1016/j.tips.2019.02.004] [PMID: 30826122]
[31]
Mun, G.I.; Boo, Y.C. A regulatory role of Kruppel-like factor 4 in endothelial argininosuccinate synthetase 1 expression in response to laminar shear stress. Biochem. Biophys. Res. Commun., 2012, 420(2), 450-455.
[http://dx.doi.org/10.1016/j.bbrc.2012.03.016] [PMID: 22430140]
[32]
Shan, K.; Jiang, Q.; Wang, X.Q.; Wang, Y.N.Z.; Yang, H.; Yao, M.D.; Liu, C.; Li, X.M.; Yao, J.; Liu, B.; Zhang, Y.Y. J, Y.; Yan, B. Role of long non-coding RNA-RNCR3 in atherosclerosis-related vascular dysfunction. Cell Death Dis., 2016, 7(6), e2248.
[http://dx.doi.org/10.1038/cddis.2016.145] [PMID: 27253412]
[33]
Lu, Q.; Meng, Q.; Qi, M.; Li, F.; Liu, B. Shear-sensitive lncRNA AF131217.1 inhibits inflammation in HUVECs via regulation of KLF4. Hypertension, 2019, 73(5), e25-e34.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.12476] [PMID: 30905197]
[34]
Mukovozov, I.; Huang, Y.W.; Zhang, Q.; Liu, G.Y.; Siu, A.; Sokolskyy, Y.; Patel, S.; Hyduk, S.J.; Kutryk, M.J.B.; Cybulsky, M.I.; Robinson, L.A. The neurorepellent slit2 inhibits postadhesion stabilization of monocytes tethered to vascular endothelial cells. J. Immunol., 2015, 195(7), 3334-3344.
[http://dx.doi.org/10.4049/jimmunol.1500640] [PMID: 26297762]
[35]
Zhao, H.; Anand, A.R.; Ganju, R.K. Slit2-Robo4 pathway modulates lipopolysaccharide-induced endothelial inflammation and its expression is dysregulated during endotoxemia. J. Immunol., 2014, 192(1), 385-393.
[http://dx.doi.org/10.4049/jimmunol.1302021] [PMID: 24272999]
[36]
Li, S.; Huang, T.; Qin, L.; Yin, L. Circ_0068087 silencing ameliorates oxidized low-density lipoprotein-induced dysfunction in vascular endothelial cells depending on mir-186-5p-mediated regulation of roundabout guidance receptor 1. Front. Cardiovasc. Med., 2021, 8, 650374.
[http://dx.doi.org/10.3389/fcvm.2021.650374] [PMID: 34124191]
[37]
Zhang, Y.; Li, W.; Li, H.; Zhou, M.; Zhang, J.; Fu, Y.; Zhang, C.; Sun, X. Circ_USP36 silencing attenuates oxidized low-density lipoprotein-induced dysfunction in endothelial cells in atherosclerosis through mediating miR-197-3p/ROBO1 axis. J. Cardiovasc. Pharmacol., 2021, 78(5), e761-e772.
[http://dx.doi.org/10.1097/FJC.0000000000001124] [PMID: 34369900]
[38]
Rochette, L.; Lorin, J.; Zeller, M.; Guilland, J.C.; Lorgis, L.; Cottin, Y.; Vergely, C. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: Possible therapeutic targets? Pharmacol. Ther., 2013, 140(3), 239-257.
[http://dx.doi.org/10.1016/j.pharmthera.2013.07.004] [PMID: 23859953]
[39]
Munro, J.M.; Cotran, R.S. The pathogenesis of atherosclerosis: Atherogenesis and inflammation. Lab. Invest., 1988, 58(3), 249-261.
[PMID: 3279259]
[40]
Jaipersad, A.S.; Lip, G.Y.H.; Silverman, S.; Shantsila, E. The role of monocytes in angiogenesis and atherosclerosis. J. Am. Coll. Cardiol., 2014, 63(1), 1-11.
[http://dx.doi.org/10.1016/j.jacc.2013.09.019] [PMID: 24140662]
[41]
Peng, K.; Jiang, P.; Du, Y.; Zeng, D.; Zhao, J.; Li, M.; Xia, C.; Xie, Z.; Wu, J. Oxidized low‐density lipoprotein accelerates the injury of endothelial cells via CIRC‐USP36/MIR ‐98‐5p/VCAM1 axis. IUBMB Life, 2021, 73(1), 177-187.
[http://dx.doi.org/10.1002/iub.2419] [PMID: 33249762]
[42]
Zhang, D.; Zhang, G.; Yu, K.; Zhang, X.; Jiang, A. Circ_0003204 knockdown protects endothelial cells against oxidized low-density lipoprotein-induced injuries by targeting the miR-491-5p-ICAM1 pathway. J. Thromb. Thrombolysis, 2022, 53(2), 302-312.
[http://dx.doi.org/10.1007/s11239-021-02606-0] [PMID: 34797473]
[43]
Lamb, D.J.; Modjtahedi, H.; Plant, N.J.; Ferns, G.A.A. EGF mediates monocyte chemotaxis and macrophage proliferation and EGF receptor is expressed in atherosclerotic plaques. Atherosclerosis, 2004, 176(1), 21-26.
[http://dx.doi.org/10.1016/j.atherosclerosis.2004.04.012] [PMID: 15306170]
[44]
Xiong, F.; Mao, R.; Zhang, L.; Zhao, R.; Tan, K.; Liu, C.; Xu, J.; Du, G.; Zhang, T. CircNPHP4 in monocyte-derived small extracellular vesicles controls heterogeneous adhesion in coronary heart atherosclerotic disease. Cell Death Dis., 2021, 12(10), 948.
[http://dx.doi.org/10.1038/s41419-021-04253-y] [PMID: 34650036]
[45]
Dunaway, L.S.; Pollock, J.S. HDAC1: an environmental sensor regulating endothelial function. Cardiovasc. Res., 2022, 118(8), 1885-1903.
[http://dx.doi.org/10.1093/cvr/cvab198] [PMID: 34264338]
[46]
Zhang, X.; Lu, J.; Zhang, Q.; Luo, Q.; Liu, B. CircRNA RSF1 regulated ox-LDL induced vascular endothelial cells proliferation, apoptosis and inflammation through modulating miR-135b-5p/HDAC1 axis in atherosclerosis. Biol. Res., 2021, 54(1), 11.
[http://dx.doi.org/10.1186/s40659-021-00335-5] [PMID: 33757583]
[47]
Seccia, T.M.; Rigato, M.; Ravarotto, V.; Calò, L.A. ROCK (RhoA/Rho Kinase) in cardiovascular–renal pathophysiology: A review of new advancements. J. Clin. Med., 2020, 9(5), 1328.
[http://dx.doi.org/10.3390/jcm9051328] [PMID: 32370294]
[48]
Noma, K.; Oyama, N.; Liao, J.K. Physiological role of ROCKs in the cardiovascular system. Am. J. Physiol. Cell Physiol., 2006, 290(3), C661-C668.
[http://dx.doi.org/10.1152/ajpcell.00459.2005] [PMID: 16469861]
[49]
Shan, H.; Guo, D.; Zhang, S.; Qi, H.; Liu, S.; Du, Y.; He, Y.; Wang, B.; Xu, M.; Yu, X. RETRACTED ARTICLE: SNHG6 modulates oxidized low-density lipoprotein-induced endothelial cells injury through miR-135a-5p/ROCK in atherosclerosis. Cell Biosci., 2020, 10(1), 4.
[http://dx.doi.org/10.1186/s13578-019-0371-2] [PMID: 31921409]
[50]
Shimada, H.; Rajagopalan, L.E. Rho kinase-2 activation in human endothelial cells drives lysophosphatidic acid-mediated expression of cell adhesion molecules via NF-kappaB p65. J. Biol. Chem., 2010, 285(17), 12536-12542.
[http://dx.doi.org/10.1074/jbc.M109.099630] [PMID: 20164172]
[51]
Miao, J.; Wang, B.; Shao, R.; Wang, Y. CircUSP36 knockdown alleviates oxidized low density lipoprotein induced cell injury and inflammatory responses in human umbilical vein endothelial cells via the miR 20a 5p/ROCK2 axis. Int. J. Mol. Med., 2021, 47(4), 40.
[http://dx.doi.org/10.3892/ijmm.2021.4873] [PMID: 33576448]
[52]
Li, X.; Kang, X.; Di, Y.; Sun, S.; Yang, L.; Wang, B.; Ji, Z. CircCHMP5 contributes to Ox-LDL-induced endothelial cell injury through the regulation of MiR-532-5p/ROCK2 axis. Cardiovasc. Drugs Ther., 2022.
[http://dx.doi.org/10.1007/s10557-022-07316-0]
[53]
Li, L.; Du, Z.; Rong, B.; Zhao, D.; Wang, A.; Xu, Y.; Zhang, H.; Bai, X.; Zhong, J. Foam cells promote atherosclerosis progression by releasing CXCL12. Biosci. Rep., 2020, 40(1), BSR20193267.
[http://dx.doi.org/10.1042/BSR20193267] [PMID: 31894855]
[54]
Su, G.; Sun, G.; Lv, J.; Zhang, W.; Liu, H.; Tang, Y.; Su, H. Hsa_circ_0004831 downregulation is partially responsible for atorvastatinalleviated human umbilical vein endothelial cell injuries induced by ox-LDL through targeting the miR-182-5p/CXCL12 axis. BMC Cardiovasc. Disord., 2021, 21(1), 221.
[http://dx.doi.org/10.1186/s12872-021-01998-4] [PMID: 33932991]
[55]
Chen, G.; Ward, M.F.; Sama, A.E.; Wang, H. Extracellular HMGB1 as a proinflammatory cytokine. J. Interferon Cytokine Res., 2004, 24(6), 329-333.
[http://dx.doi.org/10.1089/107999004323142187] [PMID: 15212706]
[56]
Calderon-Pelaez, M.A.; Coronel-Ruiz, C.; Castellanos, J.E.; Velandia-Romero, M.L. Endothelial dysfunction, HMGB1, and dengue: An enigma to solve Viruses-Basel., 2022, 14(8)
[57]
van Beijnum, J.R.; Buurman, W.A.; Griffioen, A.W. Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis, 2008, 11(1), 91-99.
[http://dx.doi.org/10.1007/s10456-008-9093-5] [PMID: 18264787]
[58]
Yang, J.; Huang, C.; Yang, J.; Jiang, H.; Ding, J. Statins attenuate high mobility group box-1 protein induced vascular endothelial activation: A key role for TLR4/NF-κB signaling pathway. Mol. Cell. Biochem., 2010, 345(1-2), 189-195.
[http://dx.doi.org/10.1007/s11010-010-0572-9] [PMID: 20714791]
[59]
Zheng, Z.; Zhang, G.; Liang, X.; Li, T. LncRNA OIP5-AS1 facilitates ox-LDL-induced endothelial cell injury through the miR-98-5p/HMGB1 axis. Mol. Cell. Biochem., 2021, 476(1), 443-455.
[http://dx.doi.org/10.1007/s11010-020-03921-5] [PMID: 32990894]
[60]
Umahara, T.; Uchihara, T.; Hirao, K.; Shimizu, S.; Hashimoto, T.; Kohno, M.; Hanyu, H. Essential autophagic protein Beclin 1 localizes to atherosclerotic lesions of human carotid and major intracranial arteries. J. Neurol. Sci., 2020, 414, 116836.
[http://dx.doi.org/10.1016/j.jns.2020.116836] [PMID: 32344218]
[61]
Dong, G.; Yang, S.; Cao, X.; Yu, N.; Yu, J.; Qu, X. Low shear stress-induced autophagy alleviates cell apoptosis in HUVECs. Mol. Med. Rep., 2017, 15(5), 3076-3082.
[http://dx.doi.org/10.3892/mmr.2017.6401] [PMID: 28350133]
[62]
Meng, Q.; Pu, L.; Qi, M.; Li, S.; Sun, B.; Wang, Y.; Liu, B.; Li, F. Laminar shear stress inhibits inflammation by activating autophagy in human aortic endothelial cells through HMGB1 nuclear translocation. Commun. Biol., 2022, 5(1), 425.
[http://dx.doi.org/10.1038/s42003-022-03392-y] [PMID: 35523945]
[63]
Landry, N.M.; Cohen, S.; Dixon, I.M.C. Periostin in cardiovascular disease and development: A tale of two distinct roles. Basic Res. Cardiol., 2018, 113(1), 1.
[http://dx.doi.org/10.1007/s00395-017-0659-5] [PMID: 29101484]
[64]
Schwanekamp, J.A.; Lorts, A.; Vagnozzi, R.J.; Vanhoutte, D.; Molkentin, J.D. Deletion of periostin protects against atherosclerosis in mice by altering inflammation and extracellular matrix remodeling. Arterioscler. Thromb. Vasc. Biol., 2016, 36(1), 60-68.
[http://dx.doi.org/10.1161/ATVBAHA.115.306397] [PMID: 26564821]
[65]
Hakuno, D.; Kimura, N.; Yoshioka, M.; Mukai, M.; Kimura, T.; Okada, Y.; Yozu, R.; Shukunami, C.; Hiraki, Y.; Kudo, A.; Ogawa, S.; Fukuda, K. Periostin advances atherosclerotic and rheumatic cardiac valve degeneration by inducing angiogenesis and MMP production in humans and rodents. J. Clin. Invest., 2010, 120(7), 2292-2306.
[http://dx.doi.org/10.1172/JCI40973] [PMID: 20551517]
[66]
Cao, L.; Zhang, Z.; Li, Y.; Zhao, P.; Chen, Y. LncRNA H19/miR-let-7 axis participates in the regulation of ox-LDL-induced endothelial cell injury via targeting periostin. Int. Immunopharmacol., 2019, 72, 496-503.
[http://dx.doi.org/10.1016/j.intimp.2019.04.042] [PMID: 31054453]
[67]
Brennan, E.; Wang, B.; McClelland, A.; Mohan, M.; Marai, M.; Beuscart, O.; Derouiche, S.; Gray, S.; Pickering, R.; Tikellis, C.; de Gaetano, M.; Barry, M.; Belton, O.; Ali-Shah, S.T.; Guiry, P.; Jandeleit-Dahm, K.A.M.; Cooper, M.E.; Godson, C.; Kantharidis, P. Protective effect of let-7 miRNA family in regulating inflammation in diabetes-associated atherosclerosis. Diabetes, 2017, 66(8), 2266-2277.
[http://dx.doi.org/10.2337/db16-1405] [PMID: 28487436]
[68]
Zhang, W.; Sui, Y. CircBPTF knockdown ameliorates high glucose-induced inflammatory injuries and oxidative stress by targeting the miR-384/LIN28B axis in human umbilical vein endothelial cells. Mol. Cell. Biochem., 2020, 471(1-2), 101-111.
[http://dx.doi.org/10.1007/s11010-020-03770-2] [PMID: 32524321]
[69]
Gast, M.; Rauch, B.H.; Haghikia, A.; Nakagawa, S.; Haas, J.; Stroux, A.; Schmidt, D.; Schumann, P.; Weiss, S.; Jensen, L.; Kratzer, A.; Kraenkel, N.; Müller, C.; Börnigen, D.; Hirose, T.; Blankenberg, S.; Escher, F.; Kühl, A.A.; Kuss, A.W.; Meder, B.; Landmesser, U.; Zeller, T.; Poller, W. Long noncoding RNA NEAT1 modulates immune cell functions and is suppressed in early onset myocardial infarction patients. Cardiovasc. Res., 2019, 115(13), 1886-1906.
[http://dx.doi.org/10.1093/cvr/cvz085] [PMID: 30924864]
[70]
Guo, J.T.; Wang, L.; Yu, H.B. Knockdown of NEAT1 mitigates ox-LDL-induced injury in human umbilical vein endothelial cells via miR-30c-5p/TCF7 axis. Eur Rev Med Pharmaco, 2020, 24(18), 9633-9644.
[PMID: 33015807]
[71]
Sun, X.; Feinberg, M.W. NF-κB and Hypoxia. Am. J. Pathol., 2012, 181(5), 1513-1517.
[http://dx.doi.org/10.1016/j.ajpath.2012.09.001] [PMID: 22999810]
[72]
Mitchell, J.P.; Carmody, R.J. NF-κB and the transcriptional control of inflammation. Int. Rev. Cell Mol. Biol., 2018, 335, 41-84.
[http://dx.doi.org/10.1016/bs.ircmb.2017.07.007] [PMID: 29305014]
[73]
Razeghian-Jahromi, I.; Karimi, A.A.; Zibaeenezhad, M.J. The role of ANRIL in atherosclerosis. Dis. Markers, 2022, 2022, 1-10.
[http://dx.doi.org/10.1155/2022/8859677] [PMID: 35186169]
[74]
Guo, F.; Tang, C.; Li, Y.; Liu, Y.; Lv, P.; Wang, W.; Mu, Y. The interplay of Lnc RNA ANRIL and miR‐181b on the inflammation‐relevant coronary artery disease through mediating NF ‐κB signalling pathway. J. Cell. Mol. Med., 2018, 22(10), 5062-5075.
[http://dx.doi.org/10.1111/jcmm.13790] [PMID: 30079603]
[75]
Chen, T.; Li, L.; Ye, B.; Chen, W.; Zheng, G.; Xie, H.; Guo, Y. Knockdown of hsa_circ_0005699 attenuates inflammation and apoptosis induced by ox-LDL in human umbilical vein endothelial cells through regulation of the miR-450b-5p/NFKB1 axis. Mol. Med. Rep., 2022, 26(3), 290.
[http://dx.doi.org/10.3892/mmr.2022.12806] [PMID: 35904173]
[76]
Baldwin, A.S., Jr The NF-kappa B and I kappa B proteins: New discoveries and insights. Annu. Rev. Immunol., 1996, 14(1), 649-681.
[http://dx.doi.org/10.1146/annurev.immunol.14.1.649] [PMID: 8717528]
[77]
Lin, Z.; Ge, J.; Wang, Z.; Ren, J.; Wang, X.; Xiong, H.; Gao, J.; Zhang, Y.; Zhang, Q. Let-7e modulates the inflammatory response in vascular endothelial cells through ceRNA crosstalk. Sci. Rep., 2017, 7(1), 42498.
[http://dx.doi.org/10.1038/srep42498] [PMID: 28195197]
[78]
Li, H.; Sun, B. Toll-like receptor 4 in atherosclerosis. J. Cell. Mol. Med., 2007, 11(1), 88-95.
[http://dx.doi.org/10.1111/j.1582-4934.2007.00011.x] [PMID: 17367503]
[79]
Tang, Y.L.; Jiang, J.H.; Wang, S.; Liu, Z.; Tang, X.Q.; Peng, J.; Yang, Y.Z.; Gu, H.F. TLR4/NF-kappaB signaling contributes to chronic unpredictable mild stress-induced atherosclerosis in ApoE-/- mice. PLoS One, 2015, 10(4), e0123685.
[http://dx.doi.org/10.1371/journal.pone.0123685]
[80]
Huang, H.; Huang, X.; Yu, H.; Xue, Y.; Zhu, P. Circular RNA circ-RELL1 regulates inflammatory response by miR-6873-3p/MyD88/NF-κB axis in endothelial cells. Biochem. Biophys. Res. Commun., 2020, 525(2), 512-519.
[http://dx.doi.org/10.1016/j.bbrc.2020.02.109] [PMID: 32113679]
[81]
Bai, Y.; Liu, X.; Chen, Q.; Chen, T.; Jiang, N.; Guo, Z. Myricetin ameliorates ox-LDL-induced HUVECs apoptosis and inflammation via lncRNA GAS5 up-regulating the expression of miR-29a-3p. Sci. Rep., 2021, 11(1), 19637.
[http://dx.doi.org/10.1038/s41598-021-98916-7] [PMID: 34608195]
[82]
Stark, A.K.; Sriskantharajah, S.; Hessel, E.M.; Okkenhaug, K. PI3K inhibitors in inflammation, autoimmunity and cancer. Curr. Opin. Pharmacol., 2015, 23, 82-91.
[http://dx.doi.org/10.1016/j.coph.2015.05.017] [PMID: 26093105]
[83]
Ren, M.; Wang, T.; Han, Z.; Fu, P.; Liu, Z.; Ouyang, C. Long noncoding RNA OIP5-AS1 contributes to the progression of atherosclerosis by targeting miR-26a-5p through the AKT/NF-κB pathway. J. Cardiovasc. Pharmacol., 2020, 76(5), 635-644.
[http://dx.doi.org/10.1097/FJC.0000000000000889] [PMID: 32833899]
[84]
Zhang, Y.; Xie, B.; Sun, L.; Chen, W.; Jiang, S.L.; Liu, W.; Bian, F.; Tian, H.; Li, R.K. Phenotypic switching of vascular smooth muscle cells in the ‘normal region’ of aorta from atherosclerosis patients is regulated by miR‐145. J. Cell. Mol. Med., 2016, 20(6), 1049-1061.
[http://dx.doi.org/10.1111/jcmm.12825] [PMID: 26992033]
[85]
Chanchevalap, S.; Nandan, M.O.; McConnell, B.B.; Charrier, L.; Merlin, D.; Katz, J.P.; Yang, V.W. Kruppel-like factor 5 is an important mediator for lipopolysaccharide-induced proinflammatory response in intestinal epithelial cells. Nucleic Acids Res., 2006, 34(4), 1216-1223.
[http://dx.doi.org/10.1093/nar/gkl014] [PMID: 16500892]
[86]
Wang, F.; Ge, J.; Huang, S.; Zhou, C.; Sun, Z.; Song, Y.; Xu, Y.; Ji, Y. KLF5/LINC00346/miR 148a 3p axis regulates inflammation and endothelial cell injury in atherosclerosis. Int. J. Mol. Med., 2021, 48(2), 152.
[http://dx.doi.org/10.3892/ijmm.2021.4985] [PMID: 34165154]
[87]
Fu, D.N.; Wang, Y.; Yu, L.J.; Liu, M.J.; Zhen, D. Silenced long non-coding RNA activated by DNA damage elevates microRNA-495-3p to suppress atherosclerotic plaque formation via reducing Krüppel-like factor 5. Exp. Cell Res., 2021, 401(2), 112519.
[http://dx.doi.org/10.1016/j.yexcr.2021.112519] [PMID: 33636159]
[88]
Jiang, X.; Chen, L.; Wu, H.; Chen, Y.; Lu, W.; Lu, K. Knockdown of circular ubiquitin-specific peptidase 9 X-linked alleviates oxidized low-density lipoprotein-induced injuries of human umbilical vein endothelial cells by mediating the miR-148b-3p/KLF5 signaling pathway. J. Cardiovasc. Pharmacol., 2021, 78(6), 809-818.
[http://dx.doi.org/10.1097/FJC.0000000000001127] [PMID: 34882112]
[89]
Dickson, K.M.; Bhakar, A.L.; Barker, P.A. TRAF6-dependent NF-kB transcriptional activity during mouse development. Dev. Dyn., 2004, 231(1), 122-127.
[http://dx.doi.org/10.1002/dvdy.20110] [PMID: 15305292]
[90]
Zhao, J.; Cui, L.; Sun, J.; Xie, Z.; Zhang, L.; Ding, Z.; Quan, X. Notoginsenoside R1 alleviates oxidized low-density lipoprotein-induced apoptosis, inflammatory response, and oxidative stress in HUVECS through modulation of XIST/miR-221-3p/TRAF6 axis. Cell. Signal., 2020, 76, 109781.
[http://dx.doi.org/10.1016/j.cellsig.2020.109781] [PMID: 32947021]
[91]
Niture, S.; Moore, J.; Kumar, D. TNFAIP8: Inflammation, immunity and human diseases. J. Cell. Immunol., 2019, 1(2), 29-34.
[PMID: 31723944]
[92]
Ji, P.; Song, X.; Lv, Z. Knockdown of circ_0004104 alleviates oxidized low-density lipoprotein-induced vascular endothelial cell injury by regulating miR-100/TNFAIP8 axis. J. Cardiovasc. Pharmacol., 2021, 78(2), 269-279.
[http://dx.doi.org/10.1097/FJC.0000000000001063] [PMID: 34554678]
[93]
Huang, X.; Li, Y.; Li, X.; Fan, D.; Xin, H.B.; Fu, M. TRIM14 promotes endothelial activation via activating NF-κB signaling pathway. J. Mol. Cell Biol., 2020, 12(3), 176-189.
[http://dx.doi.org/10.1093/jmcb/mjz040] [PMID: 31070748]
[94]
Zhang, C.; Wang, L.; Shen, Y. Circ_0004104 knockdown alleviates oxidized low-density lipoprotein-induced dysfunction in vascular endothelial cells through targeting miR-328-3p/TRIM14 axis in atherosclerosis. BMC Cardiovasc. Disord., 2021, 21(1), 207.
[http://dx.doi.org/10.1186/s12872-021-02012-7] [PMID: 33892646]
[95]
Budai, M.M.; Varga, A.; Milesz, S.; Tőzsér, J.; Benkő, S. Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages. Mol. Immunol., 2013, 56(4), 471-479.
[http://dx.doi.org/10.1016/j.molimm.2013.05.005] [PMID: 23911403]
[96]
Cheng, J.; Liu, Q.; Hu, N.; Zheng, F.; Zhang, X.; Ni, Y.; Liu, J. Downregulation of hsa_circ_0068087 ameliorates TLR4/NF-κB/NLRP3 inflammasome-mediated inflammation and endothelial cell dysfunction in high glucose conditioned by sponging miR-197. Gene, 2019, 709, 1-7.
[http://dx.doi.org/10.1016/j.gene.2019.05.012] [PMID: 31108165]
[97]
Verhoef, P.A.; Kertesy, S.B.; Lundberg, K.; Kahlenberg, J.M.; Dubyak, G.R. Inhibitory effects of chloride on the activation of caspase-1, IL-1beta secretion, and cytolysis by the P2X7 receptor. J. Immunol., 2005, 175(11), 7623-7634.
[http://dx.doi.org/10.4049/jimmunol.175.11.7623] [PMID: 16301672]
[98]
Tang, T.; Lang, X.; Xu, C.; Wang, X.; Gong, T.; Yang, Y.; Cui, J.; Bai, L.; Wang, J.; Jiang, W.; Zhou, R. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation. Nat. Commun., 2017, 8(1), 202.
[http://dx.doi.org/10.1038/s41467-017-00227-x] [PMID: 28779175]
[99]
Peng, H.; Sun, J.; Li, Y.; Zhang, Y.; Zhong, Y. Circ-USP9X inhibition reduces oxidized low-density lipoprotein–induced endothelial cell injury via the microRNA 599/Chloride intracellular channel 4 axis. J. Cardiovasc. Pharmacol., 2021, 78(4), 560-571.
[http://dx.doi.org/10.1097/FJC.0000000000001104] [PMID: 34269702]
[100]
Jing, B.; Hui, Z. Circular RNA_0033596 aggravates endothelial cell injury induced by oxidized low-density lipoprotein via microRNA-217-5p/chloride intracellular channel 4 axis. Bioengineered, 2022, 13(2), 3410-3421.
[http://dx.doi.org/10.1080/21655979.2022.2027062] [PMID: 35081862]
[101]
Shao, X.; Liu, Z.; Liu, S.; Lin, N.; Deng, Y. Astragaloside IV alleviates atherosclerosis through targeting circ_0000231/miR-135a-5p/CLIC4 axis in AS cell model in vitro. Mol. Cell. Biochem., 2021, 476(4), 1783-1795.
[http://dx.doi.org/10.1007/s11010-020-04035-8] [PMID: 33439448]
[102]
Zhaolin, Z.; Guohua, L.; Shiyuan, W.; Zuo, W. Role of pyroptosis in cardiovascular disease. Cell Prolif., 2019, 52(2), e12563.
[http://dx.doi.org/10.1111/cpr.12563] [PMID: 30525268]
[103]
Zhang, Y.; Liu, X.; Bai, X.; Lin, Y.; Li, Z.; Fu, J.; Li, M.; Zhao, T.; Yang, H.; Xu, R.; Li, J.; Ju, J.; Cai, B.; Xu, C.; Yang, B. Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J. Pineal Res., 2018, 64(2), e12449.
[http://dx.doi.org/10.1111/jpi.12449] [PMID: 29024030]
[104]
Song, Y.; Yang, L.; Guo, R.; Lu, N.; Shi, Y.; Wang, X. Long noncoding RNA MALAT1 promotes high glucose-induced human endothelial cells pyroptosis by affecting NLRP3 expression through competitively binding miR-22. Biochem. Biophys. Res. Commun., 2019, 509(2), 359-366.
[http://dx.doi.org/10.1016/j.bbrc.2018.12.139] [PMID: 30591217]
[105]
Ge, Y.; Liu, W.; Yin, W.; Wang, X.; Wang, J.; Zhu, X.; Xu, S. Circular RNA circ_0090231 promotes atherosclerosis in vitro by enhancing NLR family pyrin domain containing 3-mediated pyroptosis of endothelial cells. Bioengineered, 2021, 12(2), 10837-10848.
[http://dx.doi.org/10.1080/21655979.2021.1989260] [PMID: 34637670]
[106]
Zhou, R.; Tardivel, A.; Thorens, B.; Choi, I.; Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol., 2010, 11(2), 136-140.
[http://dx.doi.org/10.1038/ni.1831] [PMID: 20023662]
[107]
Chen, G.; Li, Y.; Zhang, A.; Gao, L.; Circular, RNA. Circ-BANP regulates oxidized low-density lipoprotein-induced endothelial cell injury through targeting the miR-370/thioredoxin-interacting protein axis. J. Cardiovasc. Pharmacol., 2021, 77(3), 349-359.
[http://dx.doi.org/10.1097/FJC.0000000000000964] [PMID: 33298736]
[108]
Lei, X.; Yang, Y. Oxidized low-density lipoprotein contributes to injury of endothelial cells via the circ_0090231/miR-9-5p/TXNIP axis. Cent. Eur. J. Immunol., 2022, 47(1), 41-57.
[http://dx.doi.org/10.5114/ceji.2021.112521] [PMID: 35600155]
[109]
Zhang, L.; Yuan, M.; Zhang, L.; Wu, B.; Sun, X. Adiponectin alleviates NLRP3-inflammasome-mediated pyroptosis of aortic endothelial cells by inhibiting FoxO4 in arteriosclerosis. Biochem. Biophys. Res. Commun., 2019, 514(1), 266-272.
[http://dx.doi.org/10.1016/j.bbrc.2019.04.143] [PMID: 31030940]
[110]
Mao, X.; Wang, L.; Chen, C.; Tao, L.; Ren, S.; Zhang, L. Circ_0124644 enhances ox-LDL-induced cell damages in human umbilical vein endothelial cells through up-regulating FOXO4 by sponging miR-370-3p. Clin. Hemorheol. Microcirc., 2022, 81(2), 135-147.
[http://dx.doi.org/10.3233/CH-211375] [PMID: 35570481]
[111]
Fu, X.; Sun, Z.; Long, Q.; Tan, W.; Ding, H.; Liu, X.; Wu, L.; Wang, Y.; Zhang, W. Glycosides from Buyang Huanwu Decoction inhibit atherosclerotic inflammation via JAK/STAT signaling pathway. Phytomedicine, 2022, 105, 154385.
[http://dx.doi.org/10.1016/j.phymed.2022.154385] [PMID: 35987015]
[112]
Ortiz-Muñoz, G.; Martin-Ventura, J.L.; Hernandez-Vargas, P.; Mallavia, B.; Lopez-Parra, V.; Lopez-Franco, O.; Muñoz-Garcia, B.; Fernandez-Vizarra, P.; Ortega, L.; Egido, J.; Gomez-Guerrero, C. Suppressors of cytokine signaling modulate JAK/STAT-mediated cell responses during atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2009, 29(4), 525-531.
[http://dx.doi.org/10.1161/ATVBAHA.108.173781] [PMID: 19164812]
[113]
Li, S.; Sun, Y.; Zhong, L.; Xiao, Z.; Yang, M.; Chen, M.; Wang, C.; Xie, X.; Chen, X. The suppression of ox-LDL-induced inflammatory cytokine release and apoptosis of HCAECs by long non-coding RNA-MALAT1 via regulating microRNA-155/SOCS1 pathway. Nutr. Metab. Cardiovasc. Dis., 2018, 28(11), 1175-1187.
[http://dx.doi.org/10.1016/j.numecd.2018.06.017] [PMID: 30314869]
[114]
Wang, R.; Zhang, Y.; Xu, L.; Lin, Y.; Yang, X.; Bai, L.; Chen, Y.; Zhao, S.; Fan, J.; Cheng, X.; Liu, E. Protein inhibitor of activated STAT3 suppresses oxidized LDL-induced cell responses during atherosclerosis in apolipoprotein e-deficient mice. Sci. Rep., 2016, 6(1), 36790.
[http://dx.doi.org/10.1038/srep36790] [PMID: 27845432]
[115]
Zhou, Q.; Run, Q.; Li, C.Y.; Xiong, X.Y.; Wu, X.L. LncRNA MALAT1 promotes STAT3-mediated endothelial inflammation by counteracting the function of miR-590. Cytogenet. Genome Res., 2020, 160(10), 565-578.
[http://dx.doi.org/10.1159/000509811] [PMID: 33022677]
[116]
Cremer, S.; Michalik, K.M.; Fischer, A.; Pfisterer, L.; Jaé, N.; Winter, C.; Boon, R.A.; Muhly-Reinholz, M.; John, D.; Uchida, S.; Weber, C.; Poller, W.; Günther, S.; Braun, T.; Li, D.Y.; Maegdefessel, L.; Perisic Matic, L.; Hedin, U.; Soehnlein, O.; Zeiher, A.; Dimmeler, S. Hematopoietic deficiency of the long noncoding RNA MALAT1 promotes atherosclerosis and plaque inflammation. Circulation, 2019, 139(10), 1320-1334.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.029015] [PMID: 30586743]
[117]
Chen, P.Y.; Qin, L.; Li, G.; Wang, Z.; Dahlman, J.E.; Malagon-Lopez, J.; Gujja, S.; Cilfone, N.A.; Kauffman, K.J.; Sun, L.; Sun, H.; Zhang, X.; Aryal, B.; Canfran-Duque, A.; Liu, R.; Kusters, P.; Sehgal, A.; Jiao, Y.; Anderson, D.G.; Gulcher, J.; Fernandez-Hernando, C.; Lutgens, E.; Schwartz, M.A.; Pober, J.S.; Chittenden, T.W.; Tellides, G.; Simons, M. Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nat. Metab., 2019, 1(9), 912-926.
[http://dx.doi.org/10.1038/s42255-019-0102-3] [PMID: 31572976]
[118]
Singh, N.; Ramji, D. The role of transforming growth factor-β in atherosclerosis. Cytokine Growth Factor Rev., 2006, 17(6), 487-499.
[http://dx.doi.org/10.1016/j.cytogfr.2006.09.002] [PMID: 17056295]
[119]
Huang, S.P.; Guan, X.; Kai, G.Y.; Xu, Y.Z.; Xu, Y.; Wang, H.J.; Pang, T.; Zhang, L.Y.; Liu, Y. Broussonin E suppresses LPS-induced inflammatory response in macrophages via inhibiting MAPK pathway and enhancing JAK2-STAT3 pathway. Chin. J. Nat. Med., 2019, 17(5), 372-380.
[http://dx.doi.org/10.1016/S1875-5364(19)30043-3] [PMID: 31171272]
[120]
Chen, D.; Wang, K.; Zheng, Y.; Wang, G.; Jiang, M. Exosomes-mediated LncRNA ZEB1-AS1 facilitates cell injuries by miR-590-5p/ETS1 Axis through the TGF-β/Smad pathway in oxidized low-density lipoprotein-induced human umbilical vein endothelial cells. J. Cardiovasc. Pharmacol., 2021, 77(4), 480-490.
[http://dx.doi.org/10.1097/FJC.0000000000000974] [PMID: 33818551]
[121]
Bryk, D.; Olejarz, W.; Zapolska-Downar, D. Mitogen-activated protein kinases in atherosclerosis. Postepy Hig. Med. Dosw., 2014, 68, 10-22. [Mitogen-activated protein kinases in atherosclerosis]
[http://dx.doi.org/10.5604/17322693.1085463]
[122]
Zhao, J.; Xu, S.; Liu, J. Fibrinopeptide A induces C‐reactive protein expression through the ROS‐ERK1/2/p38‐NF‐κB signal pathway in the human umbilical vascular endothelial cells. J. Cell. Physiol., 2019, 234(8), 13481-13492.
[http://dx.doi.org/10.1002/jcp.28027] [PMID: 30633345]
[123]
Wang, L.; Qi, Y.; Wang, Y.; Tang, H.; Li, Z.; Wang, Y.; Tang, S.; Zhu, H. LncRNA MALAT1 suppression protects endothelium against oxLDL-induced inflammation via inhibiting expression of MiR-181b target gene TOX. Oxid. Med. Cell. Longev., 2019, 2019, 1-11.
[http://dx.doi.org/10.1155/2019/8245810] [PMID: 31949884]
[124]
Li, K.; Gesang, L.; Dan, Z.; Gusang, L. Genome-wide transcriptional analysis reveals the protection against hypoxia-induced oxidative injury in the intestine of tibetans via the inhibition of GRB2/EGFR/PTPN11 pathways. Oxid. Med. Cell. Longev., 2016, 2016, 1-13.
[http://dx.doi.org/10.1155/2016/6967396] [PMID: 27594973]
[125]
Guo, J.; Li, J.; Zhang, J.; Guo, X.; Liu, H.; Li, P.; Zhang, Y.; Lin, C.; Fan, Z. LncRNA PVT1 knockdown alleviated ox-LDL-induced vascular endothelial cell injury and atherosclerosis by miR-153-3p/GRB2 axis via ERK/p38 pathway. Nutr. Metab. Cardiovasc. Dis., 2021, 31(12), 3508-3521.
[http://dx.doi.org/10.1016/j.numecd.2021.08.031] [PMID: 34627697]
[126]
Newby, A.C. Metalloproteinase production from macrophages - a perfect storm leading to atherosclerotic plaque rupture and myocardial infarction. Exp. Physiol., 2016, 101(11), 1327-1337.
[http://dx.doi.org/10.1113/EP085567] [PMID: 26969796]
[127]
Boutilier, A.J.; Elsawa, S.F. Macrophage polarization states in the tumor microenvironment. Int. J. Mol. Sci., 2021, 22(13), 6995.
[http://dx.doi.org/10.3390/ijms22136995] [PMID: 34209703]
[128]
Orecchioni, M.; Ghosheh, Y.; Pramod, A.B.; Ley, K. Macrophage polarization: Different gene signatures in M1(LPS+) vs. classically and M2(LPS–) vs. alternatively activated macrophages. Front. Immunol., 2019, 10, 1084.
[http://dx.doi.org/10.3389/fimmu.2019.01084] [PMID: 31178859]
[129]
Yang, S.; Yuan, H.Q.; Hao, Y.M.; Ren, Z.; Qu, S.L.; Liu, L.S.; Wei, D.H.; Tang, Z.H.; Zhang, J.F.; Jiang, Z.S. Macrophage polarization in atherosclerosis. Clin. Chim. Acta, 2020, 501, 142-146.
[http://dx.doi.org/10.1016/j.cca.2019.10.034] [PMID: 31730809]
[130]
Gao, X.; Ge, J.; Li, W.; Zhou, W.; Xu, L. LncRNA KCNQ1OT1 ameliorates particle-induced osteolysis through inducing macrophage polarization by inhibiting miR-21a-5p. Biol. Chem., 2018, 399(4), 375-386.
[http://dx.doi.org/10.1515/hsz-2017-0215] [PMID: 29252185]
[131]
Cho, K.Y.; Miyoshi, H.; Kuroda, S.; Yasuda, H.; Kamiyama, K.; Nakagawara, J.; Takigami, M.; Kondo, T.; Atsumi, T. The phenotype of infiltrating macrophages influences arteriosclerotic plaque vulnerability in the carotid artery. J. Stroke Cerebrovasc. Dis., 2013, 22(7), 910-918.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2012.11.020] [PMID: 23273713]
[132]
Ye, J.; Wang, C.; Wang, D.; Yuan, H. LncRBA GSA5, up-regulated by ox-LDL, aggravates inflammatory response and MMP expression in THP-1 macrophages by acting like a sponge for miR-221. Exp. Cell Res., 2018, 369(2), 348-355.
[http://dx.doi.org/10.1016/j.yexcr.2018.05.039] [PMID: 29859752]
[133]
Li, T.; Ding, L.; Wang, Y.; Yang, O.; Wang, S.; Kong, J. Genetic deficiency of Phactr1 promotes atherosclerosis development via facilitating M1 macrophage polarization and foam cell formation. Clin. Sci., 2020, 134(17), 2353-2368.
[http://dx.doi.org/10.1042/CS20191241] [PMID: 32857129]
[134]
Wang, L.; Zheng, Z.; Feng, X.; Zang, X.; Ding, W.; Wu, F.; Zhao, Q. circRNA/lncRNA-miRNA-mRNA network in oxidized, low-density, lipoprotein-induced foam cells. DNA Cell Biol., 2019, 38(12), 1499-1511.
[http://dx.doi.org/10.1089/dna.2019.4865] [PMID: 31804889]
[135]
Wang, X.; Bai, M. CircTM7SF3 contributes to oxidized low-density lipoprotein-induced apoptosis, inflammation and oxidative stress through targeting miR-206/ASPH axis in atherosclerosis cell model in vitro. BMC Cardiovasc. Disord., 2021, 21(1), 51.
[http://dx.doi.org/10.1186/s12872-020-01800-x] [PMID: 33526034]
[136]
Li, Y.; He, P.P.; Zhang, D.W.; Zheng, X.L.; Cayabyab, F.S.; Yin, W.D.; Tang, C.K. Lipoprotein lipase: From gene to atherosclerosis. Atherosclerosis, 2014, 237(2), 597-608.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.10.016] [PMID: 25463094]
[137]
Zhen, Z.; Ren, S.; Ji, H.; Ding, X.; Zou, P.; Lu, J. The lncRNA DAPK-IT1 regulates cholesterol metabolism and inflammatory response in macrophages and promotes atherogenesis. Biochem. Biophys. Res. Commun., 2019, 516(4), 1234-1241.
[http://dx.doi.org/10.1016/j.bbrc.2019.06.113] [PMID: 31300197]
[138]
Martinet, W.; Coornaert, I.; Puylaert, P.; De Meyer, G.R.Y. Macrophage death as a pharmacological target in atherosclerosis. Front. Pharmacol., 2019, 10, 306.
[http://dx.doi.org/10.3389/fphar.2019.00306] [PMID: 31019462]
[139]
Boada-Romero, E.; Martinez, J.; Heckmann, B.L.; Green, D.R. The clearance of dead cells by efferocytosis. Nat. Rev. Mol. Cell Biol., 2020, 21(7), 398-414.
[http://dx.doi.org/10.1038/s41580-020-0232-1] [PMID: 32251387]
[140]
Kourtzelis, I.; Hajishengallis, G.; Chavakis, T. Phagocytosis of apoptotic cells in resolution of inflammation. Front. Immunol., 2020, 11, 553.
[http://dx.doi.org/10.3389/fimmu.2020.00553] [PMID: 32296442]
[141]
Linton, M.F.; Babaev, V.R.; Huang, J.; Linton, E.F.; Tao, H.; Yancey, P.G. Macrophage apoptosis and efferocytosis in the pathogenesis of atherosclerosis. Circ. J., 2016, 80(11), 2259-2268.
[http://dx.doi.org/10.1253/circj.CJ-16-0924] [PMID: 27725526]
[142]
Mueller, P.A.; Kojima, Y.; Huynh, K.T.; Maldonado, R.A.; Ye, J.; Tavori, H.; Pamir, N.; Leeper, N.J.; Fazio, S. Macrophage LRP1 (low-density lipoprotein receptor-related protein 1) is required for the effect of CD47 blockade on efferocytosis and atherogenesis—brief report. Arterioscler. Thromb. Vasc. Biol., 2022, 42(1), e1-e9.
[http://dx.doi.org/10.1161/ATVBAHA.121.316854] [PMID: 34758632]
[143]
Ye, Z.; Yang, S.; Xia, Y.; Hu, R.; Chen, S.; Li, B.; Chen, S.; Luo, X.; Mao, L.; Li, Y.; Jin, H.; Qin, C.; Hu, B. LncRNA MIAT sponges miR-149-5p to inhibit efferocytosis in advanced atherosclerosis through CD47 up-regulation. Cell Death Dis., 2019, 10(2), 138.
[http://dx.doi.org/10.1038/s41419-019-1409-4] [PMID: 30755588]
[144]
González-Navarro, H.; Abu Nabah, Y.N.; Vinué, Á.; Andrés-Manzano, M.J.; Collado, M.; Serrano, M.; Andrés, V. p19(ARF) deficiency reduces macrophage and vascular smooth muscle cell apoptosis and aggravates atherosclerosis. J. Am. Coll. Cardiol., 2010, 55(20), 2258-2268.
[http://dx.doi.org/10.1016/j.jacc.2010.01.026] [PMID: 20381282]
[145]
Yan, L.; Liu, Z.; Yin, H.; Guo, Z.; Luo, Q. Silencing of MEG3 inhibited ox‐LDL‐induced inflammation and apoptosis in macrophages via modulation of the MEG3/miR‐204/CDKN2A regulatory axis. Cell Biol. Int., 2019, 43(4), 409-420.
[http://dx.doi.org/10.1002/cbin.11105] [PMID: 30672051]
[146]
An, J.H.; Chen, Z.Y.; Ma, Q.L.; Wang, H.J.; Zhang, J.Q.; Shi, F.W. LncRNA SNHG16 promoted proliferation and inflammatory response of macrophages through miR-17-5p/NF-κB signaling pathway in patients with atherosclerosis. Eur Rev Med Pharmaco, 2019, 23(19), 8665-8677.
[PMID: 31646601]
[147]
Shi, Z.; Zheng, Z.; Lin, X.; Ma, H. Long noncoding RNA MALAT1 regulates the progression of atherosclerosis by miR-330-5p/NF-κB signal pathway. J. Cardiovasc. Pharmacol., 2021, 78(2), 235-246.
[http://dx.doi.org/10.1097/FJC.0000000000001061] [PMID: 34554676]
[148]
Liu, J.; Huang, G.Q.; Ke, Z.P. Silence of long intergenic noncoding RNA HOTAIR ameliorates oxidative stress and inflammation response in ox‐LDL‐treated human macrophages by up-regulating miR‐330‐5p. J. Cell. Physiol., 2019, 234(4), 5134-5142.
[http://dx.doi.org/10.1002/jcp.27317] [PMID: 30187491]
[149]
Jarosz, M.; Olbert, M.; Wyszogrodzka, G.; Młyniec, K.; Librowski, T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology, 2017, 25(1), 11-24.
[http://dx.doi.org/10.1007/s10787-017-0309-4] [PMID: 28083748]
[150]
He, L.; Zhao, X.; He, L. LINC01140 alleviates the oxidized low-density lipoprotein-induced inflammatory response in macrophages via suppressing miR-23b. Inflammation, 2020, 43(1), 66-73.
[http://dx.doi.org/10.1007/s10753-019-01094-y] [PMID: 31748847]
[151]
He, Q.; Shao, D.; Hao, S.; Yuan, Y.; Liu, H.; Liu, F.; Mu, Q. CircSCAP aggravates oxidized low-density lipoprotein-induced macrophage injury by up-regulating PDE3B by miR-221-5p in atherosclerosis. J. Cardiovasc. Pharmacol., 2021, 78(5), e749-e760.
[http://dx.doi.org/10.1097/FJC.0000000000001118] [PMID: 34321402]
[152]
Wen, L.; Yang, Q.H.; Ma, X.L.; Li, T.; Xiao, S.; Sun, C.F. Inhibition of TNFAIP1 ameliorates the oxidative stress and inflammatory injury in myocardial ischemia/reperfusion injury through modulation of Akt/GSK-3β/Nrf2 pathway. Int. Immunopharmacol., 2021, 99, 107993.
[http://dx.doi.org/10.1016/j.intimp.2021.107993] [PMID: 34330059]
[153]
Xu, C.; Chen, L.; Wang, R.J.; Meng, J. LncRNA KCNQ1OT1 knockdown inhibits ox-LDL-induced inflammatory response and oxidative stress in THP-1 macrophages through the miR-137/TNFAIP1 axis. Cytokine, 2022, 155, 155912.
[http://dx.doi.org/10.1016/j.cyto.2022.155912] [PMID: 35598525]
[154]
Han, Y.; Ma, J.; Wang, J.; Wang, L. Silencing of H19 inhibits the adipogenesis and inflammation response in ox-LDL-treated Raw264.7 cells by up-regulating miR-130b. Mol. Immunol., 2018, 93, 107-114.
[http://dx.doi.org/10.1016/j.molimm.2017.11.017] [PMID: 29172088]
[155]
Liang, H.; Yang, K.; Xin, M.; Liu, X.; Zhao, L.; Liu, B.; Wang, J. MiR-130a protects against lipopolysaccharide-induced glomerular cell injury by up-regulation of Klotho. Pharmazie, 2017, 72(8), 468-474.
[PMID: 29441906]
[156]
Zhang, Y.; Lu, X.; Yang, M.; Shangguan, J.; Yin, Y. GAS5 knockdown suppresses inflammation and oxidative stress induced by oxidized low-density lipoprotein in macrophages by sponging miR-135a. Mol. Cell. Biochem., 2021, 476(2), 949-957.
[http://dx.doi.org/10.1007/s11010-020-03962-w] [PMID: 33128668]
[157]
Du, X.J.; Lu, J.M. MiR‐135a represses oxidative stress and vascular inflammatory events viatargeting toll‐like receptor 4 in atherogenesis. J. Cell. Biochem., 2018, 119(7), 6154-6161.
[http://dx.doi.org/10.1002/jcb.26819] [PMID: 29663503]
[158]
Huynh, D.T.N.; Heo, K.S. Role of mitochondrial dynamics and mitophagy of vascular smooth muscle cell proliferation and migration in progression of atherosclerosis. Arch. Pharm. Res., 2021, 44(12), 1051-1061.
[http://dx.doi.org/10.1007/s12272-021-01360-4] [PMID: 34743301]
[159]
Lee, H.S.; Yun, S.J.; Ha, J.M.; Jin, S.Y.; Ha, H.K.; Song, S.H.; Kim, C.D.; Bae, S.S. Prostaglandin D2 stimulates phenotypic changes in vascular smooth muscle cells. Exp. Mol. Med., 2019, 51(11), 1-10.
[http://dx.doi.org/10.1038/s12276-019-0330-3] [PMID: 31735914]
[160]
Bennett, M.R.; Sinha, S.; Owens, G.K. Vascular smooth muscle cells in atherosclerosis. Circ. Res., 2016, 118(4), 692-702.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306361] [PMID: 26892967]
[161]
Wang, Y.; Dubland, J.A.; Allahverdian, S.; Asonye, E.; Sahin, B.; Jaw, J.E.; Sin, D.D.; Seidman, M.A.; Leeper, N.J.; Francis, G.A. Smooth muscle cells contribute the majority of foam cells in ApoE (Apolipoprotein E)-deficient mouse atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2019, 39(5), 876-887.
[http://dx.doi.org/10.1161/ATVBAHA.119.312434] [PMID: 30786740]
[162]
Peng, N.; Liu, J.; Gao, D.; Lin, R.; Li, R. Angiotensin II-induced C-reactive protein generation: Inflammatory role of vascular smooth muscle cells in atherosclerosis. Atherosclerosis, 2007, 193(2), 292-298.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.09.007] [PMID: 17055513]
[163]
Allahverdian, S.; Chaabane, C.; Boukais, K.; Francis, G.A.; Bochaton-Piallat, M.L. Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovasc. Res., 2018, 114(4), 540-550.
[http://dx.doi.org/10.1093/cvr/cvy022] [PMID: 29385543]
[164]
Qi, M.; Xin, S. FGF signaling contributes to atherosclerosis by enhancing the inflammatory response in vascular smooth muscle cells. Mol. Med. Rep., 2019, 20(1), 162-170.
[http://dx.doi.org/10.3892/mmr.2019.10249] [PMID: 31115530]
[165]
Ananyeva, N.M.; Tjurmin, A.V.; Berliner, J.A.; Chisolm, G.M.; Liau, G.; Winkles, J.A.; Haudenschild, C.C. Oxidized LDL mediates the release of fibroblast growth factor-1. Arterioscler. Thromb. Vasc. Biol., 1997, 17(3), 445-453.
[http://dx.doi.org/10.1161/01.ATV.17.3.445] [PMID: 9102162]
[166]
Zhang, L.; Cheng, H.; Yue, Y.; Li, S.; Zhang, D.; He, R. TUG1 knockdown ameliorates atherosclerosis via up-regulating the expression of miR-133a target gene FGF1. Cardiovasc. Pathol., 2018, 33, 6-15.
[http://dx.doi.org/10.1016/j.carpath.2017.11.004] [PMID: 29268138]
[167]
Abid, M.R.; Yano, K.; Guo, S.; Patel, V.I.; Shrikhande, G.; Spokes, K.C.; Ferran, C.; Aird, W.C. Forkhead transcription factors inhibit vascular smooth muscle cell proliferation and neointimal hyperplasia. J. Biol. Chem., 2005, 280(33), 29864-29873.
[http://dx.doi.org/10.1074/jbc.M502149200] [PMID: 15961397]
[168]
Brown, J.; Wang, H.; Suttles, J.; Graves, D.T.; Martin, M. Mammalian target of rapamycin complex 2 (mTORC2) negatively regulates Toll-like receptor 4-mediated inflammatory response viaFoxO1. J. Biol. Chem., 2011, 286(52), 44295-44305.
[http://dx.doi.org/10.1074/jbc.M111.258053] [PMID: 22045807]
[169]
Li, X.; Li, L.; Dong, X.; Ding, J.; Ma, H.; Han, W. Circ_GRN promotes the proliferation, migration, and inflammation of vascular smooth muscle cells in atherosclerosis through miR-214-3p/FOXO1 axis. J. Cardiovasc. Pharmacol., 2021, 77(4), 470-479.
[http://dx.doi.org/10.1097/FJC.0000000000000982] [PMID: 33818550]
[170]
Urrego, D.; Tomczak, A.P.; Zahed, F.; Stühmer, W.; Pardo, L.A. Potassium channels in cell cycle and cell proliferation. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1638), 20130094.
[http://dx.doi.org/10.1098/rstb.2013.0094] [PMID: 24493742]
[171]
Lao, K.H.; Zeng, L.; Xu, Q. Endothelial and smooth muscle cell transformation in atherosclerosis. Curr. Opin. Lipidol., 2015, 26(5), 449-456.
[http://dx.doi.org/10.1097/MOL.0000000000000219] [PMID: 26218417]
[172]
Zhang, P.; Wang, W.; Li, M. Circ_0010283/miR-377-3p/Cyclin D1 axis is associated with proliferation, apoptosis, migration, and inflammation of oxidized low-density lipoprotein-stimulated vascular smooth muscle cells. J. Cardiovasc. Pharmacol., 2021, 78(3), 437-447.
[http://dx.doi.org/10.1097/FJC.0000000000001076] [PMID: 34516453]
[173]
Luftman, K.; Hasan, N.; Day, P.; Hardee, D.; Hu, C. Silencing of VAMP3 inhibits cell migration and integrin-mediated adhesion. Biochem. Biophys. Res. Commun., 2009, 380(1), 65-70.
[http://dx.doi.org/10.1016/j.bbrc.2009.01.036] [PMID: 19159614]
[174]
Zhu, J.J.; Liu, Y.F.; Zhang, Y.P.; Zhao, C.R.; Yao, W.J.; Li, Y.S.; Wang, K.C.; Huang, T.S.; Pang, W.; Wang, X.F.; Wang, X.; Chien, S.; Zhou, J. VAMP3 and SNAP23 mediate the disturbed flow-induced endothelial microRNA secretion and smooth muscle hyperplasia. Proc. Natl. Acad. Sci., 2017, 114(31), 8271-8276.
[http://dx.doi.org/10.1073/pnas.1700561114] [PMID: 28716920]
[175]
Li, R.; Jiang, Q.; Zheng, Y. Circ_0002984 induces proliferation, migration and inflammation response of VSMCs induced by ox‐LDL through miR 326‐3p/VAMP3 axis in atherosclerosis. J. Cell. Mol. Med., 2021, 25(16), 8028-8038.
[http://dx.doi.org/10.1111/jcmm.16734] [PMID: 34169652]
[176]
Burger, F.; Baptista, D.; Roth, A.; da Silva, R.F.; Montecucco, F.; Mach, F.; Brandt, K.J.; Miteva, K. NLRP3 inflammasome activation controls vascular smooth muscle cells phenotypic switch in atherosclerosis. Int. J. Mol. Sci., 2021, 23(1), 340.
[http://dx.doi.org/10.3390/ijms23010340] [PMID: 35008765]
[177]
Chhibber-Goel, J.; Singhal, V.; Bhowmik, D.; Vivek, R.; Parakh, N.; Bhargava, B.; Sharma, A. Linkages between oral commensal bacteria and atherosclerotic plaques in coronary artery disease patients. NPJ Biofilms Microbiomes, 2016, 2(1), 7.
[http://dx.doi.org/10.1038/s41522-016-0009-7] [PMID: 28649401]
[178]
Suh, J.S.; Kim, S.; Boström, K.I.; Wang, C.Y.; Kim, R.H.; Park, N.H. Periodontitis-induced systemic inflammation exacerbates atherosclerosis partly via endothelial–mesenchymal transition in mice. Int. J. Oral Sci., 2019, 11(3), 21.
[http://dx.doi.org/10.1038/s41368-019-0054-1] [PMID: 31257363]
[179]
Liu, J.; Wang, Y.; Liao, Y.; Zhou, Y.; Zhu, J. Circular RNA PPP1CC promotes Porphyromonas gingivalis -lipopolysaccharide-induced pyroptosis of vascular smooth muscle cells by activating the HMGB1/TLR9/AIM2 pathway. J. Int. Med. Res., 2021, 49(3)
[http://dx.doi.org/10.1177/0300060521996564] [PMID: 33769113]
[180]
Lin, Y.; Huang, H.; Yu, Y.; Zhu, F.; Xiao, W.; Yang, Z.; Shao, L.; Shen, Z. Long non-coding RNA RP11-465L10.10 promotes vascular smooth muscle cells phenotype switching and MMP9 expression viathe NF-κB pathway. Ann. Transl. Med., 2021, 9(24), 1776.
[http://dx.doi.org/10.21037/atm-21-6402] [PMID: 35071470]
[181]
Ye, B.; Wu, Z.; Tsui, T.Y.; Zhang, B.; Su, X.; Qiu, Y.; Zheng, X. lncRNA KCNQ1OT1 suppresses the inflammation and proliferation of vascular smooth muscle cells through iκba in intimal hyperplasia. Mol. Ther. Nucleic Acids, 2020, 20, 62-72.
[http://dx.doi.org/10.1016/j.omtn.2020.01.032] [PMID: 32146419]
[182]
Kong, P.; Yu, Y.; Wang, L.; Dou, Y.Q.; Zhang, X.H.; Cui, Y.; Wang, H.Y.; Yong, Y.T.; Liu, Y.B.; Hu, H.J.; Cui, W.; Sun, S.G.; Li, B.H.; Zhang, F.; Han, M. circ-Sirt1 controls NF-κB activation via sequence-specific interaction and enhancement of SIRT1 expression by binding to miR-132/212 in vascular smooth muscle cells. Nucleic Acids Res., 2019, 47(7), 3580-3593.
[http://dx.doi.org/10.1093/nar/gkz141] [PMID: 30820544]
[183]
Wang, F.; Liu, Z.; Park, S.H.; Gwag, T.; Lu, W.; Ma, M.; Sui, Y.; Zhou, C. Myeloid β-catenin deficiency exacerbates atherosclerosis in low-density lipoprotein receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol., 2018, 38(7), 1468-1478.
[http://dx.doi.org/10.1161/ATVBAHA.118.311059] [PMID: 29724817]
[184]
Marchand, A.; Atassi, F.; Gaaya, A.; Leprince, P.; Le Feuvre, C.; Soubrier, F.; Lompré, A.M.; Nadaud, S. The Wnt/beta-catenin pathway is activated during advanced arterial aging in humans. Aging Cell, 2011, 10(2), 220-232.
[http://dx.doi.org/10.1111/j.1474-9726.2010.00661.x] [PMID: 21108734]
[185]
Sun, H.; Feng, J.; Ma, Y.; Cai, D.; Luo, Y.; Wang, Q.; Li, F.; Zhang, M.; Hu, Q. RETRACTED ARTICLE: Down-regulation of microRNA-342-5p or Up-regulation of Wnt3a Inhibits Angiogenesis and Maintains Atherosclerotic Plaque Stability in Atherosclerosis Mice. Nanoscale Res. Lett., 2021, 16(1), 165.
[http://dx.doi.org/10.1186/s11671-021-03608-w] [PMID: 34807315]
[186]
Zhuang, J.B.; Li, T.; Hu, X.M.; Ning, M.; Gao, W.Q.; Lang, Y.H.; Zheng, W.F.; Wei, J. Circ_CHFR expedites cell growth, migration and inflammation in ox-LDL-treated human vascular smooth muscle cells via the miR-214-3p/Wnt3/β-catenin pathway. Eur Rev Med Pharmaco, 2020, 24(6), 3282-3292.
[PMID: 32271446]
[187]
Zhao, Y.; Zhang, J.; Zhang, W.; Xu, Y. A myriad of roles of dendritic cells in atherosclerosis. Clin. Exp. Immunol., 2021, 206(1), 12-27.
[http://dx.doi.org/10.1111/cei.13634] [PMID: 34109619]
[188]
Gil-Pulido, J.; Zernecke, A. Antigen-presenting dendritic cells in atherosclerosis. Eur. J. Pharmacol., 2017, 816, 25-31.
[http://dx.doi.org/10.1016/j.ejphar.2017.08.016] [PMID: 28822856]
[189]
Chen, L.; Hu, L.; Zhu, X.; Wang, Y.; Li, Q.; Ma, J.; Li, H. MALAT1 overexpression attenuates AS by inhibiting ox-LDL-stimulated dendritic cell maturation via miR-155-5p/NFIA axis. Cell Cycle, 2020, 19(19), 2472-2485.
[http://dx.doi.org/10.1080/15384101.2020.1807094] [PMID: 32840181]
[190]
Zhu, J.; Chen, Z.; Peng, X.; Zheng, Z.; Le, A.; Guo, J.; Ma, L.; Shi, H.; Yao, K.; Zhang, S.; Ge, J.; Zheng, Z.; Wang, Q. Extracellular vesicle-derived circitgb1 regulates dendritic cell maturation and cardiac inflammation via miR-342-3p/NFAM1. Oxid. Med. Cell. Longev., 2022, 2022, 1-23.
[http://dx.doi.org/10.1155/2022/8392313] [PMID: 35615580]
[191]
Poller, W.; Dimmeler, S.; Heymans, S.; Zeller, T.; Haas, J.; Karakas, M.; Leistner, D.M.; Jakob, P.; Nakagawa, S.; Blankenberg, S.; Engelhardt, S.; Thum, T.; Weber, C.; Meder, B.; Hajjar, R.; Landmesser, U. Non-coding RNAs in cardiovascular diseases: Diagnostic and therapeutic perspectives. Eur. Heart J., 2018, 39(29), 2704-2716.
[http://dx.doi.org/10.1093/eurheartj/ehx165] [PMID: 28430919]
[192]
Li, L.; Wang, L.; Li, H.; Han, X.; Chen, S.; Yang, B.; Hu, Z.; Zhu, H.; Cai, C.; Chen, J.; Li, X.; Huang, J.; Gu, D. Characterization of LncRNA expression profile and identification of novel LncRNA biomarkers to diagnose coronary artery disease. Atherosclerosis, 2018, 275, 359-367.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.06.866] [PMID: 30015300]
[193]
Chen, L.; Qu, H.; Guo, M.; Zhang, Y.; Cui, Y.; Yang, Q.; Bai, R.; Shi, D. ANRIL and atherosclerosis. J. Clin. Pharm. Ther., 2020, 45(2), 240-248.
[http://dx.doi.org/10.1111/jcpt.13060] [PMID: 31703157]
[194]
Zhang, Z.; Gao, W.; Long, Q.Q.; Zhang, J.; Li, Y.F. liu, D.C.; Yan, J.J.; Yang, Z.J.; Wang, L.S. Increased plasma levels of lncRNA H19 and LIPCAR are associated with increased risk of coronary artery disease in a Chinese population. Sci. Rep., 2017, 7(1), 7491.
[http://dx.doi.org/10.1038/s41598-017-07611-z] [PMID: 28790415]
[195]
Altesha, M.A.; Ni, T.; Khan, A.; Liu, K.; Zheng, X. Circular RNA in cardiovascular disease. J. Cell. Physiol., 2019, 234(5), 5588-5600.
[http://dx.doi.org/10.1002/jcp.27384] [PMID: 30341894]
[196]
Liang, B.; Li, M.; Deng, Q.; Wang, C.; Rong, J.; He, S.; Xiang, Y.; Zheng, F. CircRNA ZNF609 in peripheral blood leukocytes acts as a protective factor and a potential biomarker for coronary artery disease. Ann. Transl. Med., 2020, 8(12), 741.
[http://dx.doi.org/10.21037/atm-19-4728] [PMID: 32647666]
[197]
Jiang, Y.; Du, T. Relation of circulating lncRNA GAS5 and miR‐21 with biochemical indexes, stenosis severity, and inflammatory cytokines in coronary heart disease patients. J. Clin. Lab. Anal., 2022, 36(2), e24202.
[http://dx.doi.org/10.1002/jcla.24202] [PMID: 34997773]
[198]
Ayada, K.; Yokota, K.; Kobayashi, K.; Shoenfeld, Y.; Matsuura, E.; Oguma, K. Chronic infections and atherosclerosis. Ann. N. Y. Acad. Sci., 2007, 1108(1), 594-602.
[http://dx.doi.org/10.1196/annals.1422.062] [PMID: 17894024]
[199]
Teng, L.; Meng, R. Long non-coding RNA MALAT1 promotes acute cerebral infarction through miRNAs-Mediated hs-CRP regulation. J. Mol. Neurosci., 2019, 69(3), 494-504.
[http://dx.doi.org/10.1007/s12031-019-01384-y] [PMID: 31342266]
[200]
van Leuven, S.I.; Kastelein, J.J.P. Atorvastatin. Expert Opin. Pharmacother., 2005, 6(7), 1191-1203.
[http://dx.doi.org/10.1517/14656566.6.7.1191] [PMID: 15957972]
[201]
Björnsson, E.S. Hepatotoxicity of statins and other lipid-lowering agents. Liver Int., 2017, 37(2), 173-178.
[http://dx.doi.org/10.1111/liv.13308] [PMID: 27860156]
[202]
Ye, Y.; Zhao, X.; Lu, Y.; Long, B.; Zhang, S. Varinostat alters gene expression profiles in aortic tissues from ApoE −/– Mice. Hum. Gene Ther. Clin. Dev., 2018, 29(4), 214-225.
[http://dx.doi.org/10.1089/humc.2018.141] [PMID: 30284929]
[203]
Petrucci, G.; Rizzi, A.; Hatem, D.; Tosti, G.; Rocca, B.; Pitocco, D. Role of oxidative stress in the pathogenesis of atherothrombotic diseases. Antioxidants, 2022, 11(7), 1408.
[http://dx.doi.org/10.3390/antiox11071408] [PMID: 35883899]
[204]
Liu, Z.; Gan, L.; Xu, Y.; Luo, D.; Ren, Q.; Wu, S.; Sun, C. Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue. J. Pineal Res., 2017, 63(1), e12414.
[http://dx.doi.org/10.1111/jpi.12414] [PMID: 28398673]
[205]
Song, X.; Tan, L.; Wang, M.; Ren, C.; Guo, C.; Yang, B.; Ren, Y.; Cao, Z.; Li, Y.; Pei, J. Myricetin: A review of the most recent research. Biomed. Pharmacother., 2021, 134, 111017.
[http://dx.doi.org/10.1016/j.biopha.2020.111017] [PMID: 33338751]
[206]
Yang, L.J.; Jeng, C.J.; Kung, H.N.; Chang, C.C.; Wang, A.G.; Chau, G.Y.; Don, M.J.; Chau, Y.P. Tanshinone IIA isolated from Salvia miltiorrhiza elicits the cell death of human endothelial cells. J. Biomed. Sci., 2005, 12(2), 347-361.
[http://dx.doi.org/10.1007/s11373-005-0973-z] [PMID: 15917998]
[207]
Zhu, J.; Xu, Y.; Ren, G.; Hu, X.; Wang, C.; Yang, Z.; Li, Z.; Mao, W.; Lu, D.; Tanshinone, I.I.A.; Tanshinone, IIA. Sodium sulfonate regulates antioxidant system, inflammation, and endothelial dysfunction in atherosclerosis by downregulation of CLIC1. Eur. J. Pharmacol., 2017, 815, 427-436.
[http://dx.doi.org/10.1016/j.ejphar.2017.09.047] [PMID: 28970012]
[208]
Chen, W.; Guo, S.; Li, X.; Song, N.; Wang, D.; Yu, R. The regulated profile of noncoding RNAs associated with inflammation by tanshinone IIA on atherosclerosis. J. Leukoc. Biol., 2020, 108(1), 243-252.
[http://dx.doi.org/10.1002/JLB.3MA0320-327RRR] [PMID: 32337768]
[209]
Kong, X.L.; Lyu, Q.; Zhang, Y.Q.; Kang, D.F.; Li, C.; Zhang, L.; Gao, Z.C.; Liu, X.X.; Wu, J.B.; Li, Y.L. Effect of astragaloside IV and salvianolic acid B on antioxidant stress and vascular endothelial protection in the treatment of atherosclerosis based on metabonomics. Chin. J. Nat. Med., 2022, 20(8), 601-613.
[http://dx.doi.org/10.1016/S1875-5364(22)60186-9] [PMID: 36031232]
[210]
Fan, S.; Hu, Y.; You, Y.; Xue, W.; Chai, R.; Zhang, X.; Shou, X.; Shi, J. Role of resveratrol in inhibiting pathological cardiac remodeling. Front. Pharmacol., 2022, 13, 924473.
[http://dx.doi.org/10.3389/fphar.2022.924473] [PMID: 36120366]
[211]
Chen, J.; Liu, Y.; Liu, Y.; Peng, J. Resveratrol protects against ox-LDL-induced endothelial dysfunction in atherosclerosis via depending on circ_0091822/miR-106b-5p-mediated up-regulation of TLR4. Immunopharmacol. Immunotoxicol., 2022, 44(6), 915-924.
[http://dx.doi.org/10.1080/08923973.2022.2093740] [PMID: 35736860]
[212]
Wu, Y.; Zhang, F.; Li, X.; Hou, W.; Zhang, S.; Feng, Y.; Lu, R.; Ding, Y.; Sun, L. Systematic analysis of lncRNA expression profiles and atherosclerosis-associated lncRNA-mRNA network revealing functional lncRNAs in carotid atherosclerotic rabbit models. Funct. Integr. Genomics, 2020, 20(1), 103-115.
[http://dx.doi.org/10.1007/s10142-019-00705-z] [PMID: 31392586]
[213]
Wang, X. A PCR-based platform for microRNA expression profiling studies. RNA, 2009, 15(4), 716-723.
[http://dx.doi.org/10.1261/rna.1460509] [PMID: 19218553]
[214]
Hung, J.H.; Weng, Z. Analysis of microarray and RNA-seq expression profiling data. Cold Spring Harb. Protoc., 2017, 2017(3) pdb.top093104.
[http://dx.doi.org/10.1101/pdb.top093104] [PMID: 27574194]
[215]
Wang, L.; Long, H.; Zheng, Q.; Bo, X.; Xiao, X.; Li, B. Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression. Mol. Cancer, 2019, 18(1), 119.
[http://dx.doi.org/10.1186/s12943-019-1046-7] [PMID: 31324186]
[216]
Chen, J.; Huang, X.; Wang, W.; Xie, H.; Li, J.; Hu, Z.; Zheng, Z.; Li, H.; Teng, L. LncRNA CDKN2BAS predicts poor prognosis in patients with hepatocellular carcinoma and promotes metastasis via the miR-153-5p/ARHGAP18 signaling axis. Aging., 2018, 10(11), 3371-3381.
[http://dx.doi.org/10.18632/aging.101645] [PMID: 30510148]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy